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Dangling bonds and magnetism of grain boundaries in graphene
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Grain boundaries with dangling bonds (DBGB) in graphene are studied by atomistic Monte Carlo and molecular
dynamics simulations in combination with density functional (SIESTA) calculations. The most stable configurations
are selected and their structure is analyzed in terms of grain boundary dislocations. It is shown that the grain
boundary dislocation with the core consisting of pentagon, octagon, and heptagon (5-8-7 defect) is a typical
structural element of DBGB with relatively low energies. The electron energy spectrum and magnetic properties
of the obtained DBGB are studied by density functional calculations. It is shown that the 5-8-7 defect is magnetic
and that its magnetic moment survives after hydrogenation. The effects of hydrogenation and of out-of-plane
deformations on the magnetic properties of DBGB are studied.
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I. INTRODUCTION

Most potential applications of graphene require to construct
macroscopically large samples that are bound to be polycrys-
talline. Several routes are currently actively pursued to obtain
large samples in an efficient way. Examples are evaporation
of surface layers of SiC,1,2 solution of graphite without
functionalization, in combination with sonication3–5 to obtain
graphene paper (laminate), and chemical vapor deposition on
metals.6,7 Studies of graphene grown by these methods confirm
the existence of grain boundaries (GB), as was observed
in graphene on SiC,8 Ir(111),9,10 polycrystalline Ni,11 and
Cu.12 Although the presence of GB may be detrimental for
electron mobility and mechanical strength, GB are potentially
interesting by themselves, e.g., by metallicity along the grain
as shown in Ref. 13. Several theoretical papers have considered
the structure14–17 and electronic18 properties of tilt GB in
graphene.

Grain boundaries were subject of intensive experimental
and theoretical study in the 1970s. At that time, the basic
principles of formation of GB structures were understood and
the special class of GB characterized by high symmetry was
identified by the coincidence-site-lattice (CSL) approach.19

These GB have optimal matching of the grains and, being en-
ergetically the most favorable, are dominant in well-annealed
polycrystalline samples. Most GB studied experimentally in
graphene can indeed be classified as low-energy structures
within the CSL theory.7,17 These GB consist of regularly
arranged dipoles of disclinations with rotation angles ±60◦
associated with five and sevenfold carbon rings.14 The distance
between disclination dipoles depends on the misalignment of
the grains. The high strength characteristics of these GB in
graphene15 confirms the strong bonding in the core of the 5-7
disclination dipoles.

In bulk materials, however, less favorable GB with extrinsic
structural defects, extra volume excess, and large elastic
strain also have been observed, depending on the treatment
of polycrystalline samples.20 Also for graphene, one may
expect this situation for samples obtained by coalescence of
independently growing nuclei as typical of chemical vapor
deposition. The properties of more general GB have been
considered in Ref. 21, and in Ref. 16 it was shown that, in

addition to 5-7 pairs, there are eightfold rings that dominate at
a tilt angle close to 15◦ as well as four- and ninefold rings with
less probability. In addition to having higher energy and excess
free volume, these GB may also present dangling bonds and
resemble structures found in amorphous graphene obtained by
electron bombardment.22

The possibility of dangling bonds makes these high-
energy GB particularly interesting since the dangling bonds
can carry magnetic moments and are potential sources of
magnetic ordering.23 The possibility that grain boundaries
can be a source of magnetism in graphitic materials was
suggested in Ref. 24 based on the following experimental
observations in highly oriented pyrolytic graphite (HOPG).
Scanning tunneling microscope (STM) studies of GB with
different periodicities found some peaks in the local density
of states attributed to dangling bonds. Depending on the
periodicity of the GB, these additional peaks in the density
of states were either situated at the Fermi energy or split,
which was interpreted as spin splitting. The room-temperature
ferromagnetism measured by magnetic force microscopy and
bulk magnetization measurements was tentatively attributed
to two-dimensional magnetic ordering at the grain bound-
aries. The observation of room-temperature ferromagnetism
was, however, not confirmed in other studies of HOPG.25

Recently, a systematic study of samples of HOPG of different
manufacturers26 has convincingly attributed the macroscopic
magnetic signal found in some of them to Fe-rich inclusions
buried in the bulk. Nevertheless, the local STM data of Ref. 24
could still be related to the existence of localized magnetic
moments and the possibility to achieve ferromagnetism in
sp electron materials remains very appealing27 and justifies
further research.

