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Theory of spin-orbit coupling in bilayer graphene
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A theory of spin-orbit coupling in bilayer graphene is presented. The electronic band structure of the AB
bilayer in the presence of spin-orbit coupling and a transverse electric field is calculated from first principles
using the linearized augmented plane-wave method implemented in the WIEN2K code. The first-principles results
around the K points are fitted to a tight-binding model. The main conclusion is that the spin-orbit effects in
bilayer graphene derive essentially from the single-layer spin-orbit coupling which comes almost solely from
the d orbitals. The intrinsic spin-orbit splitting (anticrossing) around the K points is about 24 μeV for the
low-energy valence and conduction bands, which are closest to the Fermi level, similarly as in the single-layer
graphene. An applied transverse electric field breaks space inversion symmetry and leads to an extrinsic (also
called Bychkov-Rashba) spin-orbit splitting. This splitting is usually linearly proportional to the electric field.
The peculiarity of graphene bilayer is that the low-energy bands remain split by 24 μeV independently of the
applied external field. The electric field, instead, opens a semiconducting band gap separating these low-energy
bands. The remaining two high-energy bands are spin split in proportion to the electric field; the proportionality
coefficient is given by the second intrinsic spin-orbit coupling, whose value is 20 μeV. All the band-structure
effects and their spin splittings can be explained by our tight-binding model, in which the spin-orbit Hamiltonian
is derived from symmetry considerations. The magnitudes of intra- and interlayer couplings—their values are
similar to the single-layer graphene ones—are determined by fitting to first-principles results.
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I. INTRODUCTION

Spin-orbit coupling is the most important interaction
affecting electronic spin transport in nonmagnetic materials.
The use of graphene in spintronics1,2 would require detailed
knowledge of graphene’s spin-orbit coupling effects, as well as
discovering ways of increasing and controlling them. Bilayer
graphene has attracted wide attention since it has a tunable
gap caused by a transverse electric field (gate).3–5 Although
the gap seems to saturate at around 0.3 eV, the possibility to
turn on and off the electronic transport makes bilayer graphene
a suitable material for (mainly analog) electronic applications,
including potentially spintronics ones.

The electronic band structure of bilayer graphene derives
from that of single-layer graphene, taking into account for
interlayer coupling. The basic electronic structure is well
understood.3,6 What is not known yet is how, and by how much,
the realistic spin-orbit interaction modifies the electronic
spectrum, especially when gated. The spin-orbit effects are im-
portant not only for the fundamental electronic band structure
and its topology, but also for understanding such phenomena
as spin relaxation (see the recent spin injection experiments in
Refs. 7 and 8), spin Hall effect,9 magnetoanisotropy, or weak
(anti)localization. Conventional charge transport in bilayer
graphene has been studied in detail,10 but spin transport11 or
spin-orbit-induced charge electronic transport12 in graphene
bilayer is only starting to be explored.

In this paper we argue that the spin-orbit coupling in
bilayer graphene comes mainly from the intralayer spin-orbit
coupling, contrasting earlier studies13,14 that predicted large
interlayer effects, enhancing the spin-orbit spectral splittings
by a decade as compared with single layers. A recent model
investigation15 has reported on spectral features of a bilayer in
the presence of both intra- and interlayer hopping spin-orbit
parameters. The single-layer spin-orbit physics comes from

(nominally unoccupied) carbon atom dxz ± idyz orbitals16,17

which hybridize with the pz ones. The d orbitals spin-orbit
coupling opens a gap at the K points—the corners of the
hexagonal Brillouin zone—of the value of about 24 μeV.16,18

The σ -π hybridization, on which most studies have focused,
determines a further spin-orbit splitting in the presence of an
external transverse electric field,16,17,19 which can also arise
from the substrate.20 The σ -π hybridization comprises the
Stark effect (shift of the pz orbitals in the presence of an
electric field), the on-site coupling of the shifted pz and s

orbitals, and, finally, the spin-orbit splitting of the in-plane
px ± ipy orbitals.

As is now common we call intrinsic the spin-orbit
splitting—which amounts to spectral anticrossings at and
around K, while preserving the double spin degeneracy—in
the absence of a transverse electric field, and extrinsic (or
Bychkov-Rashba21) the spin splitting (lifting of the spin
degeneracy) in the presence of such a field. The distinction is
rather sharp in materials with a space inversion symmetry (such
as bilayer graphene), in which the electronic bands are always
doubly degenerate; application of an electric field breaks the
space inversion symmetry and spin-orbit coupling removes this
degeneracy,2 usually in proportion to the field. An additional
source of extrinsic spin-orbit coupling are adatoms,22 which
may cause spin relaxation in graphene by creating patches of
enhanced spin-orbit coupling.20,23,24

This paper reports on comprehensive first principles as well
as tight-binding investigations of the electronic structure of
bilayer graphene, in the presence of spin-orbit coupling, and
in the presence (and absence) of an external transverse electric
field. Furthermore, the most generic spin-orbit Hamiltonian
consistent with the K points symmetry is derived for bilayer
graphene in an external electric field. The first-principles
method we use is the linearized augmented plane wave
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technique with the generalized gradient approximation25

for the exchange-correlation potential, as embedded within
the WIEN2K package.26 The extended tight-binding model
is constructed as an effective single-orbital hopping model
reduced from a multiorbital tight-binding scheme, using
only atomic spin-orbit coupling. The tight-binding parameters
are obtained by fitting to the first-principles results around
the K points. In the first-principles calculations we take
1.42 Å for the intralayer atomic distance, and 3.35 Å for
the interlayer distance. The vacuum layer is taken to be
20 Å, well enough to uncouple the bilayer in the trans-
verse direction in the three-dimensional periodic structure
calculation.

Our main conclusion is that the single-layer spin-orbit
coupling determines quantitatively the spin-orbit-induced an-
ticrossings and spin splittings at and around K(K′). The inter-
layer coupling of the two graphene sheets in the AB-stacked
bilayer produces parabolic bands around the K points. Two
bands remain close to the Fermi level. These low-energy bands,
one conduction and one valence, cross at K. Spin-orbit cou-
pling leads to anticrossing of the two bands with the value of
24 μeV, as in single-layer graphene. This splitting is due to the
presence of d orbitals in the π bands. Removing d (and higher)
orbitals from our calculation, the gap is reduced to about
1 μeV, the typical value coming from the σ -π hybridization.
In a transverse electric field an orbital gap opens, separating the
conduction and valence bands. In addition, spin-orbit coupling
leads to spin splitting, removing the spin degeneracy at a given
momentum. This extrinsic splitting is peculiar in bilayers,
due to interlayer orbital effects. At the K points, the spin
splitting is independent of the electric field (at typical field
magnitudes), with the value of 24 μeV, given by the intrinsic
splitting. Away from K the extrinsic spin-orbit coupling begins
to dominate, giving the splittings of roughly 10 μeV per field
of 1 V/nm, increasing linearly with increasing field. The fine
structure of the spin splittings away from K is well described
by the intralayer spin-orbit couplings for the low-energy
conduction band. Quantitative fits to the low-energy valence
band and high-energy bands require introducing also interlayer
spin-orbit coupling parameters. This we do by deriving the
most general spin-orbit Hamiltonian at K, which has 10 real
parameters. By embedding this Hamiltonian with the tight-
binding scheme and fitting to our first-principles data we
find that the interlayer parameters are in magnitudes similar
(about 10 μeV) to the intralayer ones. Being off-diagonal,
their actual contribution to the spectrum close to K is greatly
suppressed.

