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Creation of particle-hole superposition states in graphene at multiphoton resonant
excitation by laser radiation
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Nonlinear dynamics of the establishment of electron-hole coherent superposition states in graphene by
multiphoton resonant excitation of interband transitions in laser fields is considered. The single-particle time-
dependent density matrix for such a quantized system is calculated in the multiphoton resonant approximation.
The dependence of Rabi oscillations of the Fermi-Dirac sea in graphene on the time, momentum, and photon
number at multiphoton laser excitation is analyzed.
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I. INTRODUCTION

Graphene, a single sheet of carbon atoms in a honeycomb
lattice, has attracted an enormous amount of interest since its
experimental discovery and isolation.1,2 Its quasiparticle states
behave like massless “relativistic” Dirac fermions3,4 and obey
a two-dimensional Dirac equation, where the light speed is
replaced by the Fermi velocity, which is 300 times smaller than
the light speed in vacuum. In addition to various applications
in electronic devices, graphene physics opens up a wide
research field unifying low-energy condensed-matter physics
and quantum electrodynamics (QED).5–9 Many fundamental
nonlinear QED processes, specifically electron-positron pair
production in superstrong laser fields of ultrarelativistic
intensities,10 the observation of which remains problematic
even in the current superintense laser fields, have their
counterparts in graphene where considerably weaker elec-
tromagnetic fields are required for experimental realization
of “antimatter” production from vacuum. In this connec-
tion, one can note the Klein paradox,11–13 the Schwinger
mechanism,14–16 and zitterbewegung17–20 for particle-hole
excitation, as well as diverse physical and applied effects based
on zitterbewegung, e.g., minimal conductivity at vanishing
carrier concentration,21,22 etc.

Due to a massless energy spectrum, the Compton wave-
length for a graphene quasiparticle tends to infinity. On
the other hand, in QED the Compton wavelength is the
characteristic length below which the single-particle concept
is no longer valid, and spontaneous particle-antiparticle pair
creation or annihilation occurs permanently. Therefore, at the
interaction of an electromagnetic field with intrinsic graphene,
there is no quasiclassical limit because no matter how weak
the applied field is and how small the photon energy is, the
particle-hole pairs will be created during the whole interaction
process—at arbitrary distances.

In graphene, wave-particle interaction can be characterized
by the dimensionless parameter

χ = eEvF

ω

1

h̄ω
,

which represents the work of the wave electric field E on
a period 1/ω in units of photon energy εγ = h̄ω. Here vF

is the Fermi velocity (vF ≈ c/300) and e is the elementary
charge. The average intensity of the wave expressed by χ can

be estimated as

Iχ = χ2 × 3.07 × 1011 W cm−2(h̄ω/eV)4.

Depending on the value of this parameter χ , one can distin-
guish three different regimes in the wave-particle interaction
process. Thus, χ � 1 corresponds to the one-photon interac-
tion regime, χ ∼ 1 to the multiphoton interaction regime, and
χ � 1 corresponds to the static field limit or the Schwinger
regime. As is seen, the intensity Iχ depends strongly on the
photon energy. In particular, for infrared photons, εγ ∼ 0.1 eV,
the multiphoton interaction regime can be achieved at the
intensities Iχ = 3.07 × 107 W cm−2. Note that in the case of
free electrons at the same photon energies, multiphoton effects
take place at the intensities I ∼ 1016 W cm−2.10 Such a huge
difference, as well as the gapless particle-hole energy spectrum
in graphene, make another interesting nonlinear QED process
realistic, namely the multiphoton excitation of Dirac vacuum
with Rabi oscillations at ultrafast time scales.23

In the present work, the microscopic theory of the creation
of particle-hole coupled states in graphene via multiphoton
resonant excitation by laser fields is developed. It is well
known that Rabi oscillation of states’ populations is the
coherent response of two-level atomic systems under resonant
excitation. The one-photon resonant excitation of atoms and
associated Rabi oscillations have been studied comprehen-
sively both theoretically and experimentally and described in
numerous review articles and books (see, e.g., Ref. 24). Similar
phenomena have also been observed in semiconductors.25