In this paper, we study systematically the structural,
electronic, and magnetic properties of GB with dangling bonds
(DBGB) in graphene by a hierarchical approach based on
classical atomistic simulations and ab initio calculations. As
a result of a massive search based on simulated annealing by
classical Monte Carlo simulations, we find that a particular
structure with five, eight, and seven rings (5-8-7) appears to be
kinetically stable up to high temperature and can be a common
structural element of generic GB in graphene. According to
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our DFT calculations the 5-8-7 defect contains one dangling
bond with an associated magnetic moment of �0.5–1.0 μB

with μB the Bohr magneton, that is only partially reduced by
hydrogenation. This means that, in contrast to the low-energy
GB, a generic GB in graphene and graphite can have unpaired
electrons and magnetic moments. Note that, according to
our calculations, the hydrogenation of DBGB turns out to
be energetically favorable; thus, the most probably realistic
DBGB in graphene should be passivated by hydrogen. At the
same time, all qualitative conclusions about the structure and
magnetism of GB do not depend on this assumption.

The paper is organized as follows. In Sec. II we present the
methods for atomistic simulations and ab initio calculations.
In Sec. III we describe the structure and energetics of DBGB
in graphene and in Sec. IV we discuss their electronic structure
and spin density. Finally, in Sec. V we give a summary and
conclusions.

II. METHOD

A systematic study of GB is computationally demanding
because it requires the examination of very large samples.
Therefore, we have done a first search for DBGB by means
of Monte Carlo simulations based on the classical long-
range carbon bond-order potential II (LCBOPII) interatomic
potential.28 After having identified the 5-8-7 structure as a
promising basic unit for DBGB, we have studied the electronic
and magnetic properties by means of spin-polarized density
functional theory (DFT) calculations as implemented in the
SIESTA code. The drawing of flat pictures was done using
the xyz2eps utility29 written in the PYTHON programming
language.30 The visualization of 3D structures together with
3D charge density was done using the VESTA visualization
program.31

A. Atomistic simulations with LCBOPII

The classical bond-order potential LCBOPII28 has been
shown to describe accurately the structure32,33 and elastic
properties34 of graphene as well as the phonons,35 the structure
of the edges,36 and bilayer graphene.37 The accuracy of this
potential for dealing with GB has been validated against DFT
calculations in Ref. 17. For the present study, this potential
has the important feature of being reactive, namely to allow
breaking and formation of bonds as would happen when grains
meet.

We have used Monte Carlo simulations in the NPT
ensemble, that is, we have kept temperature T and number of
particles N constant and allowed volume fluctuations to keep
the pressure P = 0. To find (meta-)stable structures we have
done a simulated annealing lowering the temperatures from
3300 K. The procedure to construct the samples is described
in Sec. II C.

B. DFT ab initio calculations with the SIESTA code

We have performed spin-polarized DFT38,39 calculations
by means of the package SIESTA, which implements DFT on a
localized basis set.40–42 We used generalized gradient approx-
imations with the Perdew-Burke-Ernzerhof parametrization
(GGA-PBE)43 and a standard built-in double-ζ polarized

(DZP)44 basis set to perform geometry relaxation of graphene
samples with GB. The DZP basis set represents core electrons
by norm-conserving Troullier-Martins pseudopotentials45 in
the Kleynman-Bylander nonlocal form.46 For a carbon atom
this basis set has 13 atomic orbitals: a double-ζ for 2s and
2p valence orbitals and a single-ζ set of five d orbitals. The
cutoff radii of the atomic orbitals were obtained from an
energy shift equal to 0.02 Ry, which gives a cut-off radius of
2.22 Å for s orbitals and 2.58 Å for p orbitals. The real-space
grid is equivalent to a plane-wave cutoff energy of 400 Ry,
yielding ≈0.08 Å resolution for the sampling of real space.
For nonperiodical directions, an extra space larger than 15 Å
was added to avoid spurious interactions. We used k-point
sampling of the Brillouin zone based on the Monkhorst-Pack
scheme47 where the number of k points was defined similarly
to the k-grid cut-off radii equal to 15 Å, which usually gives
4–20 k-points depending on the sample size. The geometries
were relaxed using the conjugate gradient method until all
interatomic forces were smaller than 0.04 eV/Å and the total
stress was less than 0.0005 eV/Å3. No geometrical constrains
were applied during relaxation.