This work is organized as follows. In Sec. II we present the
tight-binding model including the discussion of the relevant
d orbitals for a general N -layer AB-stacked graphene with
intralayer spin-orbit coupling. This model is discussed in detail
for bilayer graphene in Sec. III. Next, in Sec. IV we present the
first-principles results and the fits from the tight-binding model
around the K points. We discuss the intrinsic and extrinsic
spin-orbit splittings of the bands and the interlayer spin-orbit
couplings. The Appendix constructs the most generic effective
spin-orbit Hamiltonian for the graphene bilayer in an external
electric field at the K(K′) point and, as well, for an arbitrary
momentum k.

II. MODEL HAMILTONIAN

A. Tight-binding Hamiltonian

The electronic structure of π bands of graphite and of N -
layers graphene is usually described by a tight-binding approx-
imation, often parametrizied according to the Slonczewski-
Weiss-McClure (SWMcC) model6,27–35 and expressed in terms
of the π -band on-site orbital Bloch wave functions:

�Ai
(k) = 1√

N

∑
R

eik(R+tAi
) peff

z

[
r − (

R + tAi

)]
,

(1)

�Bi
(k) = 1√

N

∑
R

eik(R+tBi
) peff

z

[
r − (

R + tBi

)]
,

labeled by quasimomentum k counted from the � point,
sublattice pseudospin A or B, and the layer index i, which
runs form 1 to N (the number of layers). Here tAi

and tBi
stand

for the positions of the 2N atoms in the N -layer elementary cell
(for the AB-stacked bilayer graphene the situation is depicted
in Fig. 1) and the summation over R goes over all Bravais
lattice vectors.

The intra- and interlayer hoppings between the (effective)
pz orbitals of the neighboring atoms are given by a set of
parameters γ , schematically shown in Fig. 1. Parameters γ0

and γ1 describe the nearest-neighbor intralayer and interlayer
hoppings, while γ3 and γ4 are indirect hoppings between
the layers. In addition, the parameter � is introduced to
handle the asymmetries in the energy shifts of the corre-
sponding bonding and antibonding states due to γ1. The
role of these hopping parameters in the band structure
and the correspondence between the conventional tight-
binding model and the SWMcC parametrization is given in
Ref. 34.

Using the ordered on-site orbital Bloch basis �A1 (k),
�B1 (k), �A2 (k), �B2 (k) the spinless π -band structure of the
AB-stacked bilayer graphene with lower and upper layers
placed in potentials V and −V , respectively, is described by

FIG. 1. (Color online) (Left) Sketch of the AB-stacked bilayer
graphene. The solid circles represent the carbon atoms on the
sublattice (pseudospin) A and B, respectively. Index 1 stands for
the lower and index 2 for the upper carbon monolayers. (Right) The
hopping parameters γ0, γ1, γ3, and γ4 according to the SWMcC
convention. Atoms B1 and B2 are connected by γ4 (not shown).
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the effective 4 × 4 Hamiltonian:

HTB(k) =

⎛
⎜⎜⎜⎝

� + V γ0f (k) γ4f
∗(k) γ1

γ0f
∗(k) +V γ3f (k) γ4f

∗(k)

γ4f (k) γ3f
∗(k) −V γ0f (k)

γ1 γ4f (k) γ0f
∗(k) � − V

⎞
⎟⎟⎟⎠ . (2)

Here f (k) is the nearest-neighbor structural function of the
graphene hexagonal lattice with the lattice constant a =
2.46 Å:

f (k) = e
i

a√
3

ky

[
1 + 2 e−i

√
3a
2 ky cos

(
a

2
kx

)]
, (3)

which is accommodated to our on-site tight-binding basis (1)
and chosen coordinate system (see Fig. 1).

With the spin degree of freedom s = {↑,↓} the on-site
Bloch basis doubles,

�Ai
(k) �→ �Ai ,s(k) = �Ai

(k) ⊗ |s〉,
(4)

�Bi
(k) �→ �Bi ,s(k) = �Bi

(k) ⊗ |s〉,
and the dimension of the TB Hamiltonian increases to 4N ×
4N ,

HTB(k) �→ HTB(k) ⊗
(|↑〉〈↑| 0

0 |↓〉〈↓|
)

. (5)

In what follows when using the on-site Bloch states for the
K point momentum K = ( 4

3π/a,0) we employ short-handed
notation:

�Ai ,s = �Ai ,s(K), �Bi ,s = �Bi ,s(K). (6)

The π bands on-site wave functions of few-layer graphene
built solely on the pz orbitals are not affected by the
atom’s core spin-orbit L · s term, since the pz orbitals carry
zero orbital momentum. Therefore, from the microscopical
point of view, coupling of the pz orbitals to other atomic
orbitals is needed to describe spin-orbit effects. The minimum
realistic model employs d± = dxz ± idyz orbitals and also

s and p± = px ± ipy orbitals if an external electric field
is applied.16 The resulting multiorbital tight-binding model
can be reduced by the Löwdin transformation36 to obtain an
effective Hamiltonian for the π bands at the K point,17 where
the normalized effective peff

z orbitals take the form

peff
z (Ai) = 1√

1 + 2γ 2
[pz(Ai) + iγ d+(Bi)],

(7)

peff
z (Bi) = 1√

1 + 2γ 2
[pz(Bi) + iγ d−(Ai)].

The numerical value of the orbital mixing parameter γ was
estimated17 to be 0.09. For our group-theory-based analyses
of the spin-orbit effects at the K(K′) point we do not need
the explicit form of the effective peff

z orbitals; the only
information we need is that they transform as π states. Exactly
this requirement, as was already remarked by Slonczewski,37

implies that pz orbital centered at atom Ai (Bi) should be
paired with d+ (d−) orbital at atom Bi (Ai). However, as we
see later, the appearance of d± orbitals in peff

z is important for
qualitative understanding of band spin splittings at K(K′).

B. Spin-orbit Hamiltonian

The spin-orbit Hamiltonian at the K(K′) = (± 4
3π/a,0)

point in the presence of an external transverse electric field
is derived in detail from the group-theory arguments in the
Appendix. It possesses single-layer-like intrinsic and extrinsic
(Bychkov-Rashba) spin-orbit couplings, whose strengths are
given by the four intrinsic λI1, λ′

I1, λI2, λ′
I2 and two extrinsic

λ0 ± 2λBR parameters, respectively. Their physical meanings
and importance are explained later. Additionally, the symmetry
group at K(K′) allows four interlayer spin-orbit parameters λ1,
λ3, and λ4 ± δλ4, whose indices refer to the spin-orbit inter-
layer geometry analogous to the SWMcC hopping convention.
Within the basis of the on-site spin Bloch functions (4) the
spin-orbit at K(K′) Hamiltonian is given as follows:

HSO =

⎛
⎜⎜⎜⎝

τλI2sz i(λ0 + 2λBR)sτ
− i(λ4 + δλ4)sτ

+ τλ1sz

−i(λ0 + 2λBR)sτ
+ −τλI1sz iλ3s

τ
− −i(λ4 − δλ4)sτ

+
−i(λ4 + δλ4)sτ

− −iλ3s
τ
+ τλ′

I1sz −i(λ0 − 2λBR)sτ
−

τλ1sz i(λ4 − δλ4)sτ
− i(λ0 − 2λBR)sτ

+ −τλ′
I2sz

⎞
⎟⎟⎟⎠ . (8)

In the above expression, τ = 1(−1) for the K(K′) point,
respectively, and the matrices sz and sτ

± = 1
2 (sx ± iτsy) stand

for the z component and raising and lowering spin operators.
With zero electric field the bilayer graphene has inversion
symmetry and the number of spin-orbit λ parameters reduces
from ten to four (see the discussion in the Appendix, or
Ref. 13); these are λI1 = λ′

I1, λI2 = λ′
I2, λ0, and λ4 and all others

are forced to be zero from symmetry requirements. The spin-
orbit couplings and hence HSO are momentum independent.
However, at the end of the Appendix we discuss their possible
k-dependent extension, which, as we will see, plays a very

minor role for the spectra near the K(K′) point. Therefore,
the full model Hamiltonian for gated bilayer graphene in the
vicinity of the K(K′) point is

Heff(k) = HTB(k) ⊗
(|↑〉〈↑| 0

0 |↓〉〈↓|
)

+ HSO. (9)

The resulting electronic spectra of bilayer graphene derived
from Hamiltonian (9) in the presence of a transverse electric
field, as well as our first-principles results, are presented in the
following sections.
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III. BILAYER GRAPHENE

The electronic bands of bilayer graphene around the K
point are parabolic, in contrast to (in the absence of spin-orbit
coupling) linear bands in single-layer graphene. When gated,
a tunable band gap opens.3,5,38 It has recently been proposed
that the effects of spin-orbit coupling in bilayer graphene
are of the order of hundreds of μeV, caused by effective
spin-dependent interlayer hopping between p orbitals.13,14 Our
results presented below do not support this view.

