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Lattice-corrected strain-induced vector potentials in graphene
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The electronic implications of strain in graphene can be captured at low energies by means of pseudovector
potentials which can give rise to pseudomagnetic fields. These strain-induced vector potentials arise from the
local perturbation to the electronic hopping amplitudes in a tight-binding framework. Here we complete the
standard description of the strain-induced vector potential, which accounts only for the hopping perturbation,
with the explicit inclusion of the lattice deformations or, equivalently, the deformation of the Brillouin zone.
These corrections are linear in strain and are different at each of the strained, inequivalent Dirac points, and
hence are equally necessary to identify the precise magnitude of the vector potential. This effect can be relevant
in scenarios of inhomogeneous strain profiles, where electronic motion depends on the amount of overlap among
the local Fermi surfaces. In particular, it affects the pseudomagnetic field distribution induced by inhomogeneous
strain configurations, and can lead to new opportunities in tailoring the optimal strain fields for certain desired
functionalities.
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I. INTRODUCTION

Many surprising properties of graphene can, and have, been
engineered to create novel physical scenarios in a condensed
matter setting: the chiral and Dirac-like energy dispersion
near the Fermi energy leads to Klein tunneling1 and Veselago
lensing;2 relativistic Landau level quantization, observable
even at room temperature, emerges under applied magnetic
fields.3 Graphene is also an extremely strong material, with
an effective Young’s modulus of 1 TPa, an intrinsic ultimate
strength of 130 GPa,4 which has been seen to withstand elastic
deformations up to 15–20%.5 This unusually large range of
elastic response, combined with graphene’s intrinsic two-
dimensionality and the peculiar coupling between electrons
and deformations, make graphene an unparalleled condensed
matter system in which to explore strain as a tool for tailoring
electronic functionality.

A dazzling glimpse of the feasibility and potential of strain-
engineered graphene6,7 has recently emerged with experiments
reporting that certain strain profiles can induce Landau
quantization and effective pseudomagnetic fields in excess of
300 T.8–10 Such physics strongly encourages the prospect of
harnessing this unconventional interplay between graphene’s
unique electronic and impressive mechanical properties to
control electronic transport in graphene devices.6,11

The key elements underlying these experimental observa-
tions and the concept of strain engineering can be readily
captured from a tight-binding description of the electrons in
graphene. Graphene has a honeycomb lattice [Fig. 1(a)] which
can be decomposed into two triangular Bravais sublattices, the
A and B sublattices, with nearest-neighbor vectors of �δ1 =
a/2x̂ + √

3a/2ŷ, �δ2 = a/2x̂ − √
3a/2ŷ, and �δ3 = −ax̂ with

a = 1.42 Å. The two elementary lattice translation vectors
( �Ri) are also shown. The associated band structure was first
calculated in 1947 by Wallace, considering only the π band
electrons.12 It is characterized by two energy bands touching

at the two nonequivalent corners (K and K ′) of the hexagonal
Brillouin zone (BZ),12 shown in Fig. 1(b). The positions
of the Dirac points can be found by rotating K = 4π

3
√

3a
ŷ

by 60 degree increments about the origin. The dispersion
is conical near these points, mimicking the physics of 2D
relativistic fermions. In undoped graphene, the Fermi energy
lies exactly at the contact point between the two dispersing
cones. At these so-called Dirac points, an effective low-energy
Hamiltonian can be derived which coincides with the 2D Dirac
Hamiltonian.13–15 For unstrained graphene, the three K points
are equivalent, and likewise for the three K ′ points.

