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bosonization analysis
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We study the one-dimensional two-orbital Hubbard model with general local interactions including a pair-
hopping term. The model might be realized in one-dimensional transition-metal nanowires. Phase diagrams at
T = 0 are obtained by numerical integration of renormalization group equations and bosonization. Particular
attention is paid to the effects of orbital degeneracy (or near degeneracy), interactions favoring locally high-spin
configurations, and velocity differences. Dynamical symmetry enlargement and duality approaches are employed
to determine ground states and to understand quantum phase transitions between them. An important result is
that the pair-hopping term and associated orbital symmetry can lead to new insulating states. The ground state
for the spin-polarized case is also discussed.
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I. INTRODUCTION

Theoretical models involving two orbitals per unit cell
in one dimension have been employed to understand
various strongly correlated systems, e.g., heavy-fermion
compounds,1–3 high-Tc superconductors,4–12 spin ladders,13,14

and Hubbard ladders.15–17 These models are often referred to
as “ladder models” because one may visualize the two states
as opposite sides of a rung. Recent experiments demonstrate
the formation of self-assembled transition-metal nanowires,
adding another possible realization of ladder models.18,19 In
such systems, one-dimensional (1D) nanowires composed of
transition-metal atoms are confined at step edges on a substrate
surface. In many physically relevant cases, the surface band-
gap structure of the substrate material is such that the electronic
states of the adatoms are decoupled from the bulk substrate
bands (at least to leading order and for low energies), and the
d-orbital bands derived from the transition-metal nanowire
form a multicomponent one-dimensional Fermi gas with a
variety of interactions. Classifying the kinds of behavior that
may be observed in these systems is an important open
question. In this paper, we will focus on the case where only
two bands cross the Fermi energy. This situation is equivalent
to two-leg ladder models, which have been previously studied.

Past studies revealed that two-leg ladder systems may
exhibit dynamical symmetry enlargement10,20,21 (DSE) and
dualities among ground states.22–24 DSE occurs when a
renormalization group (RG) flow leads to an effective low-
energy fixed point, which exhibits a higher symmetry than that
of the original lattice Hamiltonian. In two-leg ladder models,
the emergent symmetry is known to be O(6)×U(1) when the
system is away from half-filling, and O(8) at half-filling. The
different ground states of these low-energy theories are related
to each other by duality mappings, which are generalizations
of the Kramers-Wannier duality seen in the two-dimensional
Ising model.25

We expect that many qualitative aspects of two-leg ladder
models, including DSE and duality properties, hold also in our
models of transition-metal nanowires. However, new features
of transition-metal wires require additional investigation. The
orbital degeneracy of the transition-metal d levels permits
a rich set of onsite Coulomb interactions. In particular, the

Hund coupling favors locally high-spin configurations, and
we speculate that the ground states may exhibit nonzero spin
structure. Furthermore, the pair-hopping term, which has been
neglected in some previous studies, is found to be important;
it implies the system has a unique orbital symmetry. We
generically expect that orbital symmetry breaking at the level
of the one-body terms leads to velocity differences between
different orbitals. A large velocity difference complicates the
application of established methods such as refermionization26

to our model. Strong correlation may also lead to spin-
polarized states or to ferromagnetism observed, for example, in
Co nanowires.27 Finally, the possible realization of an orbital
selective Mott phase28 in one dimension is an open issue.

In order to understand the effect of these features of
transition-metal nanowires, we study the one-dimensional
two-orbital Hubbard model using perturbative renormalization
group and bosonization approaches. We combine the ideas
of DSE and duality to list the possible ground states of
our models. We find that the form of interaction relevant to
transition-metal d levels leads to a new group of eight insulat-
ing phases when the two orbitals are completely degenerate.
We then obtain ground-state phase diagrams using RG and
bosonization. In physically relevant parameter regimes, the
stability of the ground states to velocity differences is also
investigated. To be complete, the fully spin-polarized case,
where the model is reduced to a Hubbard model with or without
magnetic field, is also briefly analyzed.

The methods we employ in this paper are strictly applicable
when the system is truly one dimensional and the interaction is
weak. Our results are complementary to those we previously
obtained for the same model using mean-field approaches.29

The present results allow more complete understanding of the
weak-coupling regime, but the mean-field theory can treat the
intermediate and strong-coupling regimes.

The organization of this paper is as follows. In Sec. II, we
explain the model and approximation we employed. In Sec. III,
we derive bosonized forms of the model. Section IV is devoted
to explanation of various possible order parameters. In Sec. V,
we use the idea of dynamical symmetry enlargement and dual-
ity to understand the relations among ground states. Quantum
phase transitions among these ground states are explained. In
Sec. VI, RG equations and obtained phase diagrams are shown.
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The fully spin-polarized case is briefly discussed in Sec. VII.
Finally, Sec. VIII is a conclusion and summary.

II. MODEL

We start from a multiorbital Hubbard model representing
the transition-metal d orbitals with local onsite Coulomb
interactions

H =
∑
〈i,j〉

∑
m,s

−tmm′
ij (c†imscjm′s + H.c.) + Hint. (1)

Here, c(†)
ims is the annihilation (creation) operator for a d electron

in orbital m with spin s at site i. tmm′
ij is the hopping from orbital

m on site i to orbital m′ on site j . The interaction terms Hint will
be shown in the following. We believe this model encapsulates
the physics of transition-metal nanowires. Through the paper,
we set the lattice constant to unity. A symmetry-breaking field
occurs due to the one-dimensional geometry, and the presence
of the substrate may further lift the degeneracy of orbitals
as well as providing an arbitrary ionization level. Thus, in a
general case, one may have many d-derived bands with an
arbitrary Fermi energy.

For the sake of simplicity, we will consider here only the
cases where two orbitals, A and B, are present at the Fermi
level. The rotational symmetry in Hint as we will see always
allows us to diagonalize the hopping matrix, so we will ignore
off-diagonal terms in the hopping. The band structure is then
characterized by four Fermi points: two Fermi momenta kA

and kB , and two chiralities r = R,L, representing electrons
around the positive (R) and negative (L) Fermi momentum.
The total particle number is n = 2(kA + kB)/π . In principle,
there are five possible cases, which are summarized in Table I.
In cases (a) and (b), the two Fermi momenta are equal, and the
filling is commensurate and incommensurate, respectively. In
cases (c) and (d), the two Fermi momenta are different, while
(c) is at half-filling and (d) is away from half-filling. Finally,
in case (e), one band is commensurate and the other is not,
allowing an orbital selective Mott state.