C. GB structural model

It is common practice to generate GB by means of the
coincidence site lattice (CSL) and this theory has also been
used to study low-energy GB in graphene.17 The CSL theory,
however, includes only symmetric grain configurations and is
not suitable to deal with generic GB, like the DBGB we study
here. Therefore, we use a more general model, inspired by
the theory of nanotubes48 and similar to that used in Refs. 14
and 17 for symmetric GB.

A nanotube is uniquely defined by a pair of integers (m,n)
relating the chirality vector Ch to the basis vectors of the
hexagonal lattice (a1,a2) as

Ch = ma1 + na2, (1)

where

a1 = rcc(−
√

3/2,3/2) a2 = rcc(
√

3/2,3/2) (2)

and rcc = 1.42 Å is the interatomic distance in graphene giving
a0 = √

3rcc as lattice constant [see Fig. 1(a)]. For nanotubes,
the vector T orthogonal to Ch gives the nanotube axis and Ch

gives the direction of rolling. In terms of (m,n) the vector T is
given by

T = t1

k
a1 + t2

k
a2, (3)

where

t1 = −m − 2n t2 = 2m + n (4)

and k is the greatest common divisor of |t1| and |t2|.
Furthermore, we call RA and RB the positions of the two

atoms in the unit cell of the hexagonal lattice. The case

RA = rcc(0,1,0) RB = rcc(0,2,0) (5)

is illustrated in the unit cell shown in Fig. 1(b).
While for nanotubes the vectors Ch and T are used to define

a rectangle of given chirality to be rolled, for GB the chirality
vector Ch determines the direction of the grain boundary
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(a) (b)

FIG. 1. (Color online) Definition of chirality vector (a) and unit
cell (b). For clarity, the grain defined by vectors Ch and T is replicated
twice along the direction of Ch and T.

while the rectangular area is the graphene grain, as shown in
Fig. 1(a). In the CSL approach the second grain is symmetric
with respect to the GB direction given by Ch.

The length d(m,n) of Ch in our basis is

d(m,n) = rcc

√
3�, (6)

where

� = m2 + mn + n2. (7)

There may be different pairs (m,n) that give the same
value of �. For example � = 91 may be obtained by pairs
(1,9) and (5,6) so, for � = 91, Eq. (7) has the four solutions
(1,9); (9,1); (5,6); (6,5).

The couples (1,9); (9,1) and (5,6); (6,5) are symmetric
and are described by a single tilt angle in the CSL theory,
whereas, e.g., the pair (1,9); (5,6) is not symmetric and
requires definition of the two misorientation angles of the two
grains

cos φi = 2mi + ni

2
√

m2
i + mini + n2

i

i = 1,2. (8)

In this way, by selecting two grains with the same � we can
satisfy periodic boundary conditions also for nonsymmetric
grains selecting different chirality vectors Ch1 and Ch2 together
with the orthogonal vectors T1 and T2. This procedure allows
to cut two rectangular grains with the same periodicity d that,
after proper reorientation, can be joined together to form the
GB, labeled now by two pairs of indexes (m1,n1) and (m2,n2).
In case of symmetric grains, i.e., n1 = n2 and m1 = m2, we
can define θ = φ1 + φ2.

Since the two grains are rectangular, the final structure
forms a rectangular unit cell that contains two grains with two
GB. This construction gives us a starting point for the search
of metastable nonsymmetric GB that we describe in the next
section.

D. Search of (meta-)stable DBGB

Once the procedure for building GB considers also asym-
metric grains, most situations will yield structures with large
strain and atoms that are too close to each other, from 1.5 Å
to 0.1 Å or even less. We have used two parameters to help
the search for favorable structures. First, we introduce the

parameter rmin which controls the minimal distance between
atoms. If two atoms are closer than rmin, then this pair is
replaced by a single atom with average coordinates. The
parameter rmin influences the density of atoms along the grain
boundary. We have searched with different values, namely
rmin = 0.1,0.4,1.2 Å. This procedure is physically justified
because, in the situation of crystal growth at high temperatures,
carbon atoms would be redistributed in such a way as to avoid
too-close overlap of the atomic cores. The other free parameter
in our scheme is the shift rsh of the sublattice vectors RA and
RB ,

RA = rsh + rcc(0,0,0) RB = rsh + rcc(0,1,0). (9)

We use two values,

r1
sh = rcc(0,0,0) r2

sh = rcc(0,1,0), (10)

where r1
sh puts the origin of the cell on one atom and r2

sh gives
the RA and RB shown in Fig. 1.