Recently, the Rabi oscillations in graphene at one-photon
interband excitation (at χ � 1) and their influence on the
dynamic conductivity were investigated in Refs. 26–28. On the
other hand, at a wave-particle interaction in graphene due to
free-free intraband transitions, we have a situation analogous
to resonant excitation of quantum systems with permanent
dipole moments, where direct multiphoton transitions are very
effective.29–32 Hence, the creation of particle-hole coupled
states in graphene via multiphoton resonant excitation is
of interest. We consider the multiphoton interaction regime
and the nonlinear optical response of graphene at χ ∼ 1,
considering particle-hole quantum dynamics in the vicinity of
the K point. Accordingly, the time evolution of the considered
process is found using a nonperturbative resonant approach
arising from the quantum kinetic equations. The considered
process, apart from its fundamental interest, may also have
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practical applications. In particular, particle-hole annihilation
from the coherent superposition states will cause intense
coherent radiation of harmonics of the applied wave field,
which is also briefly discussed in the present work. Note
that from this point of view, graphene is considered to be
a promising material for harmonics generation due to its
strongly enhanced nonlinear electromagnetic properties.33–36

As a result, because of inversion symmetry, at the normal
incidence of radiation on the uniform graphene layer only
odd harmonics are generated. For the generation of even
harmonics, one should break this symmetry, which has been
done in Refs. 37 and 38, where the microscopic perturbation
theory of second-harmonic generation at the oblique incidence
of radiation on the graphene has been developed.

The paper is organized as follows. In Sec. II, the set of
equations for a single-particle density matrix is formulated.
In Sec. III, we present the analytical solution of the stated
equations in the multiphoton resonant approximation. In
Sec. IV, the results of numerical integration of basic equations
are presented. Finally, conclusions are given in Sec. V.

II. BASIC MODEL AND EVOLUTIONARY EQUATION
FOR THE SINGLE-PARTICLE DENSITY MATRIX

Let graphene interact with plane quasimonochromatic laser
radiation of carrier frequency ω and slowly varying envelope.
To clarify the problem presented in this paper regarding the
creation of coherent superposition states, we consider the
interaction when the laser wave propagates in a perpendicular
direction to the graphene plane (XY ) to exclude the effect of
magnetic field. This traveling wave for electrons in graphene
becomes a homogeneous time-periodic electric field. It is
directed along the X axis with the form (constant phase
connected with the position of the wave pulse maximum with
respect to graphene plane is set zero)

E(t) = x̂E0 cos ωt. (1)

The problem that we attempt to solve in the given field
approximation is analogous to Rabi oscillations in two-level
atomic systems with permanent dipole moments. In this case,
the physical picture of resonant-wave–graphene interaction
will be more visible in the length gauge. Therefore, for the
interaction Hamiltonian we will use a length gauge describing
the interaction by the potential energy. Cast in the second
quantization formalism, the Hamiltonian is

Ĥ =
∫

�̂+Ĥs�̂dx dy, (2)

where �̂ is the fermionic field operator and Ĥs is the single-
particle Hamiltonian in the external homogeneous electric
field (1). Omitting here real spin and valley quantum numbers,
the single-particle Hamiltonian in the vicinity of the K point
can be written as

Ĥs = vF

(
0 p̂x − ip̂y

p̂x + ip̂y 0

)
+

(
exE 0

0 exE

)
, (3)

where vF ≈ c/300 is the Fermi velocity (c is the light
speed in vacuum) and p̂ = {p̂x,p̂y} is the electron momentum
operator. The first term in Eq. (3) is the Hamiltonian of a

two-dimensional massless Dirac fermion, and the second term
is the interaction part.

We write the fermionic field operator in the form of an
expansion in the free Dirac states:

�̂(x,y,t) =
∑
p,σ

âp,σ (t)�p,σ (x,y), (4)

where the creation and annihilation operators, â+
p,σ (t) and

âp,σ (t), associated with positive (σ = 1) and negative (σ =
−1) energy solutions satisfy the anticommutation rules at equal
times:

{̂a†
p,σ (t),̂ap′,σ ′(t ′)}t=t ′ = δp,p′δσ,σ ′ , (5)

{̂a†
p,σ (t),̂a†

p′,σ ′(t ′)}t=t ′ = {̂ap,σ (t),̂ap′,σ ′(t ′)}t=t ′ = 0. (6)

The free Dirac solutions corresponding to energies Eσ =
σvF

√
p2

x + p2
y (σ = ±1) are

�p,σ (x,y) = 1√
2S

(
1

σei	(p)

)
e

i
h̄ (pxx+pyy), (7)

where S is the quantization area (graphene layer surface area)
and

	(p) = arctan

(
py

px

)
(8)

is the angle in momentum space.
Taking into account Eqs. (1)–(8), the second quantized