For the two-orbital system, the interaction terms have the
following form:

Hint = U
∑
i,m

nim↑nim↓ + U ′ ∑
i,s

niAsniBs

+ (U ′ − J )
∑
i,s

niAsniBs − J
∑
i,s,

c
†
iAsciAsc

†
iBsciBs

+ J ′ ∑
i,m

c
†
im↑c

†
im↓cim↓cim↑, (2)

where nims = c
†
imscims is the electron density. s = −s, and

m means B(A) if m = A(B). Since the substrate will screen
the long-ranged Coulomb interaction, we include only onsite
Coulomb interactions. U and U ′ indicate onsite Coulomb
repulsion between two electrons in the same band or different
bands, and J represents the Hund coupling favoring high-spin
states. J ′ is the so-called pair-hopping term. For a transition-
metal ion in free space, all of these parameters are positive.
Now, we assume the following relationship among them,
which is usually preserved among d orbitals:

J ′ = J, (3)

U ′ = U − 2J. (4)

To make the symmetry of the interaction terms explicit, we
introduce the following charge, spin, and orbital (pseudospin)
operators:

ni =
∑
ms

nims, (5)

Si = 1

2

∑
mss ′

c
†
imsσss ′cims ′ , (6)

Ti = 1

2

∑
mm′s

c
†
imsτmm′cim′s , (7)

where σ and τ are Pauli matrices. Then, the interactions in
terms of U and J are given by

Hint =
∑

i

(
U

2
n2

i + JS2
i + 3JT2

i − 2J
(
T

y

i

)2 − U + 5J

2
ni

)
.

(8)

Since U ′ > 0, the physically relevant range of J is limited to
0 < J < U/2.

Now, we discuss the symmetry of our Hamiltonian at
the bare level. When J = 0, the interaction term possesses
U(1)c × SU(4)s,o × Z2; the indices “c,” “s,” and “o” denote
the charge, spin, and orbital parts, and the Z2 symmetry refers
to the interchange of orbitals. When J �= 0, the symmetry of
the spin-orbital part is broken to SU(2)s × U(1)o. We would
like to emphasize that in our convention, the U(1) axis is the
orbital y axis, whereas it is the orbital z axis in the convention
of Refs. 24 and 30. Only if vA = vB and kA = kB , as in cases
(a) and (b), does the total Hamiltonian have the same symmetry
as the interaction. Otherwise, including cases (c)–(e), the total
symmetry is reduced to U(1)c × SU(2)s at the bare level due
to the lower symmetry of the kinetic term. However, it is
known that low-energy theories in weak coupling still have an

TABLE I. Possible band structures in the two-orbital Hubbard model, and its symmetries when vA = vB . U(1)r represents a gauge
transformation of particles with chirality r .

Case Fermi momentum n Symmetries

(a) kA = kB =2 U(1)c × SU(2)s × U(1)o × Z2

(b) kA = kB �=2 U(1)R × U(1)L × SU(2)s × U(1)o × Z2

(c) kA �= kB =2 U(1)c × SU(2)s × Ũ(1)o
(d) kA �= kB �=2 U(1)R × U(1)L × SU(2)s × Ũ(1)o
(e) kA �= kB = π/2 �=2 U(1)c × SU(2)s × Ũ(1)o
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FIG. 1. Various scattering processes and “g-ology.”

effective Ũ(1)o symmetry10,21,23,24 at least if vA = vB . We will
see this in detail later.

III. BOSONIZATION

In 1D systems, it is known that bosonization enables us
to describe the low-energy physics in a simple manner. In this
section, we present an Abelian-bosonization analysis, which is
useful for the cases when difference in velocities is negligible.
Appendix B outlines the more complicated formalism needed
for unequal velocities.

To classify the various scattering processes, we follow
the notation of Ref. 12. “1–4” corresponds to conventional
“g-ology” indices for left- and right-moving fields, and “a–d”
are similar but label orbital indices. Some examples are given
in Fig. 1. The SU(2)s symmetry constrains coupling constants
as

gm
1d − gm

2d = 0, g⊥
2b − g

‖
2b − g1a = 0, g1c − g2c + g‖c = 0.

(9)

For the rest of the paper, we will omit ⊥ when it is not
confusing.

When two Fermi points coincide, we have additional
processes g‖a , g1b, and g2a , which are connected by the SU(2)s
symmetry as

g‖a − g1b + g2a = 0. (10)

kA = kB means that we have the U(1)o symmetry, and this
implies

gA
1(2)d − gB

1(2)d = 0, − gm
2d + g⊥

2b + g2c + g2a = 0,
(11)

−gm
1d + g1b + g1c + g1a = 0, g

‖
2b + g‖c − g‖a = 0.

As umklapp processes, we have g‖b and g3i (i = a–d).
The gm

3d process represents the intraband umklapp process,
so it only exists for km = π/2. Other umklapp processes are
possible whenever n = 2. The SU(2)s symmetry gives

g3a + g‖b − g3b = 0, (12)

and the U(1)o symmetry leaves

g3d = g3a + g3b + g3c. (13)

Using the standard bosonization formalism,31–33 the Hamil-
tonian density H0 of the free-boson part becomes

H0 = 1

2π

∑
μ=c,s

ν=0,π

vμν

[
Kμν(∇θμν)2 + 1

Kμν

(∇φμν)2

]
,

(14)

where φ and θ are connected to density and current: ∇φ ∝
n and ∇θ ∝ j . The renormalized Luttinger parameters and
velocities are given by

Kc0(π) =
√

1 − (y1d ± y2b)/2

1 + (y1d ± y2b)/2
≡ 1 − yc0(π),

Ks0(π) =
√

1 + (y1d ± y1a)/2

1 − (y1d ± y1a)/2
≡ 1 − ys0(π),

(15)
vc0(π) = v

√
1 − (y1d ± y2b)2/4,

vs0(π) = v
√

1 − (y1d ∓ y1a)2/4

with yi ≡ gi/4πv and y2b ≡ y⊥
2b + y

‖
2b. “c” and “s” represent

the charge and spin modes, and “0” and “π” are used for
bonding and antibonding combination. We introduced yμν for
each Luttinger parameter for later use. A detailed derivation
of this Hamiltonian is given in Appendix A. We ignore the
velocity difference induced by the g4 process since its effect
is to shift the phase boundaries slightly. We will provide a
separate treatment for systems in which difference of initial
velocities is quite large.

The SU(2)s symmetry fixes Ks0(π) to be

Ks0(π) = 1 + (y1d ± y1a)/2 ≡ 1 − ys0(π) (16)

along the RG flow. Similarly, the U(1)o symmetry (when it
exists) constrains Kcπ to be

Kcπ = 1 + (−y1d + y2b)/2 ≡ 1 − ycπ . (17)

The interaction part of the Hamiltonian is rather compli-
cated. The interaction terms common to all cases are

Hint = g1d

∫
cos(2φs0) cos(2φsπ )

+ g1a

∫
cos(2φs0) cos(2θsπ )

− g1c

∫
cos(2φs0) cos(2θcπ )

− g2c

∫
cos(2φsπ ) cos(2θcπ )

+ g‖c
∫

cos(2θsπ ) cos(2θcπ ). (18)

Here,
∫

stands for (2πα)−2
∫

dx, and α is the cutoff which
is of the order of the lattice constant. The last term does not
exist in the original Hamiltonian, but will be generated after
the one-loop renormalization.
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When kA = kB , in cases (a) and (b), additional processes
are allowed:

H ′
int = g‖a

∫
cos(2φsπ ) cos(2φcπ )

+ g1b

∫
cos(2φs0) cos(2φcπ )