A. Summary of results

Figure 2 shows the calculated electronic band structure
of bilayer graphene around the K point along the �KM
high-symmetry lines; spin-orbit coupling is taken into account,
but there is no applied electric field so the spin degeneracy
is present. There is excellent agreement between the tight-
binding model and the first-principles calculations, in all the
energy scales shown. Each scale in the figure has its own
physics. Figure 2(a) shows the usual picture of four spin-
degenerate, parabolic π bands. The high-energy conduction
and valence bands are formed mainly from the pz orbitals
at atoms A1 and B2 at the K point (see Fig. 1). These
bands are shifted in energy by about 340 meV by the direct
interlayer hopping γ1 away from the low-energy bands, formed
predominantly by the orbitals at atoms A2 and B1. The two
low-energy bands, again one conduction and one valence,
are closest to the Fermi level. In the tight-binding model
the difference in the energy shift between the conduction
and valence bands is taken into account by the parameter �.
Although we do not explicitly specify so, the spectra at the K′
points are identical and our discussion is valid also for them.

Figure 2(b) reveals a fine structure of the low-energy bands.
The bands form two overlapping parabolas, crossing at the
K point, directly at the Fermi level, as well as at the point
of accidental crossing along the �K line, at about 0.5 meV
above the Fermi level. This is the manifestation of the trigonal
warping that induces a breaking of the Fermi surface in
the vicinity of each Dirac point into four pockets (Lifshitz
transition) (see, for example, Ref. 39). These crossings are

governed by the indirect interlayer hopping parameters γ3

and γ4, which pull the two bands together. The spin-orbit
coupling causes anticrossings of 24 μeV, just as in single-layer
graphene,16 as seen in Fig. 2(c). The anticrossings collapse
below 1 μeV if d and higher orbitals are excluded from the
calculations.

Applying a transverse external electric field E to a bilayer
places the two layers at a different electrostatic potential. In
the tight-binding model this is described by introducing a
potential 2V , which includes all possible screening effects
and corresponds to the splitting of the low-energy bands at
the K point.3 Figure 3(a) shows 2V , extracted from the first-
principles calculations, as a function of the electric field. The
dependence is almost linear with the slope of about 0.1 electron
nanometers, corresponding to the effective electrostatic bilayer
distance deff ≈ 0.1 nm. The electric field induces also a slight
variation of the parameters � and of the direct interlayer
hopping γ1, obtained by fitting to the tight-binding model.
The corresponding dependencies are shown in Figs. 3(b) and
3(d). In Fig. 3(c) we plot the spectral gap as a function of the
electric field. At low electric fields the band gap is manifestly
indirect, with a marked difference between the minimum of
the conduction band and the maximum of the valence band. As
the electric field increases beyond 1 V/nm, the gap becomes
almost direct. The lattice momenta of the conduction band
minimum and the valence band maximum are plotted in Fig. 4
for reference. The corresponding physics of the gap opening
is discussed below.

At small electric fields, less then 6 mV/nm, bilayer
graphene is a semimetal. A finite Fermi surface of a triangular
shape is formed from the low-energy bands; the electric field
induces only small energy gaps at the crossing points of the two
overlapping parabolas (manifestation of trigonal warping). A
further increase of the electric field opens an indirect band gap
between the maximum of the valence band present at the K�

line and the minimum of the conduction band present at the K
point (Lifshitz transition). The corresponding band structure
is shown in Fig. 5. The global picture of the bands is seen
in Fig. 5(a), while the opening of the indirect band gap of
0.7 meV is seen in the fine structure zoom in Fig. 5(b).
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FIG. 2. Calculated band structure of the π bands of bilayer graphene along the �KM lines, where K = |�K| = 4π/(3a), with a = 2.46 Å.
First-principles results are shown by circles and tight-binding calculations by solid lines. (a) Low- and high-energy bands. (b) Fine structure
of the low-energy bands. (c) Detail view of the low-energy bands showing spin-orbit-coupling-induced anticrossings at the K point and at
k = −0.063 nm−1.
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FIG. 3. Bilayer graphene essentials in an external electric field
obtained from first-principles calculations (circles). The figure plots
the electric field dependencies of (a) the electrostatic potential 2V ;
the slope is described by the effective interlayer distance of deff =
0.1nm, which is defined by 2V = eEdeff ; the dashed line here is
the linear fit. (b) The hopping parameter γ1 obtained by fitting to
the first-principles data at K. (c) The energy gap in biased bilayer
graphene, compared to the voltage 2V (dashed-dotted line); the solid
line here is the tight-binding calculation using the potential 2V from
the first-principles data in (a). (d) The parameter � obtained by fitting
to the first-principles data at K. Note that E is the actual external
electric field and not the screened one, as presented, for example, in
Ref. 3.

At electric fields greater than 0.45 V/nm the states at the
K point repel significantly; the minima and the maxima of the
valence and conduction bands are present along the �K and
KM lines, and not at the K points.3,15 The band gap becomes
(mostly) direct; the minimum of the conduction low-energy

0. 1 2 3 4 5 6 7 8 9 10

50.

40.

30.

20.

10.

0.0

E V nm

k
K

10
3

FIG. 4. The positions of the lattice momenta along the �K line
(measured from K), corresponding to the minimum of the conduction
band (circles) and to the maximum of the valence band (squares), for
different values of the transverse electric field. The first-principles
and tight-binding results coincide.

band and the maximum of the valence low-energy band are, in
general, at very close but still different momenta. The spectrum
for the electric field of 1 V/nm is shown in Fig. 6(a), with
the fine structure showing the opening of the direct gap of
94.5 meV in Fig. 6(b). Finally, an extreme case, that of a very
high field of 10 V/nm, is shown in Fig. 7. The direct band
gap of 265 meV is seen in Fig. 7(b). Due to the shift of the
conduction band minimum away from the K point, the band
gap at fields greater than 0.45 V/nm is no longer proportional
to the potential 2V (which determines the splitting at the K
point), but rather it saturates to a value of about 265 meV,4,5,40

as is shown in Fig. 3(c).
The applied electric field breaks space inversion symmetry

and lifts the spin degeneracy. The spin splittings for the
low-energy conduction bands round the K points for E =
25 mV/nm, E = 1 V/nm, and E = 10 V/nm are shown in
Figs. 5(c), 6(c), and 7(c), respectively. At these large field
ranges, the spin splitting at the K point is seen to be
independent of the field, having a constant value of the intrinsic
splitting of 24 μeV, deriving from the d orbitals.

As seen from Figs. 2, 5, 6, and 7, all the spectra around the
K points, including the fine structures and the spin splittings,
can be faithfully described by tight-binding modeling. In
the following we analyze the spin-orbit-coupling-induced
anticrossings and spin splittings.