Hamiltonian can be expressed in the form

Ĥ =
∑
p,σ

Eσ (p)̂a+
pσ âpσ

+ eE(t)
∑
p,σ

∑
p′,σ ′

Dσσ ′(p,p′ )̂a+
p,σ âp′,σ ′ , (9)

where

Dσσ ′(p,p′) = 1

2S
[1 + σσ ′ei[	(p′)−	(p)]]

×
∫

xe
i
h̄

(p′
x−px )x+ i

h̄
(p′

y−py )ydx dy. (10)

We will use the Heisenberg representation, where the evolution
of the operators is given by the following equation:

ih̄
∂L̂

∂t
= [L̂,Ĥ ], (11)

and the expectation values are determined by the initial density
matrix D̂:

〈L̂〉 = Tr(D̂L̂). (12)

The single-particle density matrix in momentum space is
defined as

ρσ1σ2 (p1,p2,t) = 〈̂a+
p2,σ2

(t )̂ap1,σ1 (t)〉. (13)

For the initial state of graphene quasiparticles, we assume an
ideal Fermi gas in equilibrium. This means that the initial
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single-particle density matrix is diagonal and we have the
Fermi-Dirac distribution

ρσσ ′(p,p′,0) = 1

1 + e
Eσ (p)−μ

T

δp,p′δσ,σ ′ . (14)

Here μ is the chemical potential and T is the temperature in
energy units. Taking into account definition (13), from Eq. (11)
one can obtain the evolution equation for the single-particle
density matrix:

ih̄
∂ρσ1σ2 (p1,p2,t)

∂t
= [

Eσ1 (p1) − Eσ2 (p2)
]
ρσ1σ2 (p1,p2,t) − eE(t)

∑
p,σ

[
Dσσ2 (p,p2)ρσ1σ (p1,p,t) − Dσ1σ (p1,p)ρσσ2 (p,p2,t)

]
. (15)

Then, taking into account the following relation with the Dirac delta function δ(α):∫ ∞

−∞
xe−iαxdx = 2πi

∂

∂α
δ(α)

and the substitution ∑
p

→ S

(2πh̄)2

∫
dp,

we obtain a closed set of equations for the density matrix elements:

∂ρσ,σ (p,p,t)

∂t
− eE(t)

∂ρσ,σ (p1,p,t)

∂p1x

∣∣∣∣
p1=p

− eE(t)
∂ρσ,σ (p,p2,t)

∂p2x

∣∣∣∣
p2=p

= i
eE(t)

2

∂	(p)

∂px

[ρσ,−σ (p,p,t) − ρ−σ,σ (p,p,t)],

(16)

∂ρσ,−σ (p,p,t)

∂t
− eE(t)

∂ρσ,−σ (p1,p,t)

∂p1x

∣∣∣∣
p1=p

− eE(t)
∂ρσ,−σ (p,p2,t)

∂p2x

∣∣∣∣
p2=p

= 2

ih̄
Eσ (p)ρσ,−σ (p,p,t) − eE(t)

2i

∂	(p)

∂px

[ρσ,σ (p,p,t) − ρ−σ,−σ (p,p,t)]. (17)

In Eqs. (16) and (17), one can eliminate the terms with partial derivatives ∂/∂px based on their characteristics. The characteristic
of these equations is the classical equation of motion:

dp
dt

= −eE(t),

with the solution

px = p0x + pE(t), py = p0y, (18)

where

pE(t) = −e

∫ t

0
E(t ′)dt ′ = −eE0

ω
sin ωt

is the momentum transferred by the wave field. Thus, with the new variables p0x , p0y , and t , Eqs. (16) and (17) read

∂ρσ,σ (p0,p0,t)

∂t
= i

2
F (p0,t)[ρσ,−σ (p0,p0,t) − ρ−σ,σ (p0,p0,t)], (19)

∂ρσ,−σ (p0,p0,t)

∂t
= 2

ih̄
Ẽσ (p0,t)ρσ,−σ (p0,p0,t) + i

2
F (p0,t)[ρσ,σ (p0,p0,t) − ρ−σ,−σ (p0,p0,t)], (20)

where

F (p0,t) = − eE(t)p0y

[p0x + pE(t)]2 + p2
0y

(21)
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and

Ẽσ (p0,t) = σvF

√
[p0x + pE(t)]2 + p2

0y. (22)

Taking into account Eq. (18), it is easy to see that

ρσ,σ ′ (p0,p0,0) = ρσ,σ ′(p,p,0). (23)

To be more precise, in the set of equations (16) and (17) one should add the terms describing relaxation processes. Since we
have not taken into account the relaxation processes, this consideration is correct only for the times t < τmin, where τmin is the
minimum of all relaxation times. Thus, full dynamics in the absence of any losses is now governed by Eqs. (19) and (20). These
equations yield the conservation law for the particle number:

ρ1,1(p0,p0,t) + ρ−1,−1(p0,p0,t) = ρ1,1(p0,p0,0) + ρ−1,−1(p0,p0,0) ≡ �(p0,μ,T ). (24)

Here we have introduced the notation �p0,μ,T , which, according to Eq. (14), is

�p0,μ,T = 1

1 + e
vF p0−μ

T

+ 1

1 + e
−vF p0−μ

T

.

