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Bloch-Zener oscillations in graphene and topological insulators
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We show that superlattices based on zero-gap semiconductors such as graphene and mercury telluride exhibit
characteristic Bloch-Zener oscillations that emerge from the coherent superposition of Bloch oscillations and
multiple Zener tunneling between the electron and hole branch. We demonstrate this mechanism by means
of wave-packet dynamics in various spatially periodically modulated nanoribbons subject to an external bias
field. The associated Bloch frequencies exhibit a peculiar periodic bias dependence, which we explain within a
two-band model. Supported by extensive numerical transport calculations, we show that this effect gives rise to
distinct current oscillations observable in the I -V characteristics of graphene and mercury telluride superlattices.
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I. INTRODUCTION

Bloch oscillations, the periodic motion of particles in a
superlattice subject to a constant external field, represent a
fundamental phenomenon in transport through periodic po-
tentials. Predicted in the early days of quantum mechanics,1,2

Bloch oscillations have been observed in various fields of
physics, ranging from earlier experiments in semiconductor
superlattices3–5 via cold atoms in optical lattices6,7 to classical
optical8,9 and acoustic10 waves. While many aspects of con-
ventional Bloch oscillations can be explained by a single band
description, particularly interesting effects arise in the case of
two coupled minibands11 energetically separated from further
bands. Then partial Zener tunneling at avoided crossings of the
two minibands can lead to a coherent superposition of Bloch
oscillations,12,13 i.e., to a splitting, followed by a subsequent
recombination of a Bloch oscillating wave packet. This gives
rise to a variety of Rabi-type interference phenomena, in
particular double-periodic motions coined Bloch-Zener (BZ)
oscillations.14–16 Signatures of this effect have already been
detected in the THz emission of AlGaAs superlattices,17 and
even the population dynamics has been measured recently
for light18 and atomic matter waves19 in specifically tailored
binary lattices.

However, materials with a linear Dirac spectrum20 naturally
serve the effect, since only a small gap is opened by a
spatially periodic modulation allowing for Zener tunneling
between electron and hole states. Such materials are now at
hand with the discovery of graphene21,22 and the advent of
topological insulators23–26 first realized in two-dimensional
mercury telluride (HgTe) heterostructures.27,28 Interesting
phenomena for graphene-based periodic superstructures have
already been theoretically predicted, such as the formation
of extra Dirac cones29–31 and the appearance of a negative
differential conductance.32 Furthermore, recent experiments
have realized graphene superlattices with periodicities down
to a few nanometers.33

This raises the question of the existence of peculiarities
of Bloch oscillations in graphene and topological insulator
superlattices, which we address in this paper. We are not aware
of any work showing unconventional features in graphene-
based Bloch oscillations. Until now, only the semiclassical
approach has been adapted to a linear dispersion34 and, without
reference to Bloch oscillations, numerical evidence for a

negative differential conductance was reported.32 We show
that besides conventional Bloch oscillations, multiple Zener
tunneling between the coupled electron and hole branches
leads to distinct BZ oscillations that appear to be naturally
present in superlattices made of systems with Dirac-like
dispersion.

This paper is structured as follows: In Sec. II, we show
the influence of BZ oscillations on the wave-packet motion
in a graphene nanoribbon and the influence on the frequency
spectrum. Subsequently, we introduce in Sec. III a two-band
model to explain the effect in the frequency spectrum and the
influence of BZ oscillations on the electron-hole polarization.
In Sec. IV, we show that the occurrence of BZ oscillations can
be seen as distinct features in the current through graphene
nanoribbons. In Sec. V, we present results that feature the
special frequency pattern of BZ oscillations, as well as their
signatures in transport, in nanoribbons made of the topological
insulator mercury telluride.