+ g2a

∫
cos(2θsπ ) cos(2φcπ ). (19)

Finally, when the filling is commensurate, we have

H ′′
int = g3a

∫
cos(2φc0) cos(2θsπ )

− g3b

∫
cos(2φc0) cos(2φsπ )

− g3c

∫
cos(2φc0) cos(2θcπ )

− g3d

∫
cos(2φc0) cos(2φcπ )

− g‖b
∫

cos(2φc0) cos(2φs0). (20)

The g3d process exists only when both bands are commensurate
[case (a)]. Again, we ignored the g4-type interactions, the
scaling dimension of which is always larger than two, and
this is consistent with the equal velocity approximation. The
initial values of these coupling constants are g1d = g3d =
4U , g1a = g1c = g2c = g2a = g3a = g3c = 4J , g

‖
2b = g‖a =

g‖b = 4(U − 3J ), and g1b = g⊥
2b = g3b = 4(U − 2J ). They

will take different values after renormalization.
Finally we discuss the symmetry of the linearized model

(Table I). First, U(1)c and SU(2)s (around the z axis) are
displayed in the invariance of the Hamiltonian under the
translation of θc0 and θs0. In fermionic language, each
corresponds to the following gauge transformation:

crms → eiαcrms, crms → eisαcrms. (21)

The indices r , m, and s represent chirality, orbital, and spin, and
α expresses the constant phase shift. The conserved Noether
currents, corresponding to the U(1)c and SU(2)s symmetries,
are∑

rms

Nrms ∝
∫

dx ∇φc0,
∑
rms

sNrms ∝
∫

dx ∇φs0, (22)

where Nrms is the particle number at the branch specified
by r , m, and s. Since ∇φ is momentum conjugate of θ , the
operator exp(

∫
dx ∇φ) gives a constant shift of θ . The SU(2)s

rotation around the x and y axes are not manifest in Abelian
bosonization.

Away from half-filling, there is also a continuous chiral
symmetry under the transformation crms → eirαcrms . Thus, the
Hamiltonian is invariant under arbitrary translation of φc0, with
conserved total currents JA + JB ∝ ∫

dx ∇θc0 where Jm =∑
s NRms − NLms . At half-filling, this symmetry is broken to a

discrete symmetry, and true long-range order can be realized.17

When a system has both the chiral symmetry and the U(1)c
symmetry, this implies that left- and right-moving parts have
separate conservation laws corresponding to the U(1)R×U(1)L

symmetry. Similarly, other gauge transformations such as

crms → eimαcrms, crms → eimsαcrms,
(23)

crms → eirsαcrms, crms → eirmsαcrms

leave the Hamiltonian invariant for discrete values of α =
nπ/2; each corresponds to the discrete shift of θcπ , θsπ , φs0,
and φsπ .

The effective Ũ(1)o symmetry appearing when kA �= kB and
vA = vB (Refs. 10,21,23, and 24) corresponds to the invariance
under the translation of φcπ or the gauge transformation

crms → eirmαcrms. (24)

The conserved “charge” corresponding to this symmetry is the
difference of two orbital currents: JA − JB ∝ ∫

dx ∇θcπ .
When kA = kB , there is an explicit orbital rotational sym-

metry about the y axis. This transformation mixes fermions
in different orbitals, so its generator can not be expressed as
a local operator in Abelian bosonization. This fact leads to a
new combination of possible ground states, as will be shown.

IV. ORDER PARAMETERS

A. Order parameters away from half-filling

As order parameters, we take fermion bilinears character-
ized by the chirality, spin, and orbital indices; thus, in the
model considered here, there are particle-hole bilinears

(	ph)ss
′;mm′

rr ′ = c†rmscr ′m′s ′ (25)

and particle-particle bilinears

(	pp)ss
′;mm′

rr ′ = msc†rmsc
†
r ′m′s ′ , (26)

where c
(†)
rms is the annihilation (creation) operator of electron

with chirality r , orbital m, and spin s. Since combinations
of r = r ′ are irrelevant in a RG sense, we will fix (r,r ′) =
(R,L) in the remainder of this paper. We will use the following
convenient basis to represent them:

Oij

ph =
∑

mm′ss ′
τ i
mm′σ

j

ss ′ (	ph)ss
′;mm′ + H.c., (27)

Oij
pp =

∑
mm′ss ′

τ i
mm′σ

j

ss ′ (	pp)ss
′;mm′ + H.c., (28)

where i,j = (0,1,2,3) and τ and σ are Pauli matrices with
τ 0
ab = σ 0

ab = δab. These transform as rank-2 tensors under
SO(4) � SU(2)s × SU(2)o transformations; the SU(2)s ro-
tations connect σ 1,2,3, and the U(1)o rotation (if it exists)
connects τ 1 and τ 3. Thus, we take the quantization axis along
the z direction for spins. Additionally, as we will show in
the following, all the high-spin states (j = 3) such as spin
density wave (SDW) states and triplet superconductivities are
excluded from the possible ground states in our models, so we
will not consider them.

We label our order parameters by the transferred momentum
and the sign at each Fermi point. Here, we have four Fermi
points each degenerate about spins, so, in principle, there are
four possible cases (Table II). We use the s-wave when all
four points have the same signs. px and py are odd under the
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TABLE II. Angular momentum and corresponding signs of an
order parameter at each Fermi point

“Angular momentum” (A,R) (A,L) (B,R) (B,L)

s + + + +
px + − + −
py + + − −
d + − − +

inversion R ↔ L, and A ↔ B, respectively. The d-wave is
odd under both inversions.

Applying this classification, we find that i = 0,1 are both
s-wave for the particle-hole channel, while the former is
intraband type and the latter is interband type. We put “′”
for an interband order to distinguish these two. i = 2 is found
to be interband py-wave, and i = 3 is intraband py-wave. For
the particle-particle channel, we found d ′-, py-, s-, and s ′-wave
orders for i = 0, . . . ,3 accordingly. Since the px-wave does
not appear in this study, we will use p for py-wave orders in the
rest of the paper. We note that the d-wave superconductivity,
which often appears in two-leg ladder models,8 is the pSS
state in our notation. The result is summarized in Table III.

The order parameters in bosonized forms are

O00
ph ∝ cos(k0x − φc0) sin(kπx − φcπ ) sin(φs0) sin(φsπ ),

O10
ph ∝ cos(k0x − φc0) sin(θcπ ) cos(φs0) cos(θsπ ),

(29)
O20

ph ∝ cos(k0x − φc0) cos(θcπ ) cos(φs0) cos(θsπ ),

O30
ph ∝ cos(k0x − φc0) sin(kπx − φcπ ) cos(φs0) cos(φsπ ),

O00
pp ∝ e−iθc0 sin(kπx − φcπ ) cos(φs0) cos(θsπ ),

O10
pp ∝ e−iθc0 sin(θcπ ) sin(φs0) sin(φsπ ),

(30)
O20

pp ∝ e−iθc0 cos(θcπ ) sin(φs0) sin(φsπ ),

O30
pp ∝ e−iθc0 sin(kπx − φcπ ) sin(φs0) sin(θsπ ),

with k0(π) = kA ± kB . If coupling constants grow to the order
of t after renormalization, the corresponding bosonic fields are
pinned to the values which minimize the resultant potential.
For incommensurate fillings, the total charge mode is massless,
and the interaction terms pin the other modes to definite
values (in mod of π ). The pinned values determine the order
parameter, which gives a finite value of correlation. It is easy
to find such pinned values from the above expressions, e.g.,
(θcπ ,φs0,φsπ ) = (π/2,0,0) for the s ′CDW state.