B. Analysis of results

1. Spin-orbit coupling at and near the K point

The spin-orbit effects at K can be understood essentially in
terms of the interplay between the electrostatic potential 2V ,
direct interlayer hopping γ1, and intrinsic spin-orbit couplings
controlled by λI1, λ′

I1, λI2, λ′
I2. Basically, with only those

parameters, the energy spectrum of bilayer graphene at the
K point, ordered from high to low, reads

ε
↑
1 = � +

√
γ 2

1 + V 2 + γ1λ1 + (λI2 + λ′
I2) V/2√

γ 2
1 + V 2

, (10)

ε
↓
1 = � +

√
γ 2

1 + V 2 − γ1λ1 + (λI2 + λ′
I2) V/2√

γ 2
1 + V 2

, (11)

ε
↓
2 = +V + λI1, (12)

ε
↑
2 = +V − λI1, (13)

ε
↑
3 = −V + λ′

I1, (14)

ε
↓
3 = −V − λ′

I1, (15)

ε
↓
4 = � −

√
γ 2

1 + V 2 + γ1λ1 + (λI2 + λ′
I2) V/2√

γ 2
1 + V 2

, (16)

ε
↑
4 = � −

√
γ 2

1 + V 2 − γ1λ1 + (λI2 + λ′
I2) V/2√

γ 2
1 + V 2

, (17)

as sketched in Fig. 8. The above spectrum can be derived from
the Hamiltonian (9) when treating the spin-orbit interaction in
the first-order perturbation theory.

The values for 2V , γ1, �, intrinsic spin-orbit couplings
λI1, λ′

I1, λI2, λ′
I2, and direct interlayer spin-orbit parameter λ1

are obtained by comparing the eigenvalues Eqs. (10)–(17) of
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FIG. 5. Calculated band structure of the π bands of bilayer graphene in a transverse electric field of 25 mV/nm. The spectra along the �KM
line are shown, with the K point and the Fermi energy at the origin; K = |�K| = 4π/(3a) with a = 2.46 Å. The first-principles calculations
are shown by circles, while the lines come from tight-binding modeling. (a) Low- and high-energy bands. (b) The fine structure of the
low-energy bands with the corresponding indirect band gap of 0.7 meV between k = −0.068 nm−1 and the K point. (c) Detail view at the
low-energy conduction band split by extrinsic spin-orbit coupling; the maximum value of the splitting of 2λI = 24 μeV is at the K point and
at k = −0.063 nm−1.

the effective tight-binding bilayer Hamiltonian [Eq. (9)] to the
first-principles spectra at the K point. This analysis shows that
the spin splittings of the low-energy valence and conductance
bands at the K point are the same and do not depend on the
applied electric field; the spin-orbit parameters for these bands
are predicted to be 2λI1 
 2λ′

I1 = 24 μeV. In contrast, the spin
splittings of the high-energy valence and conductance bands
at the K point depend on the applied electric field. However,
the high-energy intrinsic spin-orbit couplings governing these
splittings are field independent and their values are fixed
by 2λI2 
 2λ′

I2 = 20 μeV. Finally, the direct spin-dependent
interlayer parameter λ1 = 0. The remaining hopping (γ3 and
γ4) and spin-orbit (λ0, 2λBR, λ3, λ4, and δλ4) parameters, as
discussed in the next section, are chosen to reproduce the
band-structure in the vicinity of the K point (see the largest
ranges shown in Figs. 2, 5, 6, and 7). The parameters for
selected values of electric field used in this paper are listed in
Table I.

Within the first-order perturbation theory at the K point
the eigenstates of the Hamiltonian (9) can be expressed (apart
from the overall normalization) in terms of the on-site spin
Bloch wave functions (4), for the form of the eigenstates see
Fig. 8, where

α± =
√

γ 2
1 + V 2 ± V

γ1
. (18)

To understand qualitatively the bilayer spectrum and the
spin splittings at the K point we need to (i) approximate
the spin-orbit interaction h̄

4m2c2 (∇V × p) · s with the bilayer
graphene point symmetry by the atomic (and hence isotropic)
spin-orbit interaction ξ L · s and (ii) take into account the d±
states in the effective peff

z orbitals, which enter the on-site
Bloch wave functions [see Eqs. (1), (4), and (7)]. The on-site
Bloch wave functions carrying the pseudospin A are formed
by d+ orbitals, contrary to the on-site wave functions labeled
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FIG. 6. Calculated band structure of the π bands of bilayer graphene with the applied electric field of 1 V/nm. Circles show the results of the
first-principles and lines of the tight-binding calculations. (a) Low- and high-energy bands, displaying a band gap. (b) View of the low-energy
bands showing the (mostly) direct band gap of 94.5 meV between the valence (at k = −0.2 nm−1) and the conduction (at k = −0.15 nm−1)
bands. (c) Detail view of the low-energy conduction band showing the spin splitting, with the maximum value of 2λI = 24 μeV at the K point
and in its close vicinity.
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FIG. 7. Calculated band structure of the π bands of bilayer graphene with the applied electric field of 10 V/nm. Circles show the results of
the first-principles and lines of the tight-binding calculations. (a) Hyperbolic high-energy bands and the Mexican-hat structure of the low-energy
bands. (b) The fine structure of the low-energy bands in the band-gap region with the (mostly) direct band gap of 265 meV; the maximum of
the valence band is at k = −0.910 nm−1 and the minimum of the conduction band is at k = −0.904 nm−1. (c) Detail view at the low-energy
conduction band shows its splitting due spin-orbit coupling with the value of 2λI = 24 μeV at the K point.

by the pseudospin B, which are composed of d− orbitals. The
atomic spin-orbit energies of d+⊗ |↑〉 and d−⊗ |↓〉 are equal
and higher by 2ξd than the energies of d+⊗ |↓〉 and d−⊗ |↑〉.
Hence, we expect the general spectral tendency: the spin-orbit
pulling the on-site Bloch states �A,↑ and �B,↓ higher in energy
by 4γ 2ξd compared to �A,↓ and �B,↑.

Let us first analyze the zero external electric field case
without the spin-orbit interaction. When two single-layer
graphene sheets are brought together, the Bloch orbital states
on the interlayer-direct-contact atoms A1 and B2 start to
interact (via spin-independent parameter γ1) and they form the
high-energy antibonding (conduction) and bonding (valence)
states �A1 + �B2 and �A1 − �B2 , respectively. The low-
energy states, on the other hand, are formed by the indirect-
contact Bloch orbitals �B1 and �A2 . If we now turn on the
spin-orbit interaction and count the spin degrees of freedom
we would see the following changes in the bilayer energetics:
The two antibonding (bonding) states �A1,↑ + �B2,↑ and
�A1,↓ + �B2,↓(�A1,↑ − �B2,↑ and �A1,↓ − �B2,↓) should stay
spin unsplit since the opposite pseudospin components �A,s

and �B,s entering the antibonding (bonding) wave functions
are shifted opposite in energy by ξ L · s and hence there is
no net spin splitting. The situation is different for the four
low-energy states �B1,s and �A2,s . Their fourfold degeneracy
is partially lifted when the spin-orbit interaction is turned on;
states �B1,↓ and �A2,↑ remain degenerate and become shifted
in energy higher than the degenerate pair �B1,↑ and �A2,↓. This
splitting is seen in the spectrum as the K point anticrossing
(see Fig. 2), and according to the above qualitative model
we can fix the value of 4γ 2ξd to 24 μeV. This reasoning is
fully consistent with the tight-binding energy spectrum when
plugging in Eqs. (10)–(17) zero for V and λ1 and setting
λI1 = λ′

I1. The spectral situation is schematically depicted in
Fig. 8.