II. WAVE-PACKET MOTION IN GRAPHENE
SUPERLATTICES

An insight into the dynamics of BZ oscillations can be
gained by the time evolution of a wave packet on a graphene
nanoribbon in the presence of a periodic mass potential M(x)
and a linear electrostatic drift potential V (x), as sketched in
Fig. 1(a). To this end, we model the electronic structure of
graphene by a conventional tight-binding Hamiltonian,35

Htb =
∑
〈ij〉,β

tc
†
i,−βcj,β + V c

†
i,βci,β + Mβc

†
i,βci,β , (1)

where 〈ij 〉 denotes neighboring unit cells and β = ±1 denotes
the sublattice degree of freedom. The initial wave packet is
created by diagonalizing the periodic Hamiltonian H (k) of
one unit cell of the infinite ribbon. By means of the transversal
eigenfunctions χn(y,k), we create an initial electronlike wave
packet

ψn(x,y) =
∫ ∞

−∞
χn(y,k)eikxe− 1

2 k2δ2
dk, (2)

with a Gaussian broadening δ. Since the armchair boundary
mixes the two graphene valleys, the wave function comprises
several nodes in the lateral direction. The time evolution is
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(a) (b)

FIG. 1. (Color online) Exemplary setup for Bloch-Zener oscilla-
tions in a graphene nanoribbon. (a) Sketch of a Gaussian wave packet
in the presence of a periodic mass potential M(x) = M0 sin(2πx/a)
and an electrostatic drift potential V (x) = −eEDx. (b) Band structure
of the superlattice with small avoided crossing at k = 0 (nanoribbon
width W = 10a0, a = 10

√
3a0, M0 = 0.1t). Thick and dashed lines

show the first and second Bloch band from the metallic armchair
mode. The gray lines represent higher transversal modes.

calculated by an expansion of the time-evolution operator in
Chebychev polynomials.36 In the presence of a periodic mass
potential

M(x) = M0 sin(2πx/a), (3)

where M0 is the strength of the periodic mass and a is
the periodicity length, the band structure of the superlattice
exhibits a small anticrossing at k = 0 and a large band gap
between the first and the higher Bloch bands, as shown in
Fig. 1(b). In the presence of a linear drift potential

V (x) = −eEDx, (4)

with ED as the strength of the drift field, the wave packet
starts to accelerate. Because of its extent in the longitudinal
direction, the wave packet is localized in momentum space
with a distinct average momentum k(t) in the x direction.
Given the periodicity of the band structure, a sawtooth behavior
of k(t) is obtained known as Bloch oscillations.

However, the dynamics in a graphene nanoribbon shows
additional features due to the strong coupling between the
electron and hole states. Therefore, we study a typical
trajectory

x(t) = 〈ψ(t)|x̂|ψ(t)〉 (5)

of the center of mass (COM), as shown in Fig. 2(a). Initially,
the wave packet is chosen to be electronlike, and a snapshot of
the probability distribution is shown in Fig. 2(b0). During the
first Bloch cycle, the probability distribution is predominantly
to the right of the initial position [see Fig. 2(b1)]. This region
features a negative electrostatic potential, and accordingly the
part of the wave packet with electron character performs Bloch
oscillations in this region. In Fig. 2(b2), the electron and hole
parts meet again in momentum space and, as a consequence,
tunneling from the electron to the hole branch is possible, as
sketched by the bullets in Fig. 1(b). As a result, the holelike part
of the wave packet increases and, in subsequent time steps, the
COM trajectory reaches negative values. The corresponding
snapshot at the turning point of the the wave function in
Fig. 2(b3) shows a big holelike state on the left side and
a smaller electronlike state on the right side. After the next
tunneling, the probability distribution between the electron and
hole states is almost equal, thus the COM motion is strongly
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FIG. 2. (Color online) Snapshots of a wave packet in the course of
Bloch-Zener oscillations. (a) Center-of-mass motion of a wave packet
on a graphene nanoribbon (W = 10a0, a = 10

√
3a0, M0 = 0.1t).

(b) Snapshots of the probability distribution of the wave packet for
the corresponding times marked with crosses in panel (a). Please note
the video of the dynamics in the online version of the Supplemental
Material (Ref. 37).

suppressed. Because of the periodic mass potential, the gaps
between the first Bloch band and higher bands is bigger than
the gap between the electron and hole states, as shown in
Fig. 1(b). As a result, the tunneling into higher bands is very
unlikely and there is no damping of the oscillations due to
leakage into higher bands.