We use the freedom given by the procedure described above
to construct thousands of initial configurations with GB. For
each configuration, we optimize the structure by annealing
the sample from 3300 K by Monte Carlo simulations in the
NPT ensemble with the LCBOPII interatomic potential. After
a large number of Monte Carlo moves, we find structures that
no longer evolve and can be considered as metastable. Among
all these configurations we search automatically the ones with
twofold coordinated carbon atoms.

Among these possibilities, the structure with 5-8-7 rings
(see Fig. 3) is the simplest and most common. Therefore, we
have concentrated on this structure as prototype of DBGB.
For simplicity, we have then constructed samples with 5-8-7

FIG. 2. (Color online) Time dependence of temperature T , total
energy ET , and pressure (total stress) P during 1000 steps of MD
annealing for a sample with GB with two 5-8-7 defects and 150 atoms.
The mean values are M(T ) = 3299.39 K, M(ET ) = −23 266.89 eV,
M(P ) = −0.056 GPa with standard deviation σ (T ) = 187.64 K,
σ (ET ) = 4.80 eV, σ (P ) = 0.327 GPa and correlation ρ(T ,ET ) =
0.039, ρ(P,ET ) = −0.247, ρ(T ,P ) = 0.177.
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DBGB and different periods with symmetric grains defined by
(m,n) and θ . Further relaxation of the selected structure with
SIESTA affects the structure of graphene GB only marginally,
which confirms the accuracy of our atomistic energy minimiza-
tion. Last, we calculate electronic and magnetic properties with
SIESTA.

We have checked the stability of the 5-8-7 DBGB also by
performing constant-temperature molecular dynamics (MD)
with Nose thermostat using the DFT package SIESTA at 3300 K
with a time step of 1 fs. The time dependence of temperature,
energy, and pressure are shown in Fig. 2. After 1000 MD steps
the structure of the 5-8-7 defect keeps its original geometry.
During the dynamics, however, we observe an exchange of
a six-ring with a seven-ring that causes a mirror reflection
of the 5-8-7 point defect with respect to the GB line. This
transformation, which retains the original structure of the
twofold coordinated atom, is shown in Fig. 5(d).

III. STRUCTURE AND ENERGETICS OF DBGB
IN GRAPHENE

A more general way of describing GB is to present them
as arrays of dislocations.49 Low-energy symmetric GB are
nothing but arrays of 5-7 (glide) dislocations. The DBGB that
we select in our search for metastable structures contain more
complicated structural elements characterized by the presence
of eight-, nine-, and fourfold rings. These rings appear also

in simulations of disordered graphene16 and graphene at high
temperatures50 and were experimentally observed in electron-
bombarded graphene.22

In Ref. 51 another type of dislocation, the shuffle dislocation
shown in Fig. 4, with one eightfold ring with one dangling
bond, has been proposed as a potential carrier of a magnetic
moment. In our search for metastable structures with dangling
bonds, we have found eightfold rings only in combination
with other nonhexagonal rings. If we construct an eight-ring
shuffle dislocation we find that above 2400 K it transforms to
a 5-8-7 configuration (these two dislocation configurations are
characterized by the same Burgers vector, as will be discussed
in detail below). By looking at Figs. 3 and 4 one can see that
the shuffle GB (i.e., the wall of shuffle dislocations) has the
largest out-of-plane distortion, which increases the strain in
the structure17 and might explain its instability.