An external electric field breaks inversion symmetry and
causes external spin splittings we observe in the first-principles
spectra. Since the first layer is placed to the potential V

and the second layer to the potential −V , we separate the
spin-split states �B1,↓ and �B1,↑ away from the spin-split states

�A2,↑ and �A2,↓, what manifests in the low-energy spectrum
as the band-gap opening (see Figs. 5–7). The energetics of
the high-energy bands is somewhat different. The applied
electric field affects the antibonding (bonding) Bloch states by
raising the relative magnitude of the pseudospin component

FIG. 8. Energy spectrum diagram of the AB-stacked bilayer
graphene at the K point. The diagram at left shows the spin-orbit
energetics of two interlayer-noninteracting (γ1 = 0) graphene sheets
placed in the transverse potential difference 2V . The diagram at right
represents the spin-orbit energetics in the presence of a transverse
external field including the direct interlayer interaction (in TB
Hamiltonian mediated via the parameter γ1). The states formed
predominantly by atoms A2 and B1 are split by the intrinsic spin-
orbit coupling 2λI1. These states form the low-energy valence and
conductance bands. The states residing mainly on A1 and B2 form the
high-energy bands and are shifted in the energy spectrum by the direct
interlayer hopping γ1. They are spin split by 2λI2/

√
1 + (γ1/V )2. The

energies εs
i (i = {1,2,3,4} and s = {↑ , ↓}) and the corresponding

eigenstates are ordered from top to bottom; see Eqs. (10)–(17).
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TABLE I. Tight-binding (TB) parameters in the units of eVs and spin-orbit (SO) couplings in the units of μeVs, obtained by fitting the band
structure to the first-principles calculations. The signs of the TB parameters are chosen to be consistent with the SWMcC parametrization,41

which is also shown. The translation table of the parameters in the tight-binding and SWMcC models is obtained from band-structure fitting
of graphite. The presented values of the TB parameters are similar to those found elsewhere33,34,42,43 and are consistent with the values of
Ref. 3 obtained from bilayer band-structure calculation using the WIEN2K code.

TB � γ0 γ1 γ3 γ4 2V 2λI1 2λI2 λ0 2λBR λ1 λ3 λ4 δλ4 SO
SWMcC � − γ2 + γ5 γ0 γ1 γ3 −γ4/2 2V

E = 0 0.0097 2.6 0.339 0.28 −0.140 0 24 20 5 0 0 0 −12 0
E = 25 mV/nm 0.0096 2.6 0.339 0.28 −0.145 0.0013 24 20 5 0.25 0 0.038 −12 −0.075
E = 1 V/nm 0.0096 2.6 0.339 0.25 −0.165 0.1059 24 20 5 10 0 1.5 −12 −3
E = 6 V/nm 0.0094 2.6 0.343 0.29 −0.143 0.6238 24 20 5 60 0 9 −12 −18
E = 10 V/nm 0.0092 2.6 0.348 0.26 −0.100 0.9572 24 20 5 100 0 15 −12 −30

�A1 (�B2 ) over the component �B2 (�A1 ); see the behavior of
α± given by Eq. (18). The corresponding spin splitting is then
dictated by the dominant pseudospin orbital �A1 (�B2 ) when
coupled to the spin, that is, �A1,↑ (�B2,↓) goes in energy higher
than �A1,↓ (�B2,↑). This tendency is again well confirmed
by our tight-binding model spectrum [Eqs. (10)–(17)] and
its eigenstates distribution (Fig. 8) and as well by the first-
principles calculations.

2. Interlayer spin-orbit couplings

The intralayer spin-orbit couplings λI1, λI2, and λBR suffice
to explain the bilayer spectrum in the presence of a transverse
electric field directly at the K points. Around K points,
including the regions of the valence band maxima and the
conduction band minima, the description is satisfactory for
the conduction band only (see Fig. 9). However, if we look at
the low-energy valence band (or high-energy bands), we see
that the fine features of the spin splittings differ from what
the tight-binding model with intralayer spin-orbit coupling
predicts. This is markedly seen in Fig. 10.
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E 0.025
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E 6

FIG. 9. Calculated spin splittings of the low-energy-conduction
band for the electric fields of E = 25 mV/nm, E = 1 V/nm, and
E = 6 V/nm. The solid lines are first-principles and dashed lines
tight-binding results with the intralayer spin-orbit effects. The arrows
and circles indicate the positions of the conduction band minima.

In the following we include in the picture interlayer
spin-orbit couplings, motivated by our symmetry-derived
Hamiltonian in the Appendix and demonstrate a very good
quantitative agreement with first-principles data. We stress that
(i) the interlayer spin-orbit couplings are of the same order as
the intralayer ones, that is, typically 10 μeV, and (ii) our fitting,
while physically motivated and robust, can be, in principle,
nonunique as there are, in principle, ten parameters entering
the spin-orbit Hamiltonian [see Eq. (8)]. As such, the presented
model, described by Hamiltonian (9), should be considered
as a physically reasonable convenient minimum quantitative
description of the spin-orbit physics in bilayer graphene with
broken space inversion symmetry by a transverse electric field.
If one aims to describe the low-energy conduction band only,
one can neglect these interlayer spin-orbit couplings entirely.
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FIG. 10. (Color online) Effects of the intralayer spin-orbit cou-
plings. Calculated spin splittings of the low-energy valence (left) and
conduction (right) bands. First-principles results are shown as solid
lines, while the tight-binding fits with intralayer spin-orbit parameters
only are dashed. The maxima of the valence bands and the minima of
the conduction bands are indicated by thin dashed vertical lines. The
conduction band spin physics appears satisfactorily described, but the
valence band splittings are rather off for the tight-binding model.
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We now explain the fitting procedure. The spin-orbit
Hamiltonian in the external electric field, as presented by
Eq. (8), or Table II in the Appendix, contains ten real λ

parameters. The diagonal ones, the intrinsic λI, determine the
spin splittings at the K point. They can be easily fixed, and we
find that they do not depend on the electric field significantly
(within 1 μeV). We then look at the spectral changes of the spin
splittings around K point as different off-diagonal parameters
vary, and compare the trends in the changes with the actual
first-principles data. Moreover, we assume that 2λBR, λ1, λ3,
and δλ4, which are absent in zero electric field, scale linearly
with the intensity of the applied electric field. One can see that
λ1 ≈ 0, as changes in this parameter distort the picture away
from the first-principles results. The direct interlayer coupling
is then largely spin-independent (governed solely by γ1).

The parameters λ0 = λ0 + 2λBR and λ′
0 = λ0 − 2λBR de-

scribe both the global and the local breaking of space inversion
symmetry. In the absence of an electric field, λ′

0 = λ0 = λ0,
since 2λBR vanishes (see the Appendix). The parameter
λ0 describes a local bulk-inversion-asymmetry physics: The
electrons in one layer feel an effective electric field due to
the presence of the other layer. This field gives rise to a
“local Dresselhaus”2 spin-orbit coupling. Naturally, the field is
opposite in the two layers so the net effect is zero, as there is no
global bulk inversion asymmetry. We can estimate λ0 along the
following lines. The direct interlayer coupling is given by the
energy γ1 ≈ 0.3 eV. Since the distance between the two layers
is about 0.3 nm, the effective electric field felt by each layer
due to the presence of the other is about 1 V/nm. We know
from single-layer graphene that such a field gives the (real)
Bychkov-Rashba splitting of 2λBR = 10 μeV. This gives an
order of magnitude estimate λ0 ≈ 10 μeV, which gives also a
check on how reasonable the actual fit is.