To study the dynamics of the tunneling between the electron
and the hole branch in more detail, we perform a frequency
analysis of the COM motion for different fields ED . The
Fourier amplitudes of the dominant frequency contributions
are visualized by dark colors in Fig. 3. Besides the conventional
Bloch frequency marked by a white dashed line, the resulting
spectrum shows a pronounced interweaving pattern around
half of this frequency (black dashed line). A stronger periodic
potential, and thereby an increased gap between the electron
and hole branch, leads to a rhombic structure, as shown in
Fig. 3(b). These periodic features in the frequency spectrum
arise from the interplay between Bloch oscillations and the

//

FIG. 3. (Color online) Frequency spectra E = h̄ω from the
center-of-mass motion of a wave packet for varying drift field ED

for (a) moderate (M0 = 0.1t) and (b) stronger (M0 = 0.2t) periodic
potential. Dark colors represent strong intensities. The dashed lines
correspond to {1/2, 1, 3/2} times the conventional Bloch frequency.
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FIG. 4. (Color online) (a) Band structure of the Dirac model
Hamiltonian (6) for v = 1, h̄ = 1, a = 1/10, and g = 1/2. The
shaded (yellow) area denotes the integral (9). (b) Frequency spectrum
of the Bloch oscillations for different drift accelerations α = eED/h̄.
Solid lines show the frequencies nω+ + mω− given by Eq. (16);
dotted (dashed) lines show the strong (weak) tunneling limit.

splitting of the wave packet into the electron and hole
branches at k(t) = 0 [see Fig. 1(a)]. The persistent sequence of
tunneling events between the two branches and the subsequent
interference leads to a new set of frequencies, which can be
understood by means of the following model.

III. ANALYTICAL MODEL FOR BZ OSCILLATIONS

In the following, we quantitatively explain these char-
acteristic BZ features using a periodically modulated one-
dimensional Dirac model Hamiltonian,

H (t) = 2h̄v

a
sin

(
ak(t)

2

)
σz + g σx . (6)

Here, a is the period, v is the Fermi velocity, and g is the energy
gap between the electron and the hole states. The resulting band
structure is given by

ε±(t) = ±
√

g2 + 2(h̄v/a)2 [1 − cos(ak)], (7)

as shown in Fig. 4(a). A comparison with the full tight-binding
calculation of the graphene nanoribbon in Fig. 1(b) shows a
very good correspondence. An external electric drift field ED

enters the equations of motion for the quasimomentum k(t)
as h̄ ∂t k(t) = eED , leading to a time evolution of k(t) = αt

linear in t where α = eED/h̄. Conventional Bloch oscillations
with frequency ωB = αa arise from the periodicity of k(t) in
momentum space in the interval [−π

a
, π

a
]. The phase φ between

the two branches accumulated during one oscillation is given
by a free propagation and thus

φ = A
eED

≈ 16v

a2α
, (8)

in which

A =
∫ π/a

−π/a

(ε+ − ε−)dk (9)

is the area in momentum space, as depicted in Fig. 4(a). This
free propagation can be expressed by the matrix

U0 =
(

eiφ/2 0
0 e−iφ/2

)
. (10)

In addition to conventional Bloch oscillations on either branch,
there is a strong periodic tunneling between the electron and
the hole states close to the anticrossing at k = 0. There, the

Hamiltonian (6) can be linearized [dashed lines in Fig. 4(a)],
leading to a typical Landau-Zener tunneling problem:38–40

HLZ =
(

h̄v αt g

g −h̄v αt

)
. (11)

The scattering between the different branches is described by

S0 =
(

e−iξ√q
√

1 − q√
1 − q −eiξ√q

)
, (12)

with the tunneling rate q = 1 − e−2πδ , δ = g2

2h̄2vα
, and ξ = π

4 +
arg(1 − iδ) + δ(log δ − 1) is an additional tunneling phase.
From this, we can deduce the scattering matrix

S =
(

ei(φ/2−ξ )√q
√

1 − q√
1 − q −ei(ξ−φ/2)√q

)
, (13)

which describes the time evolution of the electron and hole
branch for one Bloch cycle. Using this matrix, we derive
scattering eigenstates

χ± = 1√
N

(√
q cos(φ/2 − ξ ) ±

√
1 − q sin2(φ/2 − ξ )√

1 − qeiφ/2

)
,

(14)
with the corresponding eigenvalues eiβ±

, where

β± = arccos[±
√

1 − q sin2(φ/2 − ξ )]. (15)