TABLE IV. Expectation values of bosonic variables in the fully
gapped phases. We set 〈φc0〉 = 0. The commonly used names are
given in parentheses. SP: spin-Peierls; SF: staggered flux; PDW:
p-wave density wave; FDW: f -wave density wave.

Phase 〈φcπ 〉 〈θcπ 〉 〈φs0〉 〈φsπ 〉 〈θsπ 〉
CDW π/2 π/2 π/2
BDW (SP) 0 0 0
s ′CDW (CDWπ ) π/2 0 0
s ′BDW (PDW) 0 π/2 π/2
p′CDW (SF) 0 0 0
p′BDW (FDW) π/2 π/2 π/2
pCDW (ODW) π/2 0 0
pBDW (SPπ ) 0 π/2 π/2
HC π/2 π/2 π/2
RS 0 0 0
S-Mott π/2 0 0
S ′-Mott 0 π/2 π/2
D-Mott 0 0 0
D′-Mott π/2 π/2 π/2
HO π/2 0 0
RT 0 π/2 π/2

B. Order parameters at half-filling

When a filling is commensurate, insulating phases (with the
gapped total charge mode) become possible, and it turns out
that the generic behavior is either that all fields are massless
or all fields are gapped. We discuss the fully gapped phases
here. In the bosonized representation, the physics is described
by the conjugate fields φμν and θμν in the four sectors μ = c,s

and ν = 0,π . In a fully gapped situation, in each sector, one
of φμν or θμν is pinned at a value which may be 0 or π/2
(mod π ); the conjugate variable fluctuates strongly. Naively,
this implies (2 × 2)4 = 256 possible insulating states, but
only a few of these are relevant. The charge conservation
implies that only φc0 can be pinned, and the gauge invariance
under translating all angles by π/2 allows us to set 〈φc0〉 = 0.
The spin conservation means that only φs0 can be pinned,
and additional constraints arising from the structure of the
interactions may further limit the possibilities. In the end,
only eight density-wave states and the corresponding eight
dual Mott-insulating states are relevant. The Mott states
are obtained from the density-wave states by interchanging
which of φsπ and θsπ is pinned. The pinned values of bosonic
variables in the 16 insulating phases are given in Table IV.

The density-wave states have a straightforward description
in terms of local order parameters defined as local combina-
tions of fermion bilinears. The transcription is given in the

TABLE III. Classification of order parameters. The “′” indicates that the order is interorbital type. We use p to express py-wave orders
since px-wave orders do not appear.

(i,j ) Types of particle-hole order Types of particle-particle order

(0,0) Charge density wave (CDW) d ′-wave singlet SC (d ′SS)
(1,0) s ′-wave charge density wave (s ′CDW) py-wave singlet SC (pSS)
(2,0) p′

y-wave charge density wave (p′CDW) s-wave singlet SC (sSS)
(3,0) py-wave charge density wave (pCDW) s ′-wave singlet SC (s ′SS)
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previous section, and will not be elaborated on here with one
proviso: the gap in the total charge mode implies a breaking of
translational invariance, corresponding to a U(1) invariance in
boson language. Therefore, only a Z2 invariance (shift of φc0

by π/2) remains, and this allows us to distinguish site centered
states (CDWs), and bond centered states (BDWs).

Dual to the density-wave states are the Mott-insulating
states. These evolve into superconducting states upon doping.
We do not know a general representation in terms of bilinears
constructed from the original fermion operators, even if
nonlocal string states are allowed. In some cases, approximate
wave functions can be written down in the strong-coupling
limit, essentially by analogy to the superconducting states that
appear upon doping:10,16,22

|S-Mott〉 ≡
∏

i

[c†iA↑c
†
iA↓ + c

†
iB↑c

†
iB↓]|0〉,

|D-Mott〉 ≡
∏

i

[c†iA↑c
†
iA↓ − c

†
iB↑c

†
iB↓]|0〉,

|RS〉 ≡
∏

i

[c†iA↑c
†
iB↓ − c

†
iA↓c

†
iB↑]|0〉, (31)

|RT〉 ≡ 1

2

∏
i

[c†iA↑c
†
i+1,B↓ − c

†
iA↓c

†
i+1,B↑

− (A ↔ B)]|0〉,
where RS stands for the rung-singlet state and RT for the rung-
triplet state.14,34 These four states evolve into the sSS, pSS,
s ′SS, and d ′SS states upon doping, respectively. The bonding
counterpart of these phases are the S ′-Mott, D′-Mott, Haldane-
charge (HC), and Haldane-orbital (HO) phases.24 However,
finding wave functions for these four Mott states remains a
challenge.

Also, in some particular cases, string operators can be
constructed. For example, in the strong-coupling limit, where
the charge mode is decoupled, we expect the RS and RT states
become the ones which appear in spin- 1

2 Heisenberg two-leg
ladders.14,34 We note that the authors of Ref. 16 argued that
the D-Mott and S ′-Mott states are adiabatically connected to
the RS and RT states in the strong-coupling limit. However, in
the model studied here, the strong-coupling limit of the D-Mott
state has local singlet configurations, which are different from
those of the RS state, and furthermore, the S ′-Mott state does
not have a simple wave function in the real space. The RS state
appears in chains with antiferromagnetic coupling along rung
(or ferromagnetic coupling over plaquette diagonals), and it is a
resonance-valence-bond (RVB) state, the stable configurations
of which are the singlet along the rung or ladder. This state
is characterized by a nonzero expectation value of a string
operator〈(

Sz
A,i + Sz

B,i+1

)
eiπ

∑j−1
k=i+1(Sz

A,k+Sz
B,k+1)(Sz

A,j + Sz
B,j+1

)〉
, (32)

and exhibits a “hidden antiferromagnetic order”; the total spin
over plaquette diagonals Sz

A,i + Sz
B,i+1 align antiferromagnet-

ically along the ladder except the spin-0 sites.
For chains coupled ferromagnetically along the rung (or

antiferromagnetically over plaquette diagonals), the above
order disappears, and the RT state with the valence-bond-
solid (VBS) configuration35 becomes stable. Singlet pairs

are formed in a staggered manner, and this results in triplet
pairs along a rung. The following order parameter takes a
nonvanishing value〈(

Sz
A,i + Sz

B,i

)
eiπ

∑j−1
k=i+1(Sz

A,k+Sz
B,k )(Sz

A,j + Sz
B,j

)〉
, (33)

which represents a hidden order about the spin triplet on a
rung.