In our Monte Carlo simulations at 3300 K, we find
most frequently the sequence 5-8-7, which has one twofold
coordinated carbon atom. This atom has one unpaired electron
and, as a result, is the source of magnetic moment. We call this
atom, therefore, a magnetic atom. If we remove the magnetic
atom and apply further relaxation, we find the nonmagnetic
5-7 defect. In Fig. 5 we show how the 5-8-7 is related to
the 5-7 defect and how it can be constructed by either adding
[Fig. 5(b)] or removing [Fig. 5(a)] an atom from it. The similar
construction of a shuffle defect is shown in Fig. 5(c). This
procedure is technically reversible so a 5-7 can be obtained by

FIG. 3. (Color online) Side and top view of (from top to bottom) 5-7, 5-8-7, H+5-8-7 GB for two values of the period d , (left) d = 6.5 Å
and (right) d = 10.7 Å. The unit cell is replicated twice in the GB direction. For clarity, seven-rings are green (light gray), five-rings are pink
(gray), and eight-rings are blue (black).
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FIG. 4. (Color online) Side and top view of shuffle (left) and
5-5-9-7 GB. The unit cell is replicated twice in the GB direction. For
clarity, in the shuffle GB we color also the six-ring.

removing the magnetic atom and letting the structure rebound
and relax.

One could expect the 5-8-7 DBGB to have the same Burgers
vector of the glide and shuffle dislocation. In fact, if we
consider the dislocation as a disclination dipole49 the Burgers
vector b is the product of the Frank vector of the disclination
times the dipole arm. If we double the distance between
the five- and sevenfold rings that constitute the disclination,
we could expect a twice larger Burgers vector b → 2b. The
eightfold ring between the five- and sevenfold rings can be
considered as a shuffle dislocations with Burgers vector −b so
the resulting Burgers vector is 2b − b = b.

This analysis is supported by the data shown in Table I
where we compare GB made of arrays of the 5-7 and 5-8-7
disclination dipoles shown in Fig. 3. The Burgers vector was
calculated using the Frank equation49

b = 2d sin θ/2, (11)

where d is the periodicity of the array and θ is the misorien-
tation angle. One can, indeed, see that the Burgers vector of
the 5-7 and 5-8-7 are almost the same. We also compare the
formation energy of defects EF calculated as

EF =
(

EDefect
Total − E

Graphene
Total

NDefect
atoms

N
Graphene
atoms

) /
NDefects (12)

(a) (c)

(b) (d)

FIG. 5. (Color online) The 5-7 and 5-8-7 defects are related
geometrically. There are two ways to construct a 5-8-7 defect from
5-7: remove an atom from pentagon (a) and insert an adatom to the
bond belonging to heptagon (b). In the same way, we can construct a
shuffle dislocation from 5-7 (c). In panel (d) we show the mirror
transformation of the 5-8-7 observed in the MD simulations at
T = 3300 K described in Sec. II D.

TABLE I. Summary of the studied defects with GB period
d , Burgers vector b, GB formation energy EF , and hydrogen
adsorption energy (with respect to the hydrogen atom) Eads. The tilt
angle together with Burgers vector were calculated for z-projected
geometries, i.e., completely flat samples with z = 0. The binding
energy of the hydrogen molecule in the used model is EH2 = 4.53 eV.

GB period Tilt angle Burgers vector EF

GB d (Å) θ◦ b (Å) (eV/defect)

5-7 6.52 20.8 2.360 2.31
5-8-7 6.54 21.7 2.467 6.83
H+5-8-7 6.53 21.7 2.461 Eads = 4.78

5-7 10.69 13.7 2.544 3.87
5-8-7 10.76 12.7 2.378 8.01
H+5-8-7 10.76 12.5 2.350 Eads = 4.60
Shuffle 10.66 13.2 2.451 8.16

5-5-9-7 13.59 17.7 4.185 8.63

for different types of GB. The formation energy of the 5-8-7
GB is approximately twice the one of the 5-7 for the same
periodicity, which is not surprising since the dangling bond
costs some additional energy. The larger formation energy
for the larger periodicity is consistent with the finding17

that dislocation cores attract each other, contrary to three-
dimensional materials.