The phases β± of the scattering eigenstates depend periodi-
cally on the phase difference φ between the electron and hole
branch. This periodicity leads to two new Bloch frequencies

ω± = αa

π
arccos[±√

q sin(φ/2 − ξ )]. (16)

Unlike conventional Bloch oscillations, these frequencies do
not simply depend linearly on the drift strength α, but show a
rapid interweaving pattern strongly changing with α, as shown
in Fig. 4(b), owing to coherences from combined dynamics
on the hole and electron branch. The limiting cases can be
understood as follows. For strong coupling, the tunneling
rate q → 0 leads to a frequency ω± → ωB/2 [dotted line
in Fig. 4(b)], since for every Bloch cycle the states tunnel
completely between the two branches in momentum space and
hence the complete cycle in position space is twice as long.
In the opposite, weak coupling limit, ω± → aα[1/2 ± (φ/2 −
ξ )/π ]mod 1, leading to a rhombic frequency pattern, shown as
dashed lines in Fig. 4(b). For intermediate tunneling rates, the
frequencies show a smooth transition between these limiting
cases and are in very good agreement with the numerically
calculated spectra of Figs. 3(a) and 3(b).

Furthermore, the scattering eigenstates show a strong
polarization dependence (electron- or hole-type character)
on the phase φ, given by Eq. (8). If the one-dimensional
model Hamiltonian (6) is considered for g2 � 2h̄2vα, then
the tunneling rate q → 1, which results in strongly electron-
or hole-polarized states χ± for almost all values of φ. The
absolute value of the spinor entries is always very close to one
or zero, as shown in Fig. 5(a). Nevertheless, the polarization
breaks down whenever the difference between the phase of the
electron and hole branch is

φ = 2(nπ + ξ ) + π, (17)
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FIG. 5. (Color online) (a) Polarization dependence on the phase
difference between the electron and hole branch of the scattering
eigenstate χ+ (solid line shows the upper spinor entry; dashed line
shows the lower spinor entry). (b),(c) Center-of-mass motion of
an initially electron-polarized wave packet on a graphene nanorib-
bon superlattice M(x) = M0 + V (x) for different drift fields ED

(M0 = 50 meV, V (x) = 300 meV sin(2πx/a), a = 10
√

3a0). Blue
dots depict regions with a negative amplitude, corresponding to a
wave packet with strong hole character.

where n ∈ N. This alternating weight of the spinor between
the electron- and hole-type states for different drift fields
ED can be also deduced from the COM motion of wave
packets with fixed initial polarization. If the drift field is
adjusted such that the phase condition (17) is approximately
satisfied, then the COM motion of the initially electron-
like configuration exhibits oscillations ranging from −15 to
15 nm for ED = 4.61 mV/nm, as shown in Fig. 5(b). Since
conventional Bloch oscillations in a single band are restricted
to positive or negative values, the trajectories imply strong
tunneling between the electron and hole states. For values
of ED where condition (17) is not fulfilled, e.g., ED =
4.62 mV/nm in Fig. 5(c), the trajectories of the different
polarizations do not significantly cross the origin, thus they
preserve their electron-hole character. As a consequence, if
charge transport through a system comprises a transition from
electron to hole states, the current should strongly depend on
the BZ oscillations within the superstructure.

IV. TRANSPORT IN GRAPHENE-BASED SUPERLATTICES

In the following, we consider charge transport through
graphene-nanoribbon-based superlattices and demonstrate that
BZ oscillations lead to clear-cut features in the I -V character-
istics. To this end, we model a graphene nanoribbon of width W

and length L by the tight-binding Hamiltonian of Eq. (1), now
with a periodic electrostatic potential V0 sin(2πx/a) leading to
a superlattice miniband structure, as shown in the inset of Fig.
6(a). A small constant mass term M(x) = M0 is additionally
considered, which opens up a gap commonly present in
experiments on graphene nanoribbons.41 We assume a linear
potential drop eVSDx/L due to the source-drain voltage VSD

between the graphene leads at x = ±L/2. The current is
calculated by means of the Landauer-Büttiker formalism,42

