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Transport calculations based on density functional theory, Friedel’s sum rule, and the Kondo effect
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Friedel’s sum rule provides an explicit expression for a conductance functional G[n], valid for the single-
impurity Anderson model at zero temperature. The functional is special because it does not depend on the
interaction strength U . As a consequence, the Landauer conductance for the Kohn-Sham (KS) particles of density
functional theory (DFT) coincides with the true conductance of the interacting system. The argument breaks down
at temperatures above the Kondo scale, near integer filling, ndσ ≈ 1/2 for spins σ =↑↓. Here, the true conductance
is strongly suppressed by the Coulomb blockade, while the KS conductance still indicates resonant transport.
Conclusions of our analysis are corroborated by DFT studies with numerically exact exchange-correlation
functionals reconstructed from calculations employing the density matrix renormalization group.
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I. INTRODUCTION

The ground-state density functional theory (DFT) owes
its success to the fact that it proves enormously useful
in the prediction of electronic properties of molecules,
solids, and surfaces.1,2 Therefore, applications toward the
electronic transport properties of single molecules and self-
assembled monolayers came together quite naturally with
the corresponding experimental successes in the field.3,4

Besides being useful for quantitative calculations, more
fundamental properties of DFTs and the corresponding exact
functionals have been an issue of intensive research. As an
example we mention the question of what exactly is the
nature of the approximations when using ground-state DFT
in combination with the Landauer formalism for transport
calculations.5,6

The Landauer approach, formulated in terms of nonequi-
librium Green’s functions7,8 and its validity for Kohn-Sham
(KS) particles, is also our topic in this work. It relates a
single-particle Hamiltonian H KS to the conductance via the
transmission function, G = T KS(εF)e2/h. The definition is

T KS(E) = Tr �KS
R (E)G(E)�KS

L (E)G†(E), (1)

where �KS
α = i(�α − �†

α), G = (E − H KS − �R − �L)−1

and the trace is over the Hilbert space associated with H KS.
The self-energies �α describe the coupling of the KS system to
external reservoirs, α = L,R. They are given by a golden rule
expression, �α(E) = |V |2gKS

α (E), where V is the coupling
matrix element and gKS

α is a Green’s function of the leads.9

Often quantum transport is dominated by a single orbital
of the molecule or the quantum dot (QD) only. Therefore, in
studies of correlated electron transport interacting level models
are standard, e.g., the single-impurity Anderson model [SIAM,
see also (4)]:

ĤQD = εdN̂d + U
(
n̂d↑ − 1

2

) (
n̂d↓ − 1

2

)
, (2)

where N̂d = n̂d,↑ + n̂d,↓ with n̂d,σ = d̂†
σ d̂σ and spin σ =↑ , ↓.

In such models an analog version of (1) is valid, featuring

retarded and advanced Green’s functions of the interacting
system (�α,σσ ′ = �αδσσ ′),

T (E) = �L�R
�L + �R

Ad(E), (3)

where we have introduced the spectral function of the
interacting QD, Ad(E) = iTrσ [Gr(E)−Ga(E)].10

By comparing Eqs. (3) and (1), one might suspect that
in order to accurately reproduce the true value for the
transmission, T (εF) = T KS(εF), it is necessary for the KS
theory to also reproduce the true spectral function Ad(E).
It is easy to see that the latter is not possible, however,
unless U = 0. To this end we recall that Ad(E) carries the
two Hubbard peaks at energies εd ± U/2.11 These peaks are
not seen by the KS system because the model (2) does
not exhibit magnetism, so both spin channels (↑ , ↓) are
equivalent. Therefore, H KS is diagonal, H KS

d = εKS
d δσσ ′ , and

the KS spectral function, AKS = iTrσ (G − G†), supports a
single peak centered at about εKS

d , only. Despite the absence
of the Hubbard peaks in AKS, we argue that in addition to the
ground-state density also the KS conductance coincides with
the true value of the interacting system, T (εF) = T KS(εF), at
least in the case of symmetric coupling, �L = �R.

Moreover, we maintain that this statement is correct, even
though H KS is not unique in the sense that the exchange-
correlation (XC) on-site potential, vKS

d = εKS
d − εd, can be

complemented by an XC contribution to the couplings, V →
V KS, as well. Different combinations (V KS,vKS

x ) produce an
effective single-particle Hamiltonian with the correct ground-
state density.12 In fact, as will be demonstrated below, the
on-site exchange-correlation potential and the coupling to
the leads can be drastically different. Correspondingly, the
resonance position εKS

d and broadenings �L,R that determine
AKS will be strongly XC-functional dependent. We will see
that despite this ambiguity in H KS, the KS conductance is an
observable that takes a unique value coinciding with the true
conductance.
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II. CONDUCTANCE FUNCTIONALS AND
GROUND-STATE DFT

We start with a general recollection regarding features
of ground-state DFT that follow directly from the first
Hohenberg-Kohn theorem.13 According to this theorem, we
can reconstruct the external potential vex(r) that an interacting
gas of N electrons is exposed to, if the ground-state density
n(r) together with the Hamiltonian Ĥ0 in the absence of any
vex(r) is known. Thus we reproduce the full Hamiltonian
Ĥ = Ĥ0 + V̂ex from our knowledge of n(r) (up to a constant
shift in energy).