After accounting for the effects of the distorted lattice,
a tight-binding description is equally applicable to strained
graphene. In Fig. 1(c), uniaxial strain in the armchair direction
is shown. The distance between the nearest neighbors is mod-
ified, introducing a bond-dependent nearest-neighbor hopping
amplitude.16 Additionally, the nearest-neighbor vectors have
been modified as well. The essential consequences of these
changes are the following:17 (i) for any amount of strain, the
Dirac points are displaced from the corners of the unstrained
BZ, and, furthermore, do not necessarily sit at the corners of the
strained BZ; (ii) the gapless and conical nature of the energy
dispersion remains robust, except when the deformation is so
strong that the two inequivalent Dirac points merge in a Lifshitz
transition (but that probably requires strains of the order
of 20%, where the tight-binding description is not reliable
anymore); (iii) at any finite density the Fermi line is deformed
from the isotropic circle to an elliptical shape, and two Fermi
velocities can be defined along the principal directions.17–19 All
these modifications are significant and happen concurrently,
and hence a complete description of the electronic and trans-
port properties of strained graphene requires their combined
consideration. For example, the local shift of the Dirac point
(i) can hinder or completely suppress electronic propagation
across regions of different strain states.6,11 The anisotropy
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FIG. 1. (Color online) (a) Unstrained graphene’s real space lattice
with labeled nearest-neighbor vectors ( �δi), labeled lattice translation
vectors, �Ri = n�a+ + m�a− with m and n integers, and black and
gray dots representing the A and B sublattices, respectively. (b) The
Brillouin zone of unstrained graphene with labeled high symmetry
points. (c) The positions of the unstrained (black, solid) and strained
(brown, dashed) nearest neighbors, and the corresponding �δi and �δ′

i for
20% uniaxial strain along the armchair direction. (d) The unstrained
(black, solid) and strained (brown, dashed) Brillouin zone, also for
20% armchair uniaxial strain, with labels for the now inequivalent
Dirac points.

of the Fermi surface (iii) has direct bearing in measurable
quantities such as the anisotropy in electrical resistivity,20

optical absorption,18,21 and the Raman signature of the 2D
peak.22–25

From the theoretical as well as technical point of view,
the effects of strain are frequently considered independently,
and one usually isolates the dominant effect for the physical
observable of interest. Referring to the same examples above,
the strain-induced corrections to optical absorption arising
from interband transitions are insensitive to the absolute
position of the Dirac point in the BZ, but strongly depend on the
velocity anisotropy.18,21 Likewise, the dominant effect across a
strain barrier will be the relative position of the Fermi surfaces
in the two regions (since this essentially determines the phase
space available for transmission), and in a first approach the
anisotropy is usually neglected,6,11 since the full description
would obfuscate the presentation of the problem.

When the strain-induced shift of the Dirac points (i) is
considered independently of (ii) and (iii), it can be thought of
as a pseudovector potential.14,26–29 This can be done because
of the peculiar form of the strain corrections to the electronic
dispersion in graphene. Electrons in strained graphene are still
governed by a Dirac equation, but one in which the strain
modifications can be completely absorbed in the replacement
p → p − eA where A is the pseudovector potential. This
matches the conventional minimal coupling scenario, which
means that the electrons respond to the deformation-induced
perturbation as they would to an external magnetic field. The
pseudovector potential is related to the shift in the Dirac
point �kD through �kD = − e

h̄
A. This analogy between

strain-induced and real magnetic fields means, for example,
that the electronic energy levels can be quantized with a
relativistic Landau spectrum just as if they were under a
real magnetic field given by B = ∇ × A (as long as this
pseudomagnetic field is relatively constant on scales not
smaller than the corresponding magnetic length).14

In this paper, we explicitly consider the deformation of the
lattice when computing the position of the Dirac points and
show its importance in describing the absolute position of the
Dirac points, and the resulting pseudovector potentials. This
yields leading order terms in the strain-induced pseudovector
potential which are different at the three inequivalent Dirac
points. Specifically, we shall be interested below only in how
strain affects the position of the Dirac point in reciprocal
space. We also restrict the discussion to planar deformations,
and hence ignore effects that might arise in the presence of
curvature.14,29 We will detail the derivation of these terms
in Sec. II, then, in Sec. III, demonstrate their importance
in describing the shift of the Dirac point in graphene, and,
finally, illustrate how the inclusion of these terms affects the
pseudomagnetic field distribution for particular strain profiles.