I (VSD) = 2e

h

∫ ∞

−∞
T (E,VSD)[f +(E) − f −(E)]dE, (18)

with the Fermi functions f ±(E) = {1 + exp[(E ∓
VSD/2)/kBT ]}−1.
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FIG. 6. (Color online) Current-voltage characteristics for
graphene nanoribbon superlattices (L = 3000

√
3a0, W = 10a0, a =

30
√

3a0, V0 = 500 meV) for (a) different Fermi energies (M0 =
20 meV, T = 20 K) and (b) different temperatures (M0 = 50 meV,
EF = 0) showing pronounced signatures of Bloch-Zener oscillations
at higher bias. Arrows mark expected peak positions from phase
condition (17). Upper inset: Band structure (for M0 = 20 meV).
Lower inset: Transmission map T (E,VSD) used in Eq. (18) to get
the current of panel (b); dark colors represent high transmissions.

As shown in Fig. 6, the current through the nanorib-
bon is governed by a conventional increase with the bias
window for small VSD, followed by a region of negative
differential conductance typical for superlattices. At higher
bias, VSD > 0.3 V, we observe the emergence of distinct
current oscillations that get more pronounced with increasing
gap size; see Fig 6(b). Due to the bias between the source
and drain electrode, the particles traversing the superlattice
must change their electron-hole character. However, states
performing BZ oscillations exhibit transitions between the two
carrier types only for certain VSD = eEDL when the phase φ

fulfills the condition of Eq. (17), as shown in the previous
section. Consequently, the current is strongly enhanced if this
is fulfilled. As shown in Figs. 6(a) and 6(b), the current peaks
calculated by Eq. (18) perfectly coincide with the expected
voltages (marked by vertical arrows) deduced by extracting
the area A in momentum space from the minibands around
the Fermi energy shown as the shaded area in the inset of
Fig. 6(a). Vice versa, the experimental observation of BZ peaks
in the I -V characteristics would allow for “measuring” the
miniband structure.

A closer look at the transmission values T (E,VSD) [see
inset Fig. 6(b)] reveals a rhombic structure, which features
pronounced transmission maxima piled up at these particular
values of VSD (dashed lines). Since these maxima are present
for various energies in the conductance window, the resulting
current is fairly independent of the exact Fermi energy [see
Fig. 6(a)] and temperature [see Fig. 6(b)].
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V. BZ OSCILLATIONS AND TRANSPORT IN HGTE-BASED
SUPERLATTICES

A different setup featuring BZ oscillations can be created
from a strip etched out of the two-dimensional topological in-
sulator based on mercury telluride (HgTe).27,28 We describe the
electronic properties of the underlying HgTe heterostructure
by the Hamiltonian25

H =

⎛
⎜⎜⎜⎝

Ck + Mk Ak+ 0 0
Ak− Ck − Mk 0 0

0 0 Ck + Mk −Ak−
0 0 −Ak+ Ck − Mk

⎞
⎟⎟⎟⎠ ,

(19)

where k± = kx ± iky , k2 = k2
x + k2

y , Ck = −Dk2, and Mk =
M − Bk2. We assume an HgTe/HgCdTe heterostructure with a
quantum well width of 7.0 nm featuring topological edge states
and leading to material parameters A, B, D, and M , as typically
used in the literature.43 As for the graphene nanoribbon, we
can create two different types of superlattices with a masslike
modulation and an electrostatic modulation. For a HgTe strip,
the mass modulation can be achieved by modulating the width
of the ribbon, for example, by

W (x) = W0 + W1

2
− W0 − W1

2
sin

(
2πx

a

)
, (20)

where W0 and W1 are the maximum and minimum width, and
a is the periodicity. The finite width of the HgTe nanoribbon
allows for a hybridization of the edge states with the same
spin at the opposite boundaries, leading to a small gap in the
band structure.44,45 Accordingly, the modulation of the width
corresponds to a modulation of the mass gap. The resulting
miniband structure from the two-dimensional system, shown in
Fig. 7(a), is obtained numerically by Lanczos diagonalization
and exhibits various Landau-Zener anticrossings within the
bulk band gap of HgTe, which suggest BZ oscillations.