The string operators for these disordered states are nonlocal,
so complications arise in the transcription to bosonic variables.
A generally accepted form for Eqs. (32) and (33) is36

〈cos[φs0(x)] cos[φs0(y)]〉, 〈sin[φs0(x)] sin[φs0(y)]〉. (34)

These correlation functions take nonzero values for the RS and
RT phases, respectively.

The bonding counterparts of the RS and RT phases are
the Haldane-charge (HC), and Haldane-orbital (HO) phases
proposed by Nonne et al.24 as the Haldane gapped states
of pseudo-spin-1 antiferromagnetic Heisenberg chain; this
realizes when the charge or orbital symmetry is promoted from
U(1) to SU(2). The form of string operators for these states is
similar to Eq. (33) if we replace the SU(2) spin operators by
the charge and orbital SU(2) operators

J z
i = 1

2 (ni − 2), J
†
i = c

†
i,A↑c

†
i,B↓ − c

†
i,A↓c

†
i,B↑; (35)

T z
i = 1

2 (nA,i − nB,i), T
†
i = c

†
i,A↑ci,B↑ + c

†
i,A↓ci,B↓. (36)

The bosonized forms of the strong operators are〈
J z

i eıπ
∑j−1

k=i+1 J z
k J z

j

〉 ∼ 〈sin[φc0(x)] sin[φc0(y)]〉,
(37)〈

T z
i eıπ

∑j−1
k=i+1 T z

k T z
j

〉 ∼ 〈sin[φcπ (x)] sin[φcπ (y)]〉,

where ∇φc0 ∼ J z(x) and ∇φcπ ∼ T z(x). These expressions
become nonzero for the HC and HO phases, respectively.

V. DUALITY AND DYNAMICAL SYMMETRY
ENLARGEMENT

A. Possible ground states

Two of the most prominent features of one-dimensional
systems are duality22–24 and dynamical symmetry enlargement
(DSE).10,20 The idea of duality is based on the observation
that the low-energy theory is invariant under some discrete
operations apart from the continuous symmetries listed in
Table I. These discrete symmetries enable us to relate one
ground state to another, and to understand quantum phase
transitions among them.

DSE means that the effective theory describing the low-
energy fixed point exhibits a higher symmetry than that of
the original lattice Hamiltonian. This phenomenon was noted
by Lin et al.10 who found that the low-energy theory of half-
filled two-leg Hubbard ladder is the SO(8) Gross-Neveu (GN)
model. Since their work, DSE has been seen in other multiband
systems.37,38 Combining these two ideas, we will identify the
possible ground states for our models, taking DSE for granted.

Now, as a preparation, in order to exhibit the symmetries
of the Hamiltonian, we refermionize the model using eight
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TABLE V. Possible ground states for cases (a)–(d) in Table I at equal velocities. The BDW, CDW, S-Mott, and sSS phases in the second
column are expressed by the fundamental SO(8) or SO(6) Gross-Neveu model for cases (a)–(d), respectively. The other states are mapped from
these fundamental states by the duality transformation � in the top row. �ν is an operation of ξa

L → −ξa
L for all the a’s in a symmetry sector ν.

For example, in case (a), the BDW state is mapped to the p′CDW state by �o. For doped cases (b) and (d), the charge mode is separated from
the rest, and the ground states are invariant under �c.

1 �c �o �c,o �I �c,I �s �c,s

(a) BDW CDW p′CDW p′BDW S-Mott S ′-Mott RT HO
(b) CDW CDW p′CDW p′CDW sSS sSS d ′SS d ′SS
(c) S-Mott S ′-Mott D-Mott D′-Mott s ′CDW s ′BDW p′BDW p′CDW
(d) sSS sSS pSS pSS s ′CDW s ′CDW p′CDW p′CDW

Majorana fermions as explained in Refs. 13 and 26. We
decompose each mode into two Majorana fermions as

ψc0
r = 1√

2

(
ξ 7
r + iξ 8

r

)
, ψcπ

r = 1√
2

(
ξ 5
r + iξ 6

r

)
,

(38)

ψs0
r = 1√

2

(
ξ 1
r + iξ 2

r

)
, ψsπ

r = 1√
2

(
ξ 4
r + iξ 3

r

)
.

At half-filling, the obtained expression for the U(1)o symmetric
case (a) is

H = −i
v

2π

8∑
a=1

(
ξa
R∂ξa

R − ξa
L∂ξa

L

) + g1

2
κ2

s + g2κsκo + g3κsκI

+ g4κoκI + g5

2
κ2

o + g6

2
κ2

c + g7κsκc + g8κoκc + g9κI κc

(39)

with κs = ∑3
a=1 ξa

Rξa
L, κo = ∑5

a=4 ξa
Rξa

L, κI = ξ 6
Rξ 6

L, and κc =∑8
a=7 ξa

Rξa
L. The indices “s,” “o,” “I ,” and “c” refer to the

SU(2)s , U(1)o, Z2, and U(1)c symmetries, respectively.
Away from half-filling [case (b)], the charge mode is

decoupled from the other modes, and we do not need to
consider gi=6∼9. Thus, we have

H = −i
v

2π

6∑
a=1

(
ξa
R∂ξa

R − ξa
L∂ξa

L

)
+ g1

2
κ2

s + g2κsκo + g3κsκI + g4κoκI + g5

2
κ2

o . (40)

As we mentioned before, even without an explicit U(1)
orbital symmetry for the lattice Hamiltonian, the low-energy
theory may have the effective Ũ(1)o symmetry.10,21,24 In that
case, the structure of the refermionized forms is the same as
above. Thus, cases (c) and (d) have the same form as Eqs. (39)
and (40) with different values of g’s.39

For the refermionized forms, duality mappings are defined
as ξa

L → −ξa
L while keeping right-moving parts untouched.

It is easy to see that Eqs. (39) and (40) are invariant under
such transformations if we change the signs of some coupling
constants as well. To retain the form of the Hamiltonian, only
mappings that transform all the Majorana fields in the same
symmetry sector are permitted. For example, for the SU(2) spin
part, we should map the three left Majorana fermions ξa=1∼3

L

at the same time. For notational convenience, we define �ν as
an operation of ξa

L → −ξa
L for all the a’s in a symmetry sector

ν. With this at hand, it is obvious that allowed mappings for
half-filling cases are

�O(8) ≡ {�c,�o,�I ,�s,�c,o,�c,I ,�o,I }. (41)

The number of independent mappings is three, and other
mappings just follow from them, e.g., �o,I = �o�I . Away
from half-filling, the charge mode is separated, so only three
of the above mappings are left,

�O(6) ≡ {�o,�I ,�s}, (42)

and two of them are independent. An immediate consequence
of these dualities and DSE is that, although we showed 16
insulating phases for half-filling systems and 8 metallic phases
for incommensurate filling, only a part of them are realized.