In Eqs. (19) and (20), the diagonal elements represent particle N (p0,t) ≡ ρ1,1(p0,p0,t) and hole Nh(p0,t) = 1 − ρ−1,−1(p0,p0,t)
distribution functions, while the nondiagonal elements ρ1,−1(p0,p0,t) = ρ∗

−1,1(p0,p0,t) describe particle-hole coherent transitions.
Introducing in the interaction picture the interband coherence J (p0,t),

ρ1,−1(p0,p0,t) = iJ (p0,t) exp

{
−i

2

h̄

∫ t

0
Ẽ1(p0,t

′)dt ′
}
,

and taking into account that ρ−1,−1(p0,p0,t) = �p0,μ,T − N (p0,t), from Eqs. (19) and (20) we obtain the following set of
equations:

∂N (p0,t)

∂t
= −1

2
F (p0,t)

[
J (p0,t) exp

{
−i

2

h̄

∫ t

0
Ẽ1(p0,t

′)dt ′
}

+ c.c.

]
, (25)

∂J (p0,t)

∂t
= 1

2
F (p0,t) exp

{
i
2

h̄

∫ t

0
Ẽ1(p0,t

′)dt ′
}

[2N (p0,t) − �p0,μ,T ]. (26)

This set of equations should be solved with the initial conditions

J (p0,0) = 0, N (p0,0) = 1

1 + e
vF p0−μ

T

. (27)

As was mentioned in the Introduction, at the multiphoton resonant excitation, the particle-hole transitions will cause intense
coherent radiation on the harmonics of the applied wave field. For the coherent part of the radiation spectrum, one needs the
mean value of the current density operator along the polarization direction x̂ of the pump wave: ĵx = −evF 〈�̂|σx |�̂〉. With the
help of Eqs. (4) and (12), the expectation value of the total current can be written as

jx(t) = −evF gsgvS

(2πh̄)2

∫
dp{[ρ11(p,p,t) − ρ−1−1(p,p,t)] cos 	(p) + i sin 	(p)[ρ1,−1(p,p,t) − ρ∗

1,−1(p,p,t)]}, (28)

where gs = 2 and gv = 2 are the spin and valley degeneracy factors, respectively. Taking into account Eq. (18), one can express
the total current via interband coherence and particle/hole distribution functions:

jx(t) = evF gsgvS

(2πh̄)2

∫
dp0√

[p0x + pE(t)]2 + p2
0y

×
[
p0y

(
J (p0,t) exp

{
−i

2

h̄

∫ t

0
Ẽ1(p0,t

′)dt ′
}

+ c.c.

)
− [p0x + pE(t)][N (p0,t) + Nh(p0,t)]

]
. (29)

From Eq. (29), it is easy to see that

jx

j0
= f

(
ωt ; χ0,

μ

h̄ω
,

T

h̄ω

)
, j0 = eω2S

π2vF

, (30)

where f is the dimensionless periodic (for monochromatic
wave) function, which depends parametrically on the in-
teraction parameter χ0 = eE0vF /(h̄ω2) and scaled macro-
scopic parameters of the system. Thus, having solutions of

Eqs. (25) and (26) and making an integration in Eq. (29),
one can calculate the harmonic radiation spectrum with
the help of the Fourier transform of the total current
jx(t).
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III. MULTIPHOTON RESONANT EXCITATION

Equations (25) and (26) represent a linear set of equations
with periodic coefficients, which are analogous to Bloch
equations,24 describing Rabi oscillation of states’ populations
of two-level atomic system under resonant excitation. Note
that there are significant differences between the usual Bloch
equations and Eqs. (25) and (26). Thus, as is seen from
Eqs. (25) and (26), the coupling term