In order to study the electron dynamics, we calculate the
COM motion of Gaussian-shaped edge-state wave packets.
Initially, the wave packet is localized on one edge and the
direction of motion is determined by its spin. The array of
multiple constrictions enables tunneling between the edges.
As a consequence, an inversion of the direction of motion
is possible, leading to Bloch and BZ oscillations. As shown
in Fig. 7(b), the resulting frequency spectrum features the
expected rhombic pattern in between the frequencies of
the conventional Bloch oscillations (white dashed lines).
Compared to the graphene system [see Fig. 3(e)], we observe
more complicated, superimposed structures because of the
whole sequence of multiple anticrossings in the band structure
that affect BZ oscillations.

As for graphene, we further study the transport properties
of HgTe strips of constant width and a periodically modulated
electrostatic potential resulting in a supercell band structure,
shown in the inset of Fig. 7(c). The small gap between the
electron and the hole states is attributed to the finite ribbon
width of 150 nm. We choose the Fermi energy close to the
band crossing of the topological edge states and calculate the
current using Eq. (18). Besides a strong negative-differential
conductance at lower bias, we get the signatures of BZ
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FIG. 7. (Color online) Bloch and Bloch-Zener oscillations in
spatially modulated two-dimensional HgTe nanoribbons. (a) Band
structure for a HgTe nanoribbon with periodically modulated width
W (x) [Eq. (20)] ranging from W0 = 300 to W1 = 50 nm and
periodicity a = 200 nm. (b) Frequency spectrum E = h̄ω of the
wave-packet center-of-mass motion as a function of drift field ED .
Dashed lines indicate the frequencies of the Bloch oscillations. (c) I -
VSD characteristics of a nanoribbon with constant width W = 150 nm
and electrostatic modulation V (x) = V0 sin(2πx/a). Small vertical
arrows mark the expected maxima from phase condition (17). Inset:
Corresponding miniband structure.

oscillations for VSD > 9 mV, as shown in Fig. 7(c). Similar to
the calculations for the graphene superlattice, the oscillations
are independent of the exact choice of the Fermi level. The
peak positions are in good accordance with the expected series
of drift voltages marked by arrows in Fig. 7(c) obtained from
Eq. (17), whereA is extracted from the bands around the Fermi
energy shown as the shaded area in the inset.

VI. CONCLUSION

In this paper, we showed that Bloch-Zener oscillations
appear naturally in superlattices made of materials with a
Dirac-like spectrum, highlighting interference between the
electron and hole states. The characteristics of these oscilla-
tions are explained by a one-dimensional model Hamiltonian
and numerically confirmed for realistic setups by means of
wave-packet simulations for graphene and topological insula-
tor ribbons. Furthermore, we demonstrated that Bloch-Zener
oscillations manifest themselves as a regular sequence of pro-
nounced current peaks in quantum transport, besides the well-
known negative differential conductance at low bias, which is
a signature of conventional Bloch oscillations. The sequence
of current peaks associated with the Bloch-Zener oscillations
is intimately linked to the underlying miniband structure.

We suggest transport measurements through graphene
nanoribbons and HgTe strips as promising experimental
setups that feature Bloch-Zener oscillations. For single layer
graphene and topological insulators, the periodic electrostatic
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potential can be imprinted by an array of top gates. The
gap between the electron and hole states can be tuned by
the width of the considered nanoribbons. In the case of
bilayer graphene, the gap can also be created via a potential
difference in the z direction induced by top gating. The
calculations presented here have been performed for clean,
disorder-free, and coherent systems. However, preliminary
numerical calculations for graphene-based superlattices with
disorder indicate that Bloch-Zener oscillations are still visible
if the mean free path exceeds several periods of the superlattice.
This is promising with respect to their experimental detection
in solid-state-based samples.

We finally note that signatures of the Bloch-Zener oscil-
lations presented have been recently observed with ultracold,

fermionic K atoms due to the Dirac points with small mass
gaps emerging in tunable optical honeycomb lattices.46

Note added in proof. Recently, we became aware of
Ref. 47 where the Bloch-Zener oscillations of collective
excitations in narrow zigzag-shaped optical lattices are studied
theoretically.
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