Knowing Ĥ we can calculate, in principle, all equilibrium
response functions of the N -particle system, provided that the
ground state is unique, once n(r) has been specified. Hence,
we can consider such correlators to be a functional of the
ground-state density.

A correlation function of special interest to us is the current-
current correlation function. It determines the conductance
in transport experiments that operate with electrodes for
which the Fermi-liquid description holds true. Hence, in
such geometries also the conductance is a functional of the
ground-state density G[n]. Hence, this conductance can be
calculated using the ground-state DFT if the proper functional
G[n] is being used.

The previous statement is as correct as it is useless for
practical purposes unless a good approximation for G[n] can
be given. Of course, even if such an approximation would
be known, in practice calculations would still suffer from
inaccuracies in approximate XC functionals used to obtain
n(r).

A. Friedel’s sum rule for the SIAM

The complete definition of the SIAM Hamilonian reads14

Ĥ = ĤQD +
∑

α=L,R
Ĥα + ĤT, (4)

Ĥα = −t

M−1∑
x=1,σ

(ĉ†x+1,σ,αĉx,σ,α + H.c.), (5)

ĤT = −V
∑
σ,α

(ĉ†1,σ,αd̂σ + d̂†
σ ĉ1,σ,α). (6)

The ĉ
(†)
x,σ,α denote fermionic annihilation (creation) operators

at site x, lead α = R,L. The model is of interest to us because
it affords the Friedel sum rule,14,15 which relates the extra
scattering phase shift δ(εF) induced by decreasing εd (down
from ∞) to the extra spectral weight �A(E) thus generated:

δ(εF)

π
=

∫ εF

−∞
dE�Aσ (E) = �Nσ . (7)

The right-hand side denotes the total change in the particle
number per spin, �Nσ = ∑

x �Nxσ , associated with the
occupation of this extra weight. The scattering phase shift
in turn determines the conductance,

G[n] = 2e2

h

�L�R
(�/2)2

sin2 [δ(εF)] , (8)

where � = �L + �R. The identity constitutes an exact analyt-
ical expression for a conductance functional G[n]. While it has

not been considered as such, G[n] was frequently employed
before in treatments of correlated electron systems, e.g., see 14.

It is remarkable that in the case of symmetric coupling,
�L = �R, Eq. (8) relates the conductance associated with Ĥ

to single-system characteristics only, which is the number of
particles (per spin) displaced by the Anderson impurity �Nσ .
This implies that any change in the parameters of Ĥ leaves
the conductance invariant, provided that �Nσ is unchanged
and that the conditions of applicability of (8) are still valid.
One requirement for this is that both leads are (effectively)
noninteracting and free of backscattering, so that the Fermi-
liquid picture holds at zero temperature.16

B. Implications of Friedel’s sum rule for KS transport

We now investigate the specific consequences of (8) for KS
transport calculations of ground-state DFT. The importance
of Friedel’s sum rule for KS-based transport calculations
was discussed also in previous work.17,18 In contrast to these
papers, we present rigorous statements available for the model
system, SIAM, in the Kondo regime. Similar conclusions to
ours were concomitantly reached by the authors of Refs. 19
and 20, however see Ref. 21. In the following we have a
particular focus on the fate of the Abrikosov-Suhl resonance
in KS theory and how despite a completely unphysical KS
spectral function, KS transport can still be exact (at zero
temperature).

The KS Hamiltonian of ground-state DFT reads

Ĥ KS = εKS
d N̂d +

∑
α

[
Ĥα +

M∑
x=1,σ

vKS
x,αN̂x,α

]
+ ĤT, (9)

where the on-site XC potentials, εKS
d [N ] = εd + vKS

d [N ] and
vKS

x,α[N ], are functionals of the local particle density Nx .
One can use the associated KS orbitals to construct

scattering states and a KS Landauer conductance, Eq. (1).
The scattering phase δKS(εF) that appears in this construction
also obeys an equation analog to (7): δKS(εF)/π = �NKS

σ .
In particular, parametric details of the Hamiltonian, such as
V,U , etc., or the on-site potentials do not enter explicitly.
Since the displaced charge of the KS system that appears
here is by definition identical to the true displaced charge,
�Nσ = �NKS

σ , we conclude that the true quasiparticles and
the KS particles experience the same phase shift: δ(εF) =
δKS(εF) = �Nσ .