�(p0,t) = F (p0,t) exp

{
i
2

h̄

∫ t

0
Ẽ1(p0,t

′)dt ′
}

(31)

is a quasiperiodic function, that is,

�

(
p0,t + 2π

ω

)
= exp

{
i
2EE0 (p0)

h̄

2π

ω

}
�(p0,t). (32)

Here

EE0 (p0) = ω

2π

∫ 2π/ω

0
Ẽ1(p0,t)dt

= vF

ω

2π

∫ 2π/ω

0

√(
p0x − eE0

ω
sin ωt

)2

+ p2
0ydt

(33)

is the mean value of classical energy in the field (1). From
the Floquet theorem and Eq. (32), it follows that instead
of stationary levels vF p0 and −vF p0, due to the free-free
intraband transitions we have quasistationary states with
quasienergies ±EE0 (p0), which have a nonlinear dependence
on the amplitude of the wave field. The latter, in the physical
sense, is the dynamic Stark shift due to the free-free intraband
transitions. Note that the definition of quasienergies is not
unique, since Eq. (32) is also satisfied for EE0 (p0) + sh̄ω,
with integer number s. Hence, we have two Floquet ladders:
Ẽ±(s) = ±EE0 (p0) + sh̄ω; s = 0, ±1, ±2, . . . . These ladders
are coupled by the term F (p0,t + 2π/ω) = F (p0,t), which
in turn contains all harmonics of the driving field. In the
usual Bloch equations, coupling contains only fundamental
oscillations, which provide only direct one-photon resonant
excitation. This situation is analogous to resonant excitation
of systems with permanent dipole moments, where, as has
been shown in Ref. 29, it is possible to decouple slow and
rapid oscillations and to disclose the resonant dynamics of the
wave-particle interaction.

Because of the space homogeneity of the field (1), the
generalized momentum of a particle is conserved, so that
the real transitions in the field occur from a −EE0 (p0)
negative energy level to a positive +EE0 (p0) energy level, and,
consequently, the multiphoton probabilities of particle-hole
pair production will have maximal values for the resonant
transitions,

2EE0 � nh̄ω, n = 1,2,3, . . . . (34)

Note that the resonant condition (34) is equivalent to the
crossing of Floquet ladders: Ẽ−(s + n) � Ẽ+(s). Figure 1
schematically illustrates the multiphoton interband transition
between the two states in the filled lower cone and the empty
part of the upper cone. Here, in contrast to resonant transitions
in atomic systems with discrete energy levels, when h̄ω > μ,
the band structure of graphene is always resonant to pump

FIG. 1. (Color online) Graphene conical dispersion with inter-
band multiphoton transitions induced by external electric field.

radiation, and with the fixed photon energies we have fixed
resonant energy bands |EE0 − nh̄ω/2| � h̄�n. The widths
of these bands are determined by the Rabi frequency �n

of flopping between the two states in the lower and upper
cones.

To decouple slow and rapid oscillations in Eqs. (25)
and (26) at the resonant condition (34), we follow the ansatz
developed in Ref. 29. Taking into account the periodicity of
the function exp{−2iEE0 (p0)t/h̄}�(p0,t) and using the Fourier
series expansion of the latter,

e− 2i
h̄
EE (p0)t�(p0,t) = F (p0,t)e

i 2
h̄

∫ t

0 [Ẽ1(p0,t
′)−EE0 (p0)]dt ′

=
∑

s

Gs(p0,E0)e−isωt , (35)

one can represent Eqs. (25) and (26) in the form

∂N (p0,t)

∂t
= −1

2
J (p0,t)

∑
s

G∗
s (p0,E0)

× e−i( 2
h̄
EE (p0)−sω)t + c.c., (36)

∂J (p0,t)

∂t
= 1

2

∑
s

Gs(p0,E0)ei( 2
h̄
EE (p0)−sω)t

× [2N (p0,t) − �p0,μ,T ]. (37)

Here, the s photon coupling coefficient is

Gs(p0,E0) = ω

2π

∫ 2π/ω

0
F (p0,t)

× exp

{
−

∑
m�=0

2Em(p0)

mh̄ω
e−imωt

}
eisωtdt, (38)

where

Em(p0) = ω

2π

∫ 2π/ω

0
Ẽ1(p0,t)e

imωtdt. (39)

Close to resonance (34), the main coupling term in Eqs. (36)
and (37) becomes a slowly varying term with s = n. The
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remaining nonresonant and rapidly oscillating terms are
responsible only for dynamic Stark shifts.29 Thus, for time-
average functions N (p0,t) and J (p0,t), one can obtain the
following set of equations:

∂N (p0,t)