Now, we will show such possible ground states for each
model. We start from the “fundamental” SO(8) Gross-Neveu
(GN) model

H = −i
v

2π
(�ξR∂�ξR − �ξL∂�ξL) + g

2
(�ξR

�ξL)2, (43)

which appears at low energy when all the g’s in Eq. (39)
converge to the same value as a result of DSE. For case (a), this
model represents the BDW phase, and other possible phases
are found by applying �O(8) to the BDW state (see Table V).
We denote them as �y , and they are

�y : BDW,CDW,p′CDW,p′BDW,

S-Mott,S ′-Mott,RT,HO. (44)

The case (b) follows from the relation between insulating states
and metallic states, or applying �O(6) to the CDW phase, which
is “fundamental.” The original lattice model we are considering
here is invariant under the orbital U(1) rotation about the y axis.
As we mentioned in Sec. III, the generator of this symmetry
can not be expressed by a single local bosonic field within
Abelian-bosonization scheme.

This combination �y is different from those that have been
studied extensively; previously studied phases are

�z : BDW,CDW,pBDW,pCDW,RS,HC,RT,HO (45)

and

�̃z : S-Mott,S ′-Mott,D-Mott,D′-Mott,

s ′CDW,s ′BDW,p′BDW,p′CDW. (46)

The former, �z, appears in models with weak transverse
hopping, and with the U(1)o symmetry about the z axis.24,30
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FIG. 2. Relationships among three groups of insulating ground
states. Rx indicates the rotation about the x axis in orbital space
in Eq. (47), and �⊥ is strong-weak tunneling duality mapping in
Eq. (48). For example, the S ′-Mott state in �y maps to the HC state
in �z by Rx .

The latter, �̃z, appears when the model has strong transverse
hopping, and the low-energy theory possesses the Ũ(1)o
symmetry;7,10,12,16,17 our cases (c) and (d) belong to this
category (see Table V).

The connection between �y and �z is obvious. Since the
generator of the orbital symmetry for each case is the y or z

component of Eq. (36), they are simply mapped to each other
by a rotation around the x axis:

Rx :

(
c′
rAs

c′
rBs

)
= 1√

2

(
1 −i

−i 1

)(
crAs

crBs

)
. (47)

This transformation does not affect the charge and spin
generators. For instance, the S ′-Mott state in �y goes to the
HC state in �z by Rx . The correspondence among other states
is given in Fig. 2. On the other hand, �̃z and �z transform each
other by so-called strong-weak tunneling duality,21,24

�⊥ : cLm↑ → c
†
Lm↓, cLm↓ → −c

†
Lm↑. (48)

Therefore, we found that in addition to underlying band
structure, the form of interaction also affects the possible
combinations of ground states. We summarized these results
in Table V and Fig. 2.

B. Quantum phase transition

The quantum phase transitions among gapped ground states
could be either first or second order. For the transitions among
states connected by a duality mapping, the modes that are
not involved in the mapping become massive at higher energy,
and the effective low-energy theory near the transition contains
only Majorana fields flipped by the mapping.23

For a single Majorana field, it becomes the critical Ising
model

H = −i
v

2π
(ξR∂ξR − ξL∂ξL) − imξRξL. (49)

Over the transition, the mass changes its sign, and this
represents a second-order phase transition. With more than

one field, the low-energy effective theory becomes the massive
O(N) Gross-Neveu (GN) model

H = −i
v

2π
(�ξR∂�ξR − �ξL∂�ξL) − im�ξR

�ξL + g

2
(�ξR

�ξL)2. (50)

The fate of further renormalization to lower energy determines
whether the phase transition is first or second order, depending
on the final fixed point for the critical fields.10,16,21,40,41 The
transition line is defined as the point where the m in Eq. (50)
goes to zero, and the critical fields are expressed by a massless
GN model in the vicinity of transition. For N = 2, it is known
that the system can be mapped to a Gaussian model, so
it is a second-order transition. For N � 3, however, if the
coupling constant in the GN model is positive (g > 0), the
renormalization flow departs to a strong-coupling fixed point
(asymptotic free) since the RG equation is given by

ġ ∝ g2. (51)

At this fixed point, the mass is generated dynamically, and
the system is off critical. We can see this either by mean-
field treatment of the interaction (reducing the quartic part to
quadratic with the order parameter 〈ξRξL〉), or by stationary
phase approximation, which becomes exact when N → ∞.
At this massive fixed point, there are two degenerate minima
about two signs of mass, and they correspond to two phases
connected by this first-order transition. On the other hand,
when g < 0, further renormalization reduces g to 0, and the
system reaches a massless fixed point; this represents a second-
order transition.

When the transition is second order, the critical theory
is described by a conformal field theory (CFT) due to its
dimensionality (1 + 1). Each CFT is characterized by its
central charge c, which roughly expresses the number of
critical fields. c = 1/2 is the Z2 Ising critical theory, c = 1
is the U(1) Gaussian theory, and c = 3/2 is the SU(2)2

Wess-Zumino-Novikov-Witten theory. With the duality map-
pings, it is easy to read off the central charge of each
CFT. Since each Majorana fermion carries c = 1/2, the
number of fields flipped by a mapping directly tells us
the central charge. We will identify the phase transitions
appearing in our phase diagrams more precisely in the next
section.

VI. RG EQUATIONS AND PHASE DIAGRAMS

In the RG equations obtained from Abelian bosonization,
we use normalized coupling constants defined as

yi ≡ gi

4πv
. (52)

RG equations are derived using the operator product
expansion7,42,43 (OPE) and integrating out higher frequency
modes. The RG equations are complicated, so we will not show
them explicitly. In all of the cases that we have examined, the
RG equations may be expressed as

dyi

dl
= −∂V

∂yi

(53)

with a potential function V [y1(l),y2(l), . . . ,yn(l)]. The RG
flow is to the valleys of the potential in the beginning and then
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along the valley. The potential structure is consistent with the
arguments of Ref. 44, which suggest that the presence of a

potential function is related to Zamolodchikov’s c theorem.45

For the commensurate case kA = kB = π/2, the potential is

V [yi] = −y1ay1cy‖c + y1ay1by2a − y1ay3ay‖b + y1cy1dy2c − y1cy3cy‖b + y1dy‖ay1b

+ y1dy3by‖b − y2cy3by3c − y‖cy3ay3c + y1by3dy‖b − y2ay3ay3d + y‖ay3by3d

− 1
2

(
y2

3a − y2
3b − y2

3c − y2
3d − y2

‖b
)
yc0 − 1

2

(−y2
1c − y2

2c − y2
‖c + y2

‖a + y2
1b + y2

2a − y2
3c + y2

3d

)
ycπ

− 1
2

(
y2

1d + y2
1a + y2

1c + y2
1b + y2

‖b
)
ys0 − 1

2

(
y2

1d − y2
1a + y2

2c − y2
‖c + y2

‖a − y2
2a − y2

3a + y2
3b

)
ysπ , (54)

where we introduced Kμν ≡ 1 − yμν for each Luttinger
parameter. For kA �= kB or doped cases, we should remove
some coupling constants that are not allowed by momentum
conservation. The RG equations valid even when velocities
are different are given in Appendix B. We checked that both
RG equations give consistent results when vA = vB .