The presence of the dangling bond makes bonding to other
species possible. We also have, therefore, studied the 5-8-7
when the magnetic atom is bound to a hydrogen atom, a
structure we call H+5-8-7, or to an oxygen atom or OH group,
which we call O+5-8-7 and OH+5-8-7, respectively. The top
and side views of H+5-8-7 shown in Fig. 3 do not differ
much from those of the 5-8-7. Only the local structure of the
magnetic atom is somewhat changed. In particular, the bonds
to its two carbon neighbors go from ∼1.37 Å in 5-8-7 to
∼1.41 Å in H+5-8-7, a value closer to the bulk value 1.42 Å.
The angle between these two bonds is also changed. The rest
of the structure remains basically the same as shown in Fig. 6
also for the case of oxygen and OH.

It is remarkable that the adsorption energy of the H+5-8-7
is just a bit higher than the H2 binding energy calculated within
the same method. This means that, within our computational
scheme, the hydrogenation of DBGB is energetically favor-
able. At the same time, the difference is small and one should
take into account that the density functional within GGA
underestimates strongly the binding energy of H2 molecule.
Fortunately, the issue of the hydrogenation does not affect
qualitatively our conclusions about the structure (as it is
shown here) and magnetism (as will be shown below) of
DBGB.

Since the 5-8-7 DBGB has minimal Burgers vector and low
strain in view of its flatness it is natural to assume that it has
the lowest energy among DBGB and, therefore, represents the
most natural candidate as source of magnetism in GB. That
is why we will focus on this structural element in the rest of
our paper. Of course, more complicated DBGB exist and, as
an example, we show in Fig. 4 the structure of a GB with
θ = 17.7◦ formed by a periodic array of a 5-5-9-7 structural
element. As reported in Table I, this GB has formation energy
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FIG. 6. (Color online) Bond lengths and C-C-C angle of magnetic
atom for (from top to bottom) 5-8-7, H+5-8-7, O+5-8-7, OH+5-8-7
DBGB.

just slightly higher than the 5-8-7 and an almost double
Burgers vector. The latter statement is justified by taking into
account the change of type of GB from zigzag to armchair.14

In the following section, we examine in detail the 5-8-7 in
comparison to the 5-7.

IV. ELECTRONIC STRUCTURE AND SPIN DENSITY
OF DBGB IN GRAPHENE

We have calculated the spin-polarized density of states
(DOS) of selected DBGB by means of SIESTA. We project
the states onto the orbitals representing the px , py , and
pz. In Appendix we validate our approach against previous
results for the H-saturated zigzag graphene edges52,53 while
comparing them to nonsaturated edges. In Fig. 7 we present the
spin-polarized DOS for ferromagnetically oriented magnetic
moments associated to the dangling bond of a 5-8-7 and
H+5-8-7 with period d = 6.5 Å. We see that DOS is mostly

FIG. 7. (Color online) px , py , and pz components of total DOS
for 5-8-7 and H+5-8-7 DBGB with misorientation angle θ = 21.7◦.
Red solid and dashed green curves are for spin up and spin down,
respectively.

pz and essentially differs for spin up and spin down. For the
H+5-8-7 there is even an almost half-metallic situation with
the Fermi energy lying just below the gap for majority spin
electron states. Below the Fermi energy but relatively far from
it, there is also a smaller gap for minority electron states.
The tiny px , py components are related to the distortion
from a planar sp2 bond. In Table II we report the magnetic
moments per magnetic atom. They are, in general, not
integers. Importantly, hydrogen adsorption does not destroy
the magnetic moment. This is because the magnetic atom is
not like a usual dangling bond that can be fully saturated by
hydrogen. A carbon atom participates with three electrons to
in-plane bonding and with the fourth to the pz band. Therefore,

TABLE II. Magnetic moment contribution in μB from magnetic
atom which carries dangling bond (DB atom) for the studied samples
with two GB and one magnetic defect per GB.

From Number From From
DB of DB non-DB whole

System atom atoms atoms system

H+5-8-7 d = 6.5 (Å) 0.530 2 0.956 2.001
5-8-7 d = 6.5 (Å) 0.933 2 0.843 2.708
H+5-8-7 flat d = 6.5 (Å) 0.496 2 1.019 1.997
5-8-7 flat d = 6.5 (Å) 0.921 2 0.850 2.692

OH+5-8-7 d = 10.7 (Å) 0.291 2 0.468 1.068
H+5-8-7 d = 10.7 (Å) 0.542 2 0.895 1.963
5-8-7 d = 10.7 (Å) 0.455 2 −0.742 0.169
H+5-8-7 flat d = 10.7 (Å) 0.455 2 1.037 1.933
5-8-7 flat d = 10.7 (Å) 0.987 2 0.990 2.964