II. THEORY

Deformation of the lattice necessarily leads to modified
hoppings. If this is treated as a slowly varying perturbation to
the relaxed nearest-neighbor tight-binding Hamiltonian,14 the
Hamiltonian can be written as

H = −t
∑
〈i,j〉

a
†
i bj −

∑
〈i,j〉

δtij a
†
i bj + H.c. (1)

Here the sum is over all nearest-neighbor pairs, a
†
i is the

creation operator for an electron on the A sublattice, bj is the
annihilation operator for an electron on the B sublattice, t is
the unstrained hopping amplitude, and δtij is the nearest-
neighbor, bond-specific change in hopping energy due to
strain. The bond specificity of δt can be made explicit by
writing δtij = δt(|�δij |).

The importance of the lattice deformations is hidden in the
phase factors that lead to the dispersion relation, and which
arise upon writing Eq. (1) in Fourier space. To explicitly show
this dependence, we work in the basis in which the phase
factors in the Fourier transform are given by the positions of
the strained sublattices.30 The creation/annihilation operators
are written as

a
†
i = 1√

N

∑
�k

ei�k· �R′
i a

†
�k, (2a)

bj = 1√
N

∑
�k′

e−i�k′ ·( �R′
i+�δ′

j )b�k′ . (2b)

The correct association of a finite pseudovector potential
includes both the actual modification of the relative positions
of the atoms, which enters in Eq. (2), and the change in the
hopping amplitudes, entering in Eq. (1). Clearly, they are not
controllable independently in an actual physical system, since
the latter is a consequence of the former. In the past, the
modification of the relative positions of the atoms has been
ignored. This was done because in theoretical calculations
one usually abstracts from the actual underlying lattice when
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considering the tight-binding Hamiltonian, and frequently
works at the level of the hoppings only. If the system has
spatially uniform strain, the nature of the underlying lattice
is indeed irrelevant for the electronic structure, and taking
the lattice deformation explicitly into account is equivalent to
taking the undeformed lattice with a rescaling of the momenta
in the undeformed BZ. Thus, for spatially uniform strain it is
justified to ignore the lattice deformation, and concentrate only
on the hoppings. In practice this entails keeping the original �δi

in the phase factor of Eq. (2), and using the deformed �δi only
in the δtij .

However, if the system is not uniformly strained, in general
one can no longer ignore the effects of lattice deformations.
In a Thomas-Fermi spirit, the local (but still on scales safely
larger than the lattice spacing) vector potential A(r) is re-
sponsible for displacing the Fermi surface in reciprocal space:
E(k) → E(k − e

h̄
A). Different regions experience different

Fermi surface displacements, and one necessarily needs an
absolute frame of reference in reciprocal space to track the
position of the Fermi surface throughout the entire system.
That is where the explicit consideration of the deformed �δi in
the phase factor of Eq. (2) is important. We now look at that
explicitly.

A physically accurate parametrization of the variation
of hopping amplitude with intercarbon distance is t(δi) =
t0 exp[−β(δi/a − 1)] with a = 1.42 Å being the unstrained
nearest-neighbor separation, t0 � 2.7 eV, and β ≈ 3.14,17,31

The length and direction of the three nearest-neighbor vectors
�δi transforms under strain according to �δ′

i = (I + ε) · �δi , where
I is the 2 × 2 identity matrix, and ε the two-dimensional
Cartesian strain tensor, with the x axis along graphene’s
armchair direction. In reciprocal space, the Hamiltonian,
Eq. (1), linearized to first order in strain reads:

H � −
∑
�k,j

(t0 + δtj − it0�k · ε · �δj )e−i�k·�δj a
†
�kb�k + H.c. (3)

The term proportional to �k · ε · �δj arises from expanding
exp(−i�k · �δ′

j ) to linear order in strain. Consequently, it
contributes on equal footing with δtj , which is also of leading
order in strain.14