To get phase diagrams, we integrated the RG equations
numerically until one of the coupling constants becomes of the
order of 1(≡t). We used initial values of coupling constants
as small as 10−8–10−3. Due to the hidden potential structure,
the asymptotic behavior of the RG flow is captured by the
following ansatz7,44:

g′
i[l] = g0i

lc − l
, (55)

where lc is the length at which the relevant couplings diverge,
and the g0i determines the ratio among them. This represents
the fixed ray of relevant coupling constants. Then, the bosonic
fields are pinned down to the minima of the effective potential.
These values enable us to determine the order parameter, which
takes a nonzero value.

The obtained phase diagrams are shown in Figs. 3–7.
They correspond to the various cases in Table I. We also
investigated the effect of velocity anisotropy to the phases in
the physically relevant parameter region 0 < J < U/2, using
the RG equations based on the fermionic Hamiltonian. We
studied the range 1 � vA/vB � 10.

At various points in the following discussion, we also label
the phases in the “CnSm” notation, which indicates n massless
charge modes and m massless spin modes introduced in Ref. 7.

A. kA = kB = π/2 at half-filling

First, we look at case (a), where kA = kB at half-filling
(Fig. 3). Absence of the HO phase indicates that the system
does not flow to the enlarged orbital SU(2) symmetric state,
although this could happen in principle by changing initial
conditions. The RT phase, a high-spin state, resides in the
0 < J < U region, which may be accessible in real material.

Although precise boundaries do not coincide exactly,
the corresponding Hartree-Fock (HF) phase diagram shows
similar structure.29 There, we have the SDW phase instead of
the RT state in 0 < J < U ; they are both locally high-spin
configurations with antiferromagnetic orders along the chain.
The S-Mott state found in the bosonization result corresponds
to mainly the degenerate state of the s ′CDW and pCDW orders
with a smaller region of sSS in the HF phase diagram. In the

bosonic language, the order parameter of the sSS phase is
the same as that of the S-Mott state except the total charge
mode. The s ′CDW and pCDW states are degenerate due to
the orbital symmetry, and they are Ising dual to the S-Mott
and Haldane orbital (HO) phases, respectively. The HO phase
does not appear in the bosonic calculation, but it is connected
to the S-Mott phase by the duality mapping of the orbital sector
(see Table V). The CDW state stays at almost the same regime
in both phase diagrams. The BDW phase does not appear in
the HF phase diagrams since its HF energy is higher than that
of the CDW phase.

The critical properties of the CDW-BDW transition are
given by a U(1) Gaussian theory of the charge sector, while
those of the BDW–S-Mott transition are given by the Z2 Ising
theory. The rest of the transitions are either SU(2) criticality
or first order; the critical fields at the BDW-RT transition line
are spin modes, and at the CDW–S-Mott line are the charge
and Ising fields.

We noticed that the phase transition from the RT state to
the CDW state with increasing J is similar to the SDW-CDW
transition found in the extended Hubbard model (EHM).46,47

The EHM has a nearest-neighbor interaction V njnj+1, in
addition to the Hubbard interaction Unj↑nj,↓. As the former
interaction becomes predominant, particles try to form a CDW
state, while strong U prefers SDW. In the weak-coupling
regime, it is found that the SDW state undergoes a spin-gap
transition to a BDW state, and then becomes the CDW state

RT

BDW

BDW

CDW

S-Mott

-1 0 1
U-1

0

1
J

c, I

c

s

s

I

(a)vA/vB = 1

CDW

BDW

C1S2

0 1
U0

1
J

(b)vA/vB = 5

FIG. 3. Phase diagram for case (a), kA = kB = π/2 with equal
velocities. Physically relevant region is 0 < J < U/2. A dashed line
indicates SU(2) or first-order transition. A solid line is a Gaussian
theory, and a dotted line is an Ising transition. “c,” “o,” “s,” and “I”
indicate the critical fields on the transition line. All of these phases
except the C1S1 phase are C0S0.
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through a Gaussian transition of the charge sector. In the
strong-coupling regime, these two transition lines are coupled
to a first-order transition line. In our model, strong J plays the
same role as V in the EHM; large J induces an attractive
onsite interaction [see Eq. (2)] leading to the CDW state.
The properties of transitions from the RT phase to the CDW
phase and the existence of the narrow BDW region are
also the same as in the EHM. Therefore, we expect that in
the strong-coupling regime, the RT-CDW transition in our
model also becomes first order, although this has not been
demonstrated.

Now, we consider the effect of velocity difference in the
first quadrant: U,J > 0 [Fig. 3(b)]. As vA/vB becomes as
large as 1.5, we found that the RT and BDW states in small
J > 0 are completely replaced by a C1S2 state, where only a
charge mode of a single band becomes massive, and the rest is
massless. The CDW and BDW states in J > U > 0 are robust
to the change in velocity. This is because the large anisotropic
velocities suppress the interband scattering, resulting in the
domination of intraband scattering. As vA/vB is increased
beyond 1.5, the C1S2 phase becomes larger, although the
BDW phase always exists between the CDW and C1S2 phases.

B. kA = kB at incommensurate filling

The phase diagram for kA = kB with incommensurate
filling is given in Fig. 4. This is similar to the one at half-filling
if we replace the insulating states to corresponding metallic
ones: S-Mott to sSS, RT to d ′SS, and BDW to CDW. The
BDW state near J � 0 in Fig. 3 disappears. The transition
between the CDW and d ′SS states is governed by spin modes
leading to the SU(2) criticality or first-order transition. The
CDW-sSS transition is an Ising transition c = 1/2. Finally,
the d ′SS-sSS transition is described by a Gaussian theory of
the orbital sector.

The velocity difference in a quadrant, U,J > 0, does not
modify the large-J regime, although a C2S1 state appears at
small J [Fig. 4(b)]. The C2S1 phase was observed in other
two-leg ladder systems when the velocity difference becomes

d'SS

CDW

sSS

-1 0 1
U-1

0

1
J

I

s

o

(a)vA/vB = 1

C2S1

d'SS

CDW

0 1
U0

1
J

(b)vA/vB = 5

FIG. 4. Phase diagram for case (b), kA = kB away from half-
filling with equal velocities. The physically relevant region is 0 <

J < U/2. A dashed line indicates SU(2) or first-order transition.
A solid line is a U(1) Gaussian theory, and a dotted line is an
Ising transition. “c,” “o,” “s,” and “I” indicate the critical fields
on the transition line. All of these phases except the C2S1 phase
are C1S0.

large.7,12 The HF phase diagram of this case29 has the SDW
phase for 0 < J < 0.6U , which corresponds to the d ′SS phase
found by bosonization; both of them are locally high-spin
states. In the negative-J region, we have the sSS state in Fig. 4,
while the HF calculation gives not only the sSS state, but also
a large region of the s ′CDW phase. As we mentioned, this
CDW state is Ising dual to the S-Mott phase, which is the
insulating analog of the sSS state. In the large-J > 0 region,
we found p′

y-wave spin-triplet superconductivity in the HF
phase diagram, which is replaced by CDW in the bosonic
calculation. The CDW state around 0 < J < −U is robust, and
we observe it both at the HF level and after renormalization.