∂t
= −1

2
J (p0,t)G

∗
n(p0,E0)e−iδnt + c.c.,

× ∂J (p0,t)

∂t
+ iδStJ (p0,t) (40)

= 1

2
Gn(p0,E0)eiδnt [2N (p0,t) − �p0,μ,T ]. (41)

Here we have introduced resonance detuning

δn = 2EE(p0) − nh̄ω

h̄
(42)

and the dynamic Stark shift

δSt = 1

2ω

∑
s �=n

|Gs(p0,E0)|2
(n − s)

. (43)

The latter is the result of a virtual nonresonant transition
within Floquet states. Thus, we have a set of linear ordinary
differential equations, the solution of which at the initial
condition (27) is

J (p0,t) = eiδnt
Gn(p0,E0)

2�n

�p0,μ,T

×
(

sin �nt − i
δn + δSt

�n

(1 − cos �nt)

)
, (44)

N (p0,t) = �p0,μ,T

2
+ |Gn(p0,E0)|2

2�2
n

�p0,μ,T

×
[

(δn + δSt)2

|Gn(p0,E0)|2 + cos �nt

]
, (45)

where

�p0,μ,T = 1

1 + e
vF p0−μ

T

− 1

1 + e
−vF p0−μ

T

(46)

is the initial population inversion, and

�n =
√

|Gn(p0,E0)|2 + (δn + δSt)2 (47)

is the generalized Rabi frequency. The solution (45) expresses
Rabi flopping among the particle-hole states at the multiphoton
resonance. The solutions (44) and (45) have been derived using
the assumption that N (p0,t) and J (p0,t) are slowly varying
functions on the scale of the wave period, which establish the
restrictions

(|Gn(p0,E0)|,|δn|,|δSt|) � ω (48)

on the characteristic parameters of the system considered.
For the exact resonant energies (δn + δSt = 0), we have

�n = |Gn(p0,E0)| and the solutions become

J (p0,t) = �p0,μ,T

2
ei arg[Gn(p0,E0)] sin �nt, (49)

N (p0,t) = �p0,μ,T

2
cos �nt + �p0,μ,T

2
. (50)

For the weak pump fields χ0 � 1 and one-photon interband
excitation, one can omit nonlinear over E0 terms in Eq. (38),
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n=4

FIG. 2. Isolines of quasienergy corresponding to resonant con-
dition 2EE0 (p0)/h̄ω ≈ n (34) with detuning |δn|/ω = 0.02 for n =
2,3,4. The electric-field dimensionless parameter is taken to be
χ0 = 1.0. The momentum components are normalized to h̄ω/vF .

and for the Rabi frequency we have

�1 = eE0| sin 	(p0)|
2p0

.

Taking into account the resonant condition 2p0vF � h̄ω, the
latter can be expressed through the interaction parameter χ0:

�1 = ω| sin 	(p0)|χ0.

With increasing pump wave intensity, the Rabi oscillations
appear to correspond with multiphoton transitions. For strong
fields, the intensity effect of the pump wave on the quasienergy
spectrum (Stark shift due to free-free intraband transitions)
and the dynamic Stark shift due to virtual nonresonant
transitions become essential. For χ ∼ 1, the probabilities of
multiphoton transitions are essential up to photon numbers
n ∼ 5. For these photon numbers, the Stark shift (44) is not
essential, while the modification in the quasienergy spectrum
is considerable. Isolines of the quasienergy spectrum, defined
by Eq. (33), are no longer circles but ellipse-like because
of anisotropic deformation in the linearly polarized pump
wave. In Fig. 2, isolines of quasienergy corresponding to
the resonant condition 2EE0 (p0)/h̄ω ≈ n (34) with detuning
|δn|/ω = 0.02 for n = 2,3,4 are shown in the multiphoton
interaction regime: χ0 = 1. As is seen, modification of the
unperturbed energy spectrum in the direction perpendicular
to the electric field vector is considerable (for example, at
n = 3 we have 13% deviation). Thus, in the multiphoton
interaction regime, one should expect photoexcitation of the
particle distribution function just along the modified isolines,
in accordance with Eq. (50).

IV. NUMERICAL TREATMENT

We have also integrated Eqs. (25) and (26) with the
fourth-order adaptive Runge-Kutta method and performed
numerical simulations. Since we are mainly interested in
interband multiphoton transitions, the chemical potential and
temperature are fixed and are taken to be μ/h̄ω = 0.1 and
T/h̄ω = 5 × 10−3 for all calculations.
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FIG. 3. (Color online) Creation of particle-hole pair in graphene
at the one-photon resonant excitation. Particle distribution function
N (p0,t) (in arbitrary units) at instant ti = 25T as a function of scaled
dimensionless momentum components {p0xvF /h̄ω,p0yvF /h̄ω}. The
electric-field dimensionless parameter is χ0 = 0.02.