Using the undeformed BZ as global reference, and approx-
imating this Hamiltonian near the K points, one recovers the
form of the unstrained Hamiltonian but with the substitution
(k → k − e

h̄
A), where the vector potentials are now given by:

�AK1 = − �AK ′
1
= φ0

2a

( 4
3
√

3
εxy

4
3
√

3
εyy

)
+ �Ap, (4a)

�AK2 = − �AK ′
2
= φ0

2a

(
2
3εxx − 2

√
3

9 εxy

2
3εxy − 2

√
3

9 εyy

)
+ �Ap, (4b)

�AK3 = − �AK ′
3
= φ0

2a

(
− 2

3εxx − 2
√

3
9 εxy

− 2
3εxy − 2

√
3

9 εyy

)
+ �Ap, (4c)

with

�Ap = φ0

2a

(
β

π
εxy

β

2π
(εxx − εyy)

)
, (4d)

φ0 = h
e
, and the various K i points are defined as in Fig. 1(d).

The common term �Ap is proportional to the logarithmic
derivative of the hopping β and arises from the hopping
perturbations δtj alone. It has the expected dependence on the
strain tensor components.14,29 The herein derived additional
terms are the corrections due to lattice deformations. Since
β ≈ 3, the lattice corrections are equally important, not only
for being of the same order in strain, but for having similar
numerical coefficients. It is also worth emphasizing that taking
explicit consideration of the lattice deformations leads to a
vector potential that is different for all the corners of the
BZ. This is of course expected, because under an arbitrary
deformation the equivalence among the three K and K ′ points
is lost. In fact, the expressions above quantify the fact that upon
general deformation of the graphene lattice, the Dirac point no
longer lies at Ki , nor at any of the symmetry points of the
deformed BZ, a point emphasized early in Ref. 17. The only
remaining constraint is time-reversal symmetry, which forces
�AKi = − �AK ′

i
. Finally, it should be noted that the pseudovector

potential depends on the crystallographic orientation relative
to the strain and that, unlike a real vector potential, it has no
gauge freedom as it is determined by an observable.

III. DISCUSSION

All existing calculations consider only the term �Ap and,
as a result, do not properly account for the shift in the
Dirac points. Consider, for example, the seemingly trivial
case of tensile isotropic strain. The traditional form of
the pseudovector potential, �Ap, predicts that there should
be no shift in the Dirac points [εxx = εyy and εxy = 0 in
Eq. (4d)]. However, the BZ shrinks isotropically under tensile
isotropic strain, and, by symmetry, the Dirac points should
follow the corners of the deformed BZ resulting in a Dirac
point dependent shift toward the � point with respect to the
unstrained reference state. In Fig. 2, the reciprocal space shifts
of the Dirac points predicted by the traditional and herein
corrected forms of the pseudovector potential are compared.
The contours are the strained band structure calculated using
a nearest-neighbor tight-binding model which accounts for
both the strain-induced changes in hopping amplitudes and
the lattice deformation.17 For isotropic tensile strain, the
lattice-corrected pseudovector potential in Eqs. (4) properly
predicts the displacement of each Dirac point due to strain. The
less trivial cases of uniaxial or shear strain are also shown in
Fig. 2. The differences between the red (traditional) and orange
(corrected) arrows make it clear that the lattice corrections are
needed to determine the absolute position of the Dirac point
in reciprocal space (they can even reverse the sign of �A).