Functional (8) is valid at any value of the interaction
strength U and at temperatures below the Kondo scale,
TK = c

√
�U/2e−πU/8� , c ≈ 0.41 . . . near integer filling Nd =

nd↑ + nd↓ ≈ 1.14 In this context the Abrikosov-Suhl resonance
underlying the Kondo effect plays a crucial role. At temper-
atures above TK it is not developed and the conductance is
strongly suppressed due to the Coulomb blockade; relation (8)
is strongly violated. The XC functional of DFT must be very
sensitive to Kondo physics. This is obvious for the following
reason: we have seen that KS transport reproduces the exact
transmission. To reproduce the resonant transport (Kondo)
scenario in the regime Nd ≈ 1, the KS level of the quantum
dot must be half filled for each spin, implying |εF − εKS

d | � �

in the Kondo regime, even if the bare position of the level
−εd 	 �.
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III. EXACT GROUND-STATE DFT VIA THE DENSITY
MATRIX RENORMALIZATION GROUP METHOD

To illustrate and extend our analysis we have calculated the
ground-state density and corresponding exact XC potentials
employing the density matrix renormalization group (DMRG)
method22 and “backward” DFT. The approach has proven
useful before in the context of the interacting resonant level
model (IRLM) and resonant chains.23 We have adapted our
technology here to treat the SIAM.24

In our calculations we consider a coupling to a single lead
only in order to reduce the computational effort. As far as
the ground state is concerned, the case with two leads and
symmetric couplings, �L = �R, has an exact mapping into
the single-lead case, essentially because the odd combination
of tunneling operators, c

(†)
odd,1 = (c(†)

L,1 − c
(†)
R,1)/

√
2, decouples

from the QD.

A. Ground-state density

In Fig. 1 we display the evolution of the density in a
QD with εd slightly above εF. Without interactions, the QD
is empty. Upon increasing U , the dot fills because in the
spirit of a Jellium model we have defined the interaction
in (2) with respect to density fluctuations against a background
n

bg
dσ = 1/2. The density in the leads, x � 1, exhibits the typical

Friedel oscillations with their 2kF periodicity. Their amplitude
is controlled by the boundary condition which is set by the
QD. Since its occupation changes from Nd ≈ 0 to Nd ≈ 1, the
phase shift associated with backscattering increases by 2πnd,σ .
This is why at large U the Friedel oscillations are antiphase
with the case U = 0 (inset Fig. 1). We witness a signature of
Kondo physics (cf. Ref. 25).

B. KS potential

Figure 2 shows the KS potential on the QD, εKS
d , and in the

lead, vKS
x , corresponding to the evolution of the density (Fig. 1).

We thus provide a constructive proof of v representability:
An effective XC potential exists for the SIAM, such that the

FIG. 1. (Color online) Ground-state density per spin of a QD
(at x = 0) coupled to a noninteracting reservoir with M = 100 sites
for growing on-QD interaction U = 0.0,0.6,4.0. Parameters: εd =
0.2,V = 0.3, bandwidth of conduction electrons: 2t = 2.

FIG. 2. (Color online) XC correlation potential corresponding to
the evolution of the density shown in Fig. 1. The on-dot potential is
denoted vKS

0 = εKS
d .

associated effective single-particle (KS) problem exhibits a
density that coincides everywhere with the exact density of
the true many-body ground state. With respect to the Kondo
effect, we conclude that by construction, all of its signatures
that can be read off the ground-state density alone, like the size
of the Kondo cloud, will also be reflected by the KS system.

In the absence of an analytical expression for the exact XC
potential, our data in Fig. 2 can illustrate how vKS

x modulates
the noninteracting KS density into the proper “interacting”
shape. Moreover, the data may also serve as a reference for
benchmarking later approximative schemes for XC potentials.
On the dot vKS

x shows the expected behavior from εKS
d = εd

at U = 0 to εKS
d ≈ 0 at large interaction, here U = 4. In the

leads the potential oscillations follow the Friedel oscillations
of the density and introduce the interaction corrections. The
oscillation amplitude depends in a nonmonotonic way on U ,
increasing from the noninteracting fixpoint and decreasing
again when approaching the strong-coupling, Kondo fixpoint
(see inset).

In a KS theory based on a local KS potential, the hybridiza-
tion V coincides with the one from the original coupling
ĤT. This suggests that the on-dot spectral function AKS(E)
of the KS system has a width close to the noninteracting one,
� ≈ �KS. Figure 3 fully supports this point of view. In addition,
it also shows that indeed there is only a single maximum
(Hubbard peaks do not exist in KS theory) which will be
getting closer to εF with increasing interaction strength U .