In Figs. 3–5, the photoexcitations of the Fermi-Dirac sea
are presented: the density plot of the particle distribution
function N (p0,t) is shown for various pump wave intensities
and instants. In Fig. 3, corresponding to χ0 = 0.02, we see
only the creation of a particle-hole pair in graphene at the
one-photon resonant excitation. In Fig. 4, the pump wave
intensity is larger, χ0 = 0.5, and, as a consequence, we see
resonant rings corresponding to multiphoton excitation up to
four photons. In Fig. 5, which corresponds to χ0 = 1, the ring
for the five-photon resonance is also clearly seen. As a result,
the ring for the one-photon excitation is smeared because
the Stark shift for this energy is comparable to h̄ω and the
condition (48) for resonant Rabi oscillations at one-photon
excitation is not fulfilled. As is seen from Figs. 4 and 5,
the excitation of the Fermi-Dirac sea takes place along the
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FIG. 4. (Color online) Same as Fig. 4 but for stronger wave field
with χ0 = 1.
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FIG. 5. (Color online) Creation of particle-hole pair in graphene
at the multiphoton resonant excitation. Particle distribution function
N (p0,t) (in arbitrary units) at instant ti = 100T as a function of scaled
dimensionless momentum components {p0xvF /h̄ω,p0yvF /h̄ω}. The
electric-field dimensionless parameter is χ0 = 0.5.

ellipse-like isolines of the quasienergy spectrum defined by
Eq. (33), in accordance with analytical treatment (see Fig. 2).

To show the dynamics of multiphoton excitation of the
Fermi-Dirac sea in Figs. 6–8, we present Rabi oscillations
of the particle distribution function N (p0,t) for the fixed
angles versus the scaled dimensionless momentum p0vF /h̄ω.
Figure 6 corresponds to two-photon resonance for the an-
gle 	(p0) = 0.2 rad and χ0 = 0.5. Rabi oscillations of
N (p0,t) can be clearly seen with the mean period TR =
22T (T =2π/ω is the wave period). Rabi oscillations for
three-photon resonance are displayed in Fig. 7 for the angle
	(p0) = π/2 rad and χ0 = 1. Here, the mean Rabi period is
TR = 15T . Four-photon resonant Rabi oscillations with the
mean period TR = 28T , at the angle 	(p0) = 0.6 rad, are
shown in Fig. 8.

To show the dependence of Rabi oscillations on the angle
	(p0), in Figs. 9 and 10 the colored four-dimensional (4D)
density plot of Rabi oscillations of the particle resonant

N(p0,t)
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FIG. 6. (Color online) Two-photon resonance (n = 2). Rabi
oscillations of the particle distribution function N (p0,t) for the
fixed angle 	(p0) = 0.2 rad vs the scaled dimensionless momentum
p0vF /h̄ω. The electric-field dimensionless parameter is χ0 = 0.5.
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FIG. 7. (Color online) Four-photon resonance (n = 4). Same
as Fig. 7 but for the angle 	(p0) = 0.6 rad. The electric-field
dimensionless parameter is χ0 = 1.0.

distribution functionNr (p0,t) on isosurfaces 2EE0 (p0)/h̄ω = n

for n = 3,4 are shown at χ0 = 1. As is seen from these
figures, for odd photon resonance the excited distribu-
tion function Nr (p0,t) is maximal at the angle 	(p0) =
π/2 rad (perpendicular to the applied electric field vec-
tor), while for even photon resonance at 	(p0) = π/2 rad
we have a minimum, and the main excitation takes place
close to 	(p0) = π/4. The latter is connected to the
fact that the coupling term in Eqs. (36) and (37) at
	(p0) = π/2 rad contains only odd harmonics of the pump
wave: G2s(0,p0y,E0) = 0.