In our fitting, knowing both the complexity and crudeness
of the procedure, we focused on obtaining both reasonable and
robust results. To that end we made a restricted least-squares
fit to the first-principles spin splittings using the data for the
electric fields of 1 and 6 V/nm. The fits were simultaneous
to both data sets, for the valence and conduction low-energy
bands only. The fitting was restricted to the spectrum around K
within 2.5% in the two directions K-� and K-M, constraining
the fits to closely preserve the extremal points (minima and
maxima) of the spectral splittings, so that the overall shape
was correct. The crucial test of the robustness of the obtained
parameters, and of the assumption of the linearity (in E) of the
spin-orbit parameters, was (a) reproducing the spin splittings
of the high-energy bands which were not used in the fitting
procedure, and (b), reproducing the spin splittings of the low-
and high-energy bands at intermediate electric fields, which
were also not included in the fitting. The actual parameters of
the fits are given as follows:

λ0 = 5 μeV , 2λBR = 10 × E [V/nm] μeV,

λ1 = 0, λ3 = 1.5 × E [V/nm] μeV, (19)

λ4 = −12 μeV , δλ4 = −3 × E [V/nm] μeV,

where the numerical value of the electric field intensity E

should be taken in the units of V/nm.
The first-principles data and the tight-binding fits for the

low-energy bands at electric fields of 1, 4, and 6 V/nm, are
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FIG. 11. (Color online) Best-fitting tight-binding model. Calcu-
lated spin splittings of the low-energy valence (left) and conduction
(right) bands. First-principles results are shown as solid lines, while
the tight-binding fits, including all possible k-independent spin-orbit
parameters, are dashed. The maxima of the valence bands and the
minima of the conduction bands are indicated by thin dashed vertical
lines.

shown in Fig. 11. The first-principles results for 4 V/nm, as
discussed above, were not used in the fitting of spin-orbit
couplings (calculations for other fields give similar level
of agreement). The fact that the first-principles results are
well reproduced signifies the robustness of the procedure
and validity of our assumptions. The spin splittings in
bilayer graphene are rather complex, also considering that
the interesting points are not really K but the positions of
the valence band maxima and conduction bands minima.

FIG. 12. (Color online) Calculated from tight-binding, the spin
orientation of the low-energy conduction-band states as a function
of the momentum k for different directions for the electric field of
E = 1 V/nm. The kx axis correspond to the �KM line. The circles
correspond to (1) |k|/K= 0.01, with the corresponding energy ε =
56 meV and the angle between the spin pointing vector and the kz axis
θ = 5.5◦; (2) |k|/K = 0.0225, ε = 119 meV, and θ = 45.5◦; and (3)
|k|/K = 0.05, ε = 355 meV, and θ = 80.5◦.
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FIG. 13. Calculated spin splittings of the high-energy valence
(left) and conduction (right) bands. First-principles results are shown
as solid lines, while the tight-binding calculations, using the best
fitting parameters, are dashed.

There is a clear competition between the intrinsic splitting
λI, dominating close to K, and the extrinsic (off-diagonal)
splittings, dominating at momenta away from the K point. The
spin pattern of the low-energy conduction band is shown in
Fig. 12; at the K point the spin quantization axis is along z.
This is due to the intrinsic spin-orbit coupling. Away from the
K point the spin quantization axis is in the plane, reflecting the
dominance of extrinsic SOC.

The splittings of the high-energy bands, which normally do
not play a role in transport, provide additional assurance in the
fitting. The results from our first-principles and tight-binding
calculations (with the parameters obtained by fitting the low-
energy bands only) are shown in Fig. 13. The quantitative
agreement is very satisfactory.

The spin-orbit parameters entering the above fitting prob-
lem are, in general, momentum dependent; see the general-
ized k-dependent spin-orbit Hamiltonian in Table V in the
Appendix. However, our numerical analysis shows that for the
momentum vectors within the considered 2.5% interval around
the K point the values of the spin-orbit parameters modify less
than 0.8%, the spin-orbit Hamiltonian at the K point [Eq. (8)]
is thus satisfactory.

IV. CONCLUSIONS

We have systematically investigated the spin-orbit coupling
effects in bilayer graphene, both intrinsic and extrinsic, in
the presence of a transverse electric field. We have presented
first-principles results, and analyzed them from a tight-binding
perspective. We have derived and used the most general
spin-orbit Hamiltonian for the bilayer graphene with an absent
space inversion (gated bilayer, bilayer on a substrate, or
with adatoms) employing the underlying bilayer graphene
symmetries. We have shown that the rough features of the
spin splittings of the low-energy bands are well reproduced

using a model with single-layer-like spin-orbit couplings
and interlayer orbital hoppings. In particular, the intrinsic
anticrossings at zero external electric field are fully consistent
with the anticrossing mechanism proposed for the single-layer
graphene. In the presence of an electric field, the spin splittings
of the (otherwise spin degenerate) bands are more subtle and
complex than in a single-layer graphene. Directly at the K
point the value of the splitting of the low-energy bands is
given by the intrinsic spin-orbit coupling. On the other hand,
the high-energy bands are split in a proportion to the electric
field, which is what is normally expected. Away from the K
points, our spin-orbit upgraded tight-binding model gives an
excellent description of the fine spin splittings due to electric
field. With the help of the interlayer spin-orbit couplings we
have fully covered the first-principles energetics at and near
the K point. A quantitative and physically inspired fitting
procedure was proposed to obtain the realistic values of the
interlayer spin-orbit coupling parameters; we have shown that
these parameters have similar values as the intralayer ones.
The spin-orbit Hamiltonian we have proposed can be used in
model studies of spin-dependent transport and spin relaxation
in extended and confined bilayer graphene.
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APPENDIX: EFFECTIVE SPIN-ORBIT HAMILTONIAN AT
K(K′) FROM SYMMETRY ANALYSIS

The extrinsic spin-orbit coupling is induced by a trans-
verse electric field which breaks the bilayer space inversion
symmetry. Using symmetry group arguments we express the
corresponding spin-orbit Hamiltonian at K in the basis of the
on-site Bloch wave functions �Ai ,s and �Bi ,s [see Eqs. (4) and
(6)] in the format of Table II. This Hamiltonian matrix has 10
real parameters {λI1,λ

′
I1,λI2,λ

′
I2,λ0 = λ0 + 2λBR,λ′

0 = λ0 −
2λBR,λ4 = λ4 + δλ4,λ

′
4 = λ4 − δλ4,λ1,λ3}. The first four pa-

rameters are related to the intrinsic intralayer spin-orbit
coupling λI (hence subscript I); the rest (extrinsic) are
labeled corresponding to the hopping parameters γi with
i = {0,1,3,4}.

We now present the group-theory analysis which leads to
the spin-orbit coupling Hamiltonian in Table II. In the absence
of an electric field the point group symmetry of the bilayer
unit cell is D3d , while the small group of K is D3. A transverse
electric field along z breaks the space inversion symmetry. The
point group reduces to C3v and the small group of K reduces to
C3. The Abelian group C3 = {E,R2π/3,R−2π/3} has three one-
dimensional irreducible representations (we adopt the notation
from Ref. 44), reproduced in Table III. The complex conjugate
representations are related to the given ones by �1 = �1 and
�2 = �3.

The orbital components �Ai
and �Bi

of the on-site Bloch
functions �Ai ,s and �Bi ,s transform according to R2π/3, with
the point-symmetry rotation axis given by A1-B2, as follows:

R2π/3(�A1 ) = �A1 , R2π/3(�B1 ) = ei 2π
3 �B1 ,

(A1)
R2π/3(�A2 ) = e−i 2π

3 �A2 , R2π/3(�B2 ) = �B2 .
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TABLE II. Spin-orbit matrix elements in bilayer graphene with external electric field at K.