Shuffle d = 10.7 (Å) 0.424 2 −0.011 0.837
5-5-9-7 d = 13.6 (Å) 0.889 2 −0.333 1.445
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FIG. 8. (Color online) The effect of corrugation on the DOS (see
the text) is seen by comparing the minimal energy 5-8-7 DBGB with
the flat one. Red solid and dashed green curves are for spin up and
spin down, respectively.

the twofold coordination in the plane provides a dangling bond
that adds to and distorts the pz orbital. The OH group reduces
further the magnetic moment, whereas oxygen destroys it
completely.

Last, we have found that the out-of-plane corrugation
affects the magnetic moment of the 5-8-7 while it is not
important for the H+5-8-7. In principle, this effect can be used
to control magnetic moments through strain and, therefore, it
deserves a more detailed discussion. To this aim, in Fig. 8
we compare the DOS of the 5-8-7 with the one obtained for
the same structure without allowing out-of-plane distortions,
namely for a flat 5-8-7. Since the out-of-plane corrugation
is larger for d = 10.7 Å (see Fig. 3), we have chosen this
case to illustrate this effect. One can see that the DOS
essentially differs for the cases with and without out-of-plane
deformations. The different DOS are also reflected in the
almost double value of the magnetic moments of the flat 5-8-7
as reported in Table II. Conversely, the magnetic moments of
relaxed and flat H+5-8-7 are comparable.

To understand the origin of this effect we have studied
the spin density in the system. In Figs. 9 and 10 we use two
representations of the spin density. The one to the right is the
most common representation of isosurfaces of the spin density.
The representation to the left gives the amount of spin per atom
obtained from Mullikan population analysis represented as a
sphere of radius proportional to the logarithm of the spin. This
representation makes it possible to visualize also the small
spin-density components. In this way one can see that the up
and down components away from the defect seem to be located
on the A and B sublattices of graphene. This alternation is
broken by the defect in a way that depends on the out-of-plane

FIG. 9. (Color online) Right panels: isosurface plot of the spin
density for the 5-8-7 DBGB with θ = 12.7◦. Left panels: symbolic
representation of the spins per atom (see text). Pink (gray) and blue
(dark gray) represent spin up and spin down, respectively. In the left
panels the magnetic atoms are light pink (light gray). From top to
bottom: flat configuration; minimum energy configuration without
hydrogen; minimum energy configuration with hydrogen.

distortions. In fact, in the flat 5-8-7, the magnetic atom (light
gray) with spin up has the two nearest neighbors of spin down,
whereas, in the relaxed 5-8-7, the nearest neighbors have the
same spin up of the magnetic atom.
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FIG. 10. (Color online) Right panel: isosurface plot of the spin
density for the OH+5-8-7 DBGB with θ = 12.7◦. Left panel:
symbolic representation of the spins per atom (see text). Pink (gray)
and blue (dark gray) represent spin up and spin down, respectively.
In the left panels the magnetic atoms are light pink (light gray).

The H+5-8-7 is not sensitive to the corrugation and the spin
distribution for the flat case is very similar to the one shown
for the relaxed H+587 in Fig. 9.

V. CONCLUSIONS

Grain boundaries seem to be unavoidable structural ele-
ments of large-enough graphene samples, irrespective of their
preparation. By analogy with conventional three-dimensional
material science, one may expect that they will affect strongly
both the mechanical and electronic properties of graphene.
From a theoretical point of view, GB are very complicated
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g
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FIG. 11. (Color online) Zigzag, single hydrogenated zigzag,
double hydrogenated zigzag, and model zigzag graphene edge with
carbon. For each case the magnetic moment decomposition over
atomic orbitals for carbon atoms only is shown according to Mulliken
atomic orbital population analysis. The square of each circle is
proportional to the value of magnetic moment contribution. Pink
(light gray) and blue (dark gray) are positive and negative values of
spin, respectively.