Note that the described Rabi oscillations of the parti-
cle distribution function may be experimentally probed by
pump-probe, time-resolved photoemission spectroscopy.39,40

Another observable process in the scope of described nonlinear
dynamics is the harmonic radiation. Therefore, we proceed
to a harmonic radiation spectrum which can be calculated
with the help of the Fourier transform of jx(t). As is clear
from Eq. (29), the spectrum contains in general both even and
odd harmonics. However, depending on the initial conditions,
particularly for the equilibrium initial state (27) and smooth
turn-on/off of the wave field, the terms containing even
harmonics cancel each other, and only the odd harmonics
are generated. For turn-on/off of the wave field, the latter is
described by the envelope sin2(πt/Tp) (for the time period
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FIG. 8. (Color online) Same as Fig. 6 but for three-photon
resonance (n = 3 ). The angle is taken to be 	(p0) = π/2 rad. The
electric-field dimensionless parameter is χ0 = 1.0.
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FIG. 9. (Color online) Colored 4D plot of Rabi oscillations of the
particle distribution function Nr (p0,t) for three-photon resonance
on isosurface 2EE0 (p0)/h̄ω = 3. The electric-field dimensionless
parameter is χ0 = 1.0.

0 � t � Tp), where Tp characterizes the pulse duration, and
it is chosen to be Tp = 32T . The emission rate of the
N th harmonic is proportional to N2|jN |2, where jN is the
N th Fourier component of the field-induced current (29). To
find out jN , the fast Fourier transform algorithm has been
used.

Figure 11 displays the harmonic emission rate via
log10(N2|fN |2), where fN is the N th Fourier component
of the normalized current (30). To estimate the considered
effect, we present the results of numerical calculations for
a relatively weak wave field as well. As we see from this
figure, for weak fields the full radiation is concentrated on
the incident radiation frequency. For strong fields, the peaks
appear in the spectrum corresponding to harmonics emission
(up to seventh harmonic). Even harmonics, as well as the low-
frequency radiation corresponding to Rabi oscillations,31 are
absent because of inversion symmetry. Assuming the dipole
radiation mechanism, the conversion efficiency for harmonics
ηn = In/I can be estimated as ηn ∼ 10−3χ−2

0 (d/λ)2N2|fN |2,
where λ = 2πc/ω and d = min{Lg,w}, with Lg and w being
the characteristic sizes of graphene and the laser beam waist,
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FIG. 10. (Color online) Same as Fig. 9 but for four-photon
resonance: 2EE0 (p0)/h̄ω = 4.
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FIG. 11. (Color online) Harmonic emission rate in graphene at
the resonant excitation via log10(N 2|fN |2) (in arbitrary units) as a
function of the photon energy (in units of h̄ω). The solid (red) line
corresponds to the electric-field dimensionless parameter χ0 = 1; the
dashed (green) line corresponds to χ0 = 0.02.

respectively. For the setup of Fig. 11, depending on the
ratio d/λ, one can achieve quite large conversion efficien-
cies for third and fifth harmonics, which are comparable
to what one expects to achieve with resonant two-level
systems.30,32,41

Summarizing, we see that numerical simulations are
in agreement with analytical treatment in the multiphoton
resonant approximation and confirm the revealed physical
picture described in the preceding section. We see that
with laser fields of moderate intensities, one can observe
the resonant multiphoton excitation of the Fermi-Dirac sea
and efficient generation of moderately high harmonics in
graphene.

V. CONCLUSION

We have presented a theoretical treatment of the coherent
nonlinear response of graphene under multiphoton interband
excitation by laser radiation of moderate intensities. The
evolutionary equation for a single-particle density matrix is
formulated arising from the second quantized formalism. The
time-dependent single-particle density matrix in the given field
of laser radiation is calculated in the multiphoton resonant
approximation. The Rabi oscillations of the Fermi-Dirac sea
at multiphoton excitation depending on the time, momentum,
and photons number have been considered and analyzed also
on the basis of numerical simulations. The results obtained
demonstrate Rabi oscillations of the Fermi-Dirac sea in the
graphene corresponding to multiphoton excitation that can
already be observed for such laser fields where the effect of
the electric field on the wave period is comparable to photon
energy εγ = h̄ω. For the midinfrared lasers εγ ∼ 0.1 eV,
the multiphoton interaction regime can be achieved at the
intensities I > 107 W cm−2 for the time scales 1.0 ps. For the
near-infrared range of frequencies εγ ∼ 1 eV, the multiphoton
interaction regime can be achieved at the intensities I >

1011 W cm−2 for the time scales 100.0 fs. Hence, the described
Rabi oscillations of the particle distribution function may
be experimentally probed by pump-probe, picosecond, or
femtosecond time-resolved photoemission spectroscopy.39,40

In addition, along with Rabi oscillations one can achieve
efficient generation of harmonics with laser fields of moderate
intensities.
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