SOC �A1,↑ �A1,↓ �B1,↑ �B1,↓ �A2,↑ �A2,↓ �B2,↑ �B2,↓

�A1,↑ λI2 0 0 0 0 iλ4 λ1 0
�A1,↓ 0 −λI2 iλ0 0 0 0 0 −λ1

�B1,↑ 0 −iλ0 −λI1 0 0 0 0 −iλ′
4

�B1,↓ 0 0 0 λI1 iλ3 0 0 0
�A2,↑ 0 0 0 −iλ3 λ′

I1 0 0 0
�A2,↓ −iλ4 0 0 0 0 −λ′

I1 −iλ′
0 0

�B2,↑ λ1 0 0 0 0 iλ′
0 −λ′

I2 0
�B2,↓ 0 −λ1 iλ′

4 0 0 0 0 λ′
I2

These transformations follow immediately from definition
[Eq. (1)] when substituting for k vector the K point momentum
and employing the π -state property of peff

z orbitals. Hence, �A1

and �B2 belong to the trivial representation �1, while �B1 ∈ �2

and �A2 to �3. Expressing the spin-orbit coupling in terms of
sz and the spin raising and lowering matrices s± = 1

2 (sx ± isy),

HSO = h̄

4m2c2
(∇V × p) · s ∼ Lzsz + L−s+ + L+s−, (A2)

we get operators Lz and L± = Lx ± iLy , which act only on
the orbital part of the on-site Bloch wave functions �Ai ,s and
�Bi ,s . The total potential V = Vbi + 2Vel, entering Eq. (A2),
comprises the intrinsic bilayer potential energy and the energy
due to the externally applied electric field. With respect to C3

the L operators transform as

R2π/3Lz = LzR2π/3, R2π/3L± = e∓i 2π
3 L±R2π/3. (A3)

Hence, Lz ∈ �1, L− ∈ �2, and L+ ∈ �3. The matrix element
〈�|L|�〉 belongs to the �� × �L × �� representation of the
group C3. According to the (Abelian) group theory:

if �� × �L × �� �= �1, then 〈�|L|�〉 = 0.

Using this fact and the multiplication Table III, one can identify
all the vanishing Hamiltonian matrix elements in Table II. It is
also clear that all diagonal matrix elements are real. We show
below that the off-diagonal elements are either real or pure
imaginary.

The small group C3 of K is a subgroup of the point group C3v

which, in addition to the two rotations {R±2π/3}, also has three
vertical reflections {Rv,R±2π/3 ◦ Rv}. Here Rv is the reflection
with respect to the vertical plane defined by the electric field
(z axis) and the line connecting atoms A1 and B1 [see Fig. (1)

TABLE III. Irreducible representations of C3 and their characters
(left) and the corresponding multiplication table (right).

Representation Γ1 Γ2 Γ3

Character χE 1 1 1

Character χR 1 ei
2π
3 e−i

2π
3

Character χR−1 1 e−i
2π
3 ei

2π
3

Γ × Γ Γ1 Γ2 Γ3

Γ1 Γ1 Γ2 Γ3

Γ2 Γ2 Γ3 Γ1

Γ3 Γ3 Γ1 Γ2

for the coordinate system we use]. Expressing the action of Rv

in coordinates,

Rv : r = (x,y,z) �→ (Rvr) = (−x,y,z),

we see that this transformation preserves the layer label and
the pseudospin (Ai ↔ Ai and Bi ↔ Bi), but sends K to K′.
The action of Rv on the on-site space Bloch wave functions
and L operators is therefore as follows:

Rv(�Ai ,K) = �Ai ,K′ = �∗
Ai ,K, RvLz = −LzRv,

(A4)
Rv(�Bi ,K) = �Bi ,K′ = �∗

Bi ,K, RvL± = L∓Rv.

Moreover,

〈� | �〉 =
∫

d3r �∗(r) �(r)

=
∫

d3r �∗(Rvr) �(Rvr) = 〈Rv(�) | Rv(�)〉;

that is, Rv is a unitary operator when acting on wave
functions. The above facts suffice to show that, for example,
〈�A1 |Lz|�B2〉 is real. Indeed,

〈�A1,K | Lz�B2,K〉 = 〈(Lz�B2,K)∗ | (�A1,K)∗〉
= 〈−Lz(�B2,K)∗ | (�A1,K)∗〉
= −〈Lz�B2,K′ | �A1,K′ 〉
= −〈LzRv(�B2,K) | Rv(�A1,K)〉
= −〈−RvLz(�B2,K) | Rv(�A1,K)〉
= 〈Lz�B2,K | �A1,K〉
= 〈�A1,K | Lz�B2,K〉∗.

In a similar way, one can show that the matrix elements, which
comprise L± operators, are imaginary. The only changes in
the above computation appear in the second and the fourth
lines. In the second line one uses (L±)∗ = −L∓ and in the
fourth line the commutation relation L∓Rv = RvL± instead
of LzRv = −RvLz.

It is convenient to express the spin-orbit Hamiltonian given
by Table II in a more conventional form,

HSO = HI + HBR + Hinter + Hel. (A5)

Here HI and HBR are the intrinsic and Bychkov-Rashba-
like Hamiltonians, respectively. Hamiltonian Hinter comprises
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terms that are specific for interlayer coupling (bilayer geom-
etry), and Hel contains the remaining interlayer contributions
present only in a finite transverse electric field. We introduce
the Pauli matrices μ (layer), σ (sublattice pseudospin), s (spin),
along with the unit 2 × 2 matrices μ0, σ0, s0, and symmetrized
parameters

�I = 1
2 (λI2 − λI1), �′

I = 1
2 (λ′

I2 − λ′
I1),

(A6)
λI = 1

2 (λI2 + λI1), λ′
I = 1

2 (λ′
I2 + λ′

I1),

and

2λBR = 1
2 (λ0 − λ′

0), δλ4 = 1
2 (λ4 − λ′

4),
(A7)

λ0 = 1
2 (λ0 + λ′

0), λ4 = 1
2 (λ4 + λ′

4).

We get the following effective Hamiltonian:

HI = 1
2 [(�I − �′

I)σ0 + (λI + λ′
I)σz]μ0τsz

+ 1
2 [(�I + �′

I)σ0 + (λI − λ′
I)σz]μzτsz, (A8)

HBR = 1
2 (λ0μz + 2λBRμ0)(τσxsy − σysx), (A9)

Hinter = − 1
2 (λ4σz + δλ4σ0)(τμxsy + μysx), (A10)

Hel = λ1

2
τsz(μxσx − μyσy)

+ λ3

4
[μx(τσxsy + σysx) + μy(τσysy − σxsx)]. (A11)

We have included τ = 1 (K) and τ = −1 (K′), to cover also
K′. The translation of the Hamiltonian matrix elements from
K to K′ is based on time-reversal symmetry.

In the absence of an electric field, the spin-orbit Hamil-
tonian of bilayer graphene was derived in Ref. 13. This is a
special case of our Hamiltonian in Table II. We can restore
space inversion symmetry

i : r = (x,y,z) �→ i(r) = (−x, − y, − z), (A12)

mapping K to K′ and interchange the layer indexes and the
pseudospin,

A1 ↔ B2 B1 ↔ A2.

The orbital momentum L operators are invariant with respect
to inversion, which is unitary; that is, 〈� | �〉 = 〈i(�) | i(�)〉.
The action of i on the on-site space Bloch wave function is

i(�A1,K) = �B2,K′ = �∗
B2,K,

i(�B2,K) = �A1,K′ = �∗
A1,K,

(A13)
i(�B1,K) = �A2,K′ = �∗

A2,K,

i(�A2,K) = �B1,K′ = �∗
B1,K.

TABLE IV. Spin-orbit Hamiltonian matrix elements in bilayer
graphene in the absence of an external electric field at K.