C. KS transmission and spectral function

Figure 4 compares transmission curves obtained via the
Friedel sum rule26 with a Landauer-type expression (�L =
�R),

T (εF) = [�/2]2[
εKS

d (Vg,V KS) − εF
]2 + [�/2]2

, (10)

that is valid in the wide band limit. The good agreement
between the results obtained with both methods illustrates the
point emphasized above: Even though the KS spectral function

115409-3
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FIG. 3. (Color online) Local spectral function of the KS system,
AKS

d = 2πρimp, on the QD for interactions U = 0,2. Parameters: εd =
0.1, V = 0.15..., εF = 0.

is not physical, the associated Landauer transmission can be
exact.

We briefly mention that this point can be highlighted further
by constructing a version of KS theory in which not only
the diagonal elements of the density matrix, i.e., nxσ but
also off-diagonal elements are faithfully reproduced. This
can be achieved by adding to the on-site potential also a
modification of hopping matrix elements, i.e., V → V KS′

,
such that the expectation value of the kinetic energy of the
impurity coupled to the first lead site within the KS description
matches the one obtained from DMRG24; for the technical
details see Ref. 24. Responding to this change, the width of
the KS spectral function of the modified theory is no longer
close to the original one, �KS → �KS′

. Since the charge in
the QD must remain unchanged, we expect a compensating
shift in the on-site energy, εKS

d → εKS
d

′
. As can be seen

from Fig. 4, despite a substantial change, e.g., V = 0.3 is
replaced by V = 0.16 at U = 1.8, the transmission when
evaluated via (10) is not changed. In view of Eq. (10) this
finding is easily understood: T (εF) is determined by the same
ratio, �KS/(εKS

d − εF), that also fixes the density. Since by
construction in all KS models the density is the same, we

have �KS/(εKS
d − εF) = �KS′

/(εKS
d

′ − εF), so the transmission
remains the same, also.

IV. FURTHER REMARKS AND CONCLUSIONS

We briefly discuss three generalizations of the preceding
analysis. First, our analysis heavily relies on the Kondo effect
restoring full transmission in the case of single occupation of
the dot. Suppose that the Kondo temperature is very low and
that the measurement is done at slightly higher temperatures.
Then transport is dominated by the Coulomb blockade and the
conductance is strongly suppressed, T (εF) ∼ (�/U )2 ≪ 1.
On the other hand, the particle density is essentially still the
ground-state one n(r), i.e., it is largely insensitive to this change
and in particular, ndσ ≈ 1/2. We conclude that in this case
the Friedel sum rule (8) does not hold and that KS theory
(without breaking spin rotational invariance) does not reflect
this change, i.e., we still have T KS(εF) ≈ 1.

The preceding observation can be reformulated in more
general terms. The connection from the exact ground-state den-
sity to transport coefficients, that we rely upon, is mediated by
Friedel’s sum rule which is valid in the form we use it, Eq. (7),
only for systems near the Fermi-liquid (FL) ground state.
Therefore, we rely upon the FL ground-state property of the
Kondo effect. At temperatures T > TK the system is far away
from the FL fixed point and our arguments need to be modified.
The same is true also for multichannel Kondo systems.

Second, our paper and the claims therein focus on ground-
state properties only. We expect that the discussion can be
generalized to equilibrium situations at finite temperatures,
also, but for this situation one needs to introduce a notion
of thermal XC functionals.28 Also, for this situation a
conductance functional should exist that translates thermal
equilibrium densities into conductances at finite temperatures.
One would expect that such functionals correctly describe the
breakdown of the Kondo FL at temperatures exceeding the
Kondo scale.29

Third, the Friedel sum rule (7) is strictly valid for a single-
level system only, while a real QD, e.g., a molecule, generally
exhibits several levels. One expects that the main conclusion
remains correct as long as all levels contribute independently
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FIG. 4. (Color online) Comparison of conductances calculated via the Friedel sum rule (FSR) and directly from the Landauer formula for
KS particles (10). Two parameter combinations, V = 0.3,U = 1.8, 2.1 are shown. Inset: Detuned KS couplings V KS that together with the
belonging XC potential reproduce the evolution of the dot occupation and hence the conductance seen in main plot.
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to the transport current. In particular, the sum rule (8) should
remain a useful approximation for the true density functional.
Of course, transport is not always described by independent
quantum channels. A good testing ground for investigations of
the effect of channel cross talk is provided by two-level quan-
tum dots.16 They can exhibit phases different from the normal
FL, with the associated phase transitions. The related conduc-
tance functional does not vary smoothly with the density and

therefore the description along Eqs. (7) and (8) needs to be
modified. We leave this challenging issue for future research.
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