As discussed above, these corrections are immaterial for
systems with spatially uniform strain but must be included
for systems with nonuniform strain. For example, if there
are regions of isotropic tension embedded in regions of
different strain states, the relative shifts are important, even
though deformations are locally isotropic. In these cases lattice
corrections contribute an extra, Dirac point specific, space de-
pendence which is important when calculating transport across
a strain barrier or when considering the spatial distribution of
the pseudomagnetic fields: �BKi = ∇ × �AKi .
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FIG. 2. (Color online) Contours of the band structure of graphene under tensile isotropic strain, shear strain, uniaxial armchair strain, and
zigzag strain (rows), for ε = 1% near the three K points (columns). The contours are overlaid with the Brillouin zone of unstrained (solid,
black) and strained (dashed, brown) graphene. Vectors mark the displacement of the Dirac points predicted by the traditional ( �Ap , dashed/red
arrow) and the corrected ( �AKi

, solid/orange arrow) form of the pseudovector potential [Eqs. (4)], with the green dots marking the positions of
the Dirac points for strained graphene. The red vectors appears as a dot for isotropic strain, because the traditional form of the vector potential
does not predict a shift in the Dirac points. Each plot is square with an area of 0.122.

In particular, these corrections are critical when trying to
optimize the Landau quantization caused by the strain-induced
pseudomagnetic fields. Ideally one desires the pseudomagnetic
field to be nearly constant throughout the system so that the
Landau levels are as narrow and well defined as possible.
This imposes a delicate and nontrivial constraint on what
deformations are compatible with constant pseudomagnetic
fields. An early suggestion uses the traditional form of the
pseudovector potential to conclude that strain profiles with an
overall trigonal symmetry tend to generate smooth effective
pseudomagnetic fields.7 To show how the lattice correction

can quantitatively and qualitatively affect this conclusion, we
simulate a situation where graphene is covering an equilateral
triangular pit with a uniformly distributed vertical load. This
geometry was originally proposed by Guinea et al. as a
simple method of generating fairly uniform pseudomagnetic
fields.7 We calculate the strain fields using finite element
analysis, and extract the local pseudomagnetic fields from
Eqs. (4). The finite element analysis was performed using
Comsol multiphysics, with a two-dimensional thin plate model
including geometric nonlinearity. The edges were fixed, and
the pressure was applied using a face load. Graphene’s Young’s
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FIG. 3. (Color online) The spatial distribution of the pseudomagnetic fields generated when an equilateral triangle with 50-nm sides,
2-nm-radius fillets, and the base oriented 30 degrees counterclockwise from the armchair direction is pressurized to 14 MPa. In (a) the
calculation is done using the traditional form of the pseudovector potential, while in (b) it is performed including the differences derived in this
work. Here, the three different colored curves correspond to the pseudomagnetic fields felt by the electrons at the three different K points with
the magnetic field for the electrons at K1 isolated in (c).

modulus of 1 TPa and thickness of 3.5 Å4 were used along with
the Poisson ratio of graphite of 0.165.32 To make the triangles
more realistic we include 2-nm-radius fillets on the three
corners, which smooth down the sharp boundary corners. The
surface was meshed with triangles with a maximum element
size of 1 nm, and strain fields were evaluated in the midplane
of the plate.

The effect of the lattice corrections to the extracted
pseudomagnetic field are shown in Fig. 3 for an equilateral
triangle with 50-nm sides, and under 14 MPa of pressure.
At this pressure the graphene sheet has less than 0.26% strain.
The field derived from the traditional form of the pseudovector
potential (4d) results in a fairly uniform pseudomagnetic field
[Fig. 3(a)], in agreement with Guinea et al.7 In contrast,
Figs. 3(b) and 3(c) show that the corrections in Eqs. (4) cause
the electrons near the three different K 1,2,3 points to experience
different pseudomagnetic fields, which vary strongly across the
system. The differences in the pseudomagnetic fields at the
different Dirac points may be extremely useful in the context
of valleytronics.33

IV. CONCLUSION

In summary, accounting for explicit lattice deformations
in the calculation of the pseudovector potentials generates
leading order and K -point specific terms that are needed
to accurately describe the strain dependent shift of the
Dirac points in reciprocal space. These terms are important
in situations of nonuniform strain, such as when explor-
ing transmission across strain barriers, or when predicting
pseudomagnetic fields arising from particular strain profiles.
In those situations the precise space dependence of the
pseudovector potentials, �AK i

, and the understanding that they
are different at each of the three inequivalent Dirac points is
important.
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