SOC �A1,↑ �A1,↓ �B1,↑ �B1,↓ �A2,↑ �A2,↓ �B2,↑ �B2,↓

�A1,↑ λI2 0 0 0 0 iλ4 0 0
�A1,↓ 0 −λI2 iλ0 0 0 0 0 0
�B1,↑ 0 −iλ0 −λI1 0 0 0 0 −iλ4

�B1,↓ 0 0 0 λI1 0 0 0 0
�A2,↑ 0 0 0 0 λI1 0 0 0
�A2,↓ −iλ4 0 0 0 0 −λI1 −iλ0 0
�B2,↑ 0 0 0 0 0 iλ0 −λI2 0
�B2,↓ 0 0 iλ4 0 0 0 0 λI2

Applying the above facts to the nonzero matrix elements
in Table II, we get the spin-orbit Hamiltonian of
Ref. 13 reducing the number of free (real) parameters
to four, {λI1 = λ′

I1,λI2 = λ′
I2,λ0 = λ′

0,λ4 = λ′
4,λ1 = λ3 = 0},

given in Table IV.
We show, for example, that λ3 = 0; by similar considera-

tions one can check other spin-orbit elements:

〈�B1,K | L+�A2,K〉 = 〈(L+�A2,K)∗ | (�B1,K)∗〉
= 〈−L−(�A2,K)∗ | (�B1,K)∗〉
= −〈L−�A2,K′ | �B1,K′ 〉
= −〈L−i(�B1,K) | i(�A2,K)〉
= −〈iL−(�B1,K) | i(�A2,K)〉
= −〈L−�B1,K | �A2,K〉
= −〈�B1,K | L†

−�A2,K〉
= −〈�B1,K | L+�A2,K〉 = 0.

Rewriting the matrix in Table IV in terms of the sym-
metrized parameters as defined by Eqs. (A6) and (A7) we get
the spin-orbit coupling Hamiltonian in the absence of electric
field (that is, in the presence of space inversion symmetry) in
a more conventional notation:13

HSO(E = 0) = λI τμ0σzsz + �I τμzσ0sz

+ λ0

2
μz(τσxsy − σysx)

− λ4

2
σz(τμxsy + μysx). (A14)

To explain quantitatively spin splittings of the low-energy
conduction band, two spin-orbit parameters are important: λI

and 4λBR = (λ0 − λ′
0). The interlayer spin-flip parameters λ1,

λ3, λ4, and δλ4 are important to quantitatively fit the valence
band. Our spin-orbit Hamiltonian is valid in a general case
of bilayer graphene with absent space inversion symmetry,
such as gated bilayer or bilayer on a substrate. It is likely that
a stronger bonding substrate would make several of the ten
parameters much larger than they are in an applied field.

The spin-orbit Hamiltonian HSO as presented in Table II is,
strictly speaking, valid directly at the K(K′) point. It can be
extended to be k-dependent. The strategy employs the on-site
Bloch states for a general k vector [Eqs. (1)], the π -state
symmetry of peff

z orbitals, transformational properties of the
spin-orbit L operators [Eqs. (A3)], time-reversal symmetry,
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TABLE V. k-dependent spin-orbit matrix elements of the bilayer graphene Hamiltonian with external electric field within the nearest and
next nearest neighbor approximation. Apart from the previously discussed spin-orbit parameters, there appear new five real couplings: μ,μA1 ,
μB1 , μA2 , and μB2 , they are not present at the K(K′) point.

SOC (k) �A1,↑(k) �A1,↓(k) �B1,↑(k) �B1,↓(k) �A2,↑(k) �A2,↓(k) �B2,↑(k) �B2,↓(k)

�A1,↑(k) λI2 u(k) iμA1 v(k) 0 iλ0 w∗(−k) 0 iλ4 w∗(k) λ1u(k) iμv(k)

�A1,↓(k) −iμA1 v∗(k) −λI2 u(k) iλ0 w(k) 0 iλ4 w(−k) 0 −iμv∗(−k) −λ1u(k)

�B1,↑(k) 0 −iλ0 w∗(k) −λI1 u(k) −iμB1 v(k) 0 iλ3 z∗(−k) 0 −iλ′
4 w∗(k)

�B1,↓(k) −iλ0 w(−k) 0 iμB1 v∗(k) λI1 u(k) iλ3 z(k) 0 −iλ′
4 w(−k) 0

�A2,↑(k) 0 −iλ4 w∗(−k) 0 −iλ3 z∗(k) λ′
I1 u(k) −iμA2 v(k) 0 −iλ′

0 w∗(−k)

�A2,↓(k) −iλ4 w(k) 0 −iλ3 z(−k) 0 iμA2 v∗(k) −λ′
I1 u(k) −iλ′

0 w(k) 0

�B2,↑(k) λ1u(k) iμv(−k) 0 iλ′
4 w∗(−k) 0 iλ′

0 w∗(k) −λ′
I2 u(k) iμB2 v(k)

�B2,↓(k) −iμv∗(k) −λ1u(k) iλ′
4 w(k) 0 iλ′

0 w(−k) 0 −iμB2 v∗(k) λ′
I2 u(k)

and finally, the nearest neighbor (nn) and the next-nearest
neighbor (nnn) approximations, according to which

〈�Xi
(k)| L |�Yj

(k)〉 ≈ eik(tYj
−tXi

)

×
∑
nn(n)

eikRnn(n)
〈
peff

z (Xi)| L |peff
z (Yj + Rnn(n))

〉
. (A15)

In the expression above Xi and Yj stand for an arbitrary
couple of atoms A1, B1, A2, B2 in the bilayer elementary

cell. The underlying symmetries of bilayer graphene enable us
to express〈
peff

z (Xi)|L|peff
z (Yj + Rnn(n))

〉 = e±i�
〈
peff

z (Xi)|L|peff
z (Yj )

〉
,

where the phase factor is either 0, π
3 , or 2π

3 depending on the
atoms Xi and Yj . This observation simplifies summation over
Rnn(n) in Eq. (A15). When proceeding as explained we arrive
at the k-dependent spin-orbit Hamiltonian shown in Table V.

The structural spin-orbit functions u(k), v(k), w(k) and z(k)
of the bilayer graphene are

u(k) = − 2

3
√

3
[sin k · R1 + sin k · R2 + sin k · R3] , (A16)

v(k) = 2

3
√

3

[
sin k · R1 + ei 2π

3 sin k · R2 + e−i 2π
3 sin k · R3

]
, (A17)

w(k) = 1

3
eik·tB1

[
1 + ei 2π

3 +ik·R2 + e−i 2π
3 −ik·R3

]
, (A18)

z(k) = 1

3
eik·(tA2 −tB1 )−ik·R2

[
eik·R3 + e−i 2π

3 + ei 2π
3 −ik·R1

]
, (A19)

where R1 = a(1,0), R2 = a
2 (−1, −√

3) and R3 = a
2 (−1,

√
3) are Bravais hexagonal lattice vectors with the lattice constant

a = 2.46 Å.
The full tight-binding Hamiltonian with spin-orbit terms can be folded down to an effective Hamiltonian for the low-energy

conduction and valence bands only. To this end we perform Löwdin transformation17,36 by projecting Hamiltonian Heff(k) given
by Eq. (9), into the subspace of low-energy states with the on-site Bloch basis �B1,↑, �B1,↓, �A2,↑, and �A2,↓. We keep only
the intralayer spin-orbit coupling parameters λI1, λ0, and λ′

0 as they are most relevant for the low-energy bands. The resulting
effective 4 × 4 low-energy Hamiltonian, valid for k vectors close to the K point, for which γ0f (k) � γ1 [the structural function
f (k) is given by Eq. (3)], is

H LE
eff (k) =

⎛
⎜⎜⎜⎝

V − λI1 iλ0η
+f (k) γ3f (k) i

(
λ0β

+ + λ′
0β

−)
f ∗(k)

−iλ0η
+f ∗(k) V + λI1 0 γ3f (k)

γ3f (k)∗ 0 −V + λI1 iλ′
0η

−f (k)

−i
(
λ0β

+ + λ′
0β

−)
f (k) γ3f (k)∗ −iλ′

0η
−f ∗(k) −V − λI1

⎞
⎟⎟⎟⎠ , (A20)

with the dimensionless parameters

η± = (V ∓ �)γ0 ± γ1γ4

V 2 + γ 2
1 − �2

,

(A21)

β± = (V ∓ �)γ4 ± γ0γ1

V 2 + γ 2
1 − �2

.
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