objects due to the multiscale character of the problem. Both
long-range deformations extending over tens of thousands
of atoms and specific atomistic and electronic structure of
the cores are essential. Therefore, usually people study only
special GB, mostly those which can be constructed by the
CSL approach.14,17 These GB are, indeed, usually the most
energetically favorable. At the same time, e.g., for CVD
growth of graphene on metals,6,7 one could expect that various
crystallites grow independently from many centers and more
complicated GB will be formed. To attack this problem
we have combined large-scale atomistic simulations using
the LCBOBII potential28 with ab initio calculations. We have
studied in detail GB containing the 5-8-7 defect, which is the
carrier of the magnetic moment. Based on the results presented
here one can conclude that a generic GB should contain
magnetic moments that are robust enough, in particular, with
respect to hydrogenation. Since GB in graphene are one-
dimensional objects, they cannot lead to magnetic ordering
at any finite temperature. We have shown, however, that the
very existence of magnetic moments at the GB dangling bonds
modifies the local electronic structure around the Fermi energy
that can be probed by STM.
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APPENDIX: VALIDATION TEST FOR MAGNETISM
OF ZIGZAG GRAPHENE EDGE WITH
AND WITHOUT HYDROGENATION

To check our computational scheme we have carried out
electronic structure calculations for two cases where graphene
is supposed to be magnetic, namely zigzag edges52,53 with
and without passivation by single- and double hydrogen and
carbon-terminated zigzag edge (see Fig. 11). The results are
shown in Table III. One can see that in all cases we have
excellent agreement with previous results. Furthermore, we
present, in Table IV, more detailed information about the
orbital contributions to the magnetic moments.

TABLE III. Magnetic moment contribution in μB from A and B
sublattices for four studied cases.

System mA mB mA + mB with H mA + mB

zz 1.464 −0.154 1.310 – 1.29 from53

H+zz 0.453 −0.134 0.330 0.310 0.30 from52

2H+zz −0.233 0.738 0.505 0.625 –
C+zz −0.080 0.390 0.310 – –
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TABLE IV. Detailed information about distribution of magnetic moment over orbitals for onefold (1nn), twofold (2nn), threefold (3nn)
coordinated edge carbon atoms in the four different systems shown in Fig. 11, i.e., zz for zigzag, H+zz for single hydrogenated zigzag, 2H+zz
for double hydrogenated zigzag, and C+zz for model zigzag graphene edge with carbon atom at the edge

C atom 2s 2px 2py 2pz all-d sum

zz 2nn 0.176 0.026 0.691 0.320 −0.009 1.206
zz 3nn 0.002 −0.010 −0.012 −0.112 0.075 −0.060

H+zz 2nn 0.001 0.007 0.010 0.266 −0.002 0.290
H+zz 3nn 0.002 −0.008 −0.006 −0.071 0.025 −0.057

2H+zz 2nn −0.004 −0.013 −0.015 −0.019 0.036 −0.017
2H+zz 3nn 0.012 0.008 0.010 0.345 0.000 0.375

C+zz 1nn 0.010 0.011 0.009 0.226 0.002 0.256
C+zz 2nn 0.004 −0.004 −0.007 −0.048 0.018 −0.038
C+zz 3nn 0.002 0.002 0.000 0.074 −0.003 0.075
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16S. Malola, H. Häkkinen, and P. Koskinen, Phys. Rev. B 81, 165447

(2010).
17J. M. Carlsson, L. M. Ghiringhelli, and A. Fasolino, Phys. Rev. B

84, 165423 (2011).
18O. V. Yazyev and S. G. Louie, Nat. Mater. 9, 806 (2010).
19M. L. Kronberg and F. H. Wilson, J. Met. 185, 501 (1949).
20R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, Prog. Mater.

Sci. 45, 103 (2000).
21A. Mesaros, S. Papanikolaou, C. F. J. Flipse, D. Sadri, and J. Zaanen,

Phys. Rev. B 82, 205119 (2010).
22J. Kotakoski, A. V. Krasheninnikov, U. Kaiser, and J. C. Meyer,

Phys. Rev. Lett. 106, 105505 (2011).
23O. V. Yazyev, Rep. Prog. Phys. 73, 056501 (2010).
24J. Cervenka, M. I. Katsnelson, and C. F. J. Flipse, Nat. Phys. 5, 840

(2009).
25D. Martı́nez-Martı́n, M. Jaafar, R. Pérez, J. Gómez-Herrero, and
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