C. kA �= kB at half-filling

For the system at half-filling, but with two different Fermi
momenta, the phase diagram is given in Fig. 5. There is a
narrow Luttinger-liquid (LL) phase near U � J > 0, where all
the modes are massless. The transition between massive phases
and a LL phase is Kosterlitz-Thouless (KT) in the sense that
a LL phase is critical and has power-law correlation, while
massive phases have exponentially decaying correlations. The
transitions among Mott phases all have a Gaussian criticality;
the S-Mott–S ′-Mott transition is governed by the charge sector,
and others are by the orbital sector. On the other hand, the
s ′BDW–D-Mott transition line is the SU(2) criticality or first
order. In this case, the velocity difference does not modify the
phase diagram in the physically relevant region essentially.

The corresponding HF phase diagram shows the SDW and
s ′SDW states in the physically relevant region,29 while they
are replaced by the s ′BDW and D-Mott phases in the RG
phase diagram. This is a notable difference between the result
of two equivalent bands and that of inequivalent bands. For
the kA = kB cases, locally high-spin states, RT and d ′SS,
are dominant in 0 < J < U/2, while low-spin configurations,
s ′BDW and D-Mott, are found in the kA �= kB case. We
understand these low-spin states as a result of decoherence
by two different wave numbers. In essence, density waves
with different phases in the two bands mean that the energy
contribution from the J interaction averages out to zero.
The CDW phase, which dominates large-positive-J region

D'-Mott

S'-Mott

S-Mott

s'BDW

D-Mott

LL

-1 0 1
U-1

0

1
J

c

o

s

o

FIG. 5. Phase diagram for case (c), kA �= kB at half-filling with
equal velocities. The physically relevant region is 0 < J < U/2. A
dashed line indicates SU(2) or first-order transition. A solid line is a
U(1) Gaussian theory. A thin line indicates KT transition. “c,” “o,”
“s,” and “I” indicate the critical fields on the transition line.
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pSS

sSS

LL

s 'CDW

-1 0 1
U-1

0

1
J

o

I

FIG. 6. Phase diagram for case (d), kA �= kB away half-filling with
equal velocities. The physically relevant region is 0 < J < U/2. A
solid line is a U(1) Gaussian theory, and a dotted line is an Ising
transition. A thin line is KT transition. “c,” “o,” “s,” and “I” indicate
the critical fields on the transition line.

at mean-field level, is replaced by the D′-Mott state after
renormalization. For this case, the pSS state, the metallic
analog of the D′-Mott state, is subdominant with large positive
J at the HF level, and this is more enhanced than the CDW
order during the renormalization flow. The negative-J region
of the HF phase diagram is again covered by the sSS and
s ′CDW phases, which are related to the S(′)-Mott state.

D. kA �= kB at incommensurate filling

With inequivalent Fermi momenta and incommensurate
filling (Fig. 6), the physically relevant region is covered by a LL
phase and the s ′CDW phase. The pSS and sSS phases can be
understood as reminiscent of the D′-Mott and S(′)-Mott states,
which exist at half-filling. Again, transitions between the LL
phase and massive phases are KT type except the total charge
mode remaining massless in both phases. The phase transition
between the pSS and sSS states is governed by a U(1) Gaussian
criticality of the orbital sector. The transition between the
s ′CDW and sSS phases is Ising type. As the velocity anisotropy
becomes larger, the s ′CDW phase is gradually suppressed, and
the whole area in the physically relevant region is covered by
the LL state for vA/vB � 6.

The HF phase diagram in this case is similar to the RG phase
diagram. We have the p(s)SS state with large negative U and
small positive (negative) J . For large negative J , we have
the s ′CDW state. The pTS and SDW states appearing in the
positive-J regime of the HF phase diagram are renormalized
to the Luttinger-liquid phase.

E. kA = π/2 �= kB at incommensurate filling

The phase diagram for the case with kA = π/2 �= kB

(Fig. 7) is almost similar to that of case (d), except the
Luttinger-liquid state is replaced by a C1S2 phase, where
a commensurate band opens a charge gap, and the rest of
the modes remain massless. This is an orbital-selective Mott
state. The velocity anisotropy in both directions vA/vB < 1
and vA/vB > 1 does not modify the C1S2 state in the region
0 < J < U/2. The HF phase diagram for this case is almost
the same as the previous case with kA �= kB at incommensurate
filling.

s 'CDW

pSS

sSS

C1S2

-1 0 1
U-1

0

1
J

o

I

FIG. 7. Phase diagram for case (e), kA = π/2 �= kB away from
half-filling with equal velocities. The physically relevant region is
0 < J < U/2. A solid line is a U(1) Gaussian theory, and a dotted
line is an Ising transition. A thin line is KT transition. “c,” “o,” “s,”
and “I” indicate the critical fields on the transition line.

VII. FULLY SPIN-POLARIZED CASE: CHARGE-ORBITAL
MODEL

So far, we have limited our focus to the weak-coupling
limit. However, in multiorbital systems, the strong-coupling
limit can bring qualitatively new effects.29,48–51 In particular,
in the physical (J > 0) case, one may expect every ion to
be in the state of maximal spin, consistent with given total
occupation. In this circumstance, we expect antiferromagnetic
order in the half-filled case, and when the system is slightly
doped, more complicated structures such as phase separation
and spiral phases will appear. At filling further away from
n = 2, the system shows ferromagnetism (FM) with an orbital
order. Considering the fact that ferromagnetic states dominate
the phase diagram at most fillings,29,51 in this section, we
investigate the possible orbital orders assuming that the system
is fully spin polarized. In other words, we consider the effect
of residual backscattering in the subspace of the charge and
orbital sectors, assuming that the spin excitations are frozen.
We leave the investigation of the regime close to half-filling
for future study.

Suppose that all the electrons have the same spins; the
model in Eqs. (1) and (2) is then reduced to

H = Hkinetic +
∑

i

(U − 3J ) niAniB, (56)

where we omit the spin index. Now, the SU(2)s symmetry is
lost, but we can regard the orbital part as pseudospins. If the
two bands have the same kF and velocities, the system has
the orbital SU(2) symmetry. The band splitting in the orbital
sector is isomorphic to the Zeeman splitting by magnetic field.
Therefore, the model now turns to a simple Hubbard model
with effective interaction Ueff = U − 3J , with or without
magnetic field.

Depending on the effective crystal field splitting between
the two orbitals 	, and the band widths, there may be three
different scenarios in this model. The first case is that the
two bands are completely degenerate: 	 = 0 and kA = kB .
We expect a staggered orbital order to appear. On the other
hand, when there exists either small splitting or when the band
widths are slightly different, the two momenta are not equal,
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and orbital orders might be suppressed. We will discuss these
two scenarios below using the bosonization method. However,
there is another scenario, which may arise when either splitting
is large or two band widths are greatly different. Then, only
one band has states at the Fermi surface, and the physics is
trivial.

We first look at the degenerate case kA = kB corresponding
to the absence of magnetic field. The bosonized form of the
Hamiltonian in Eq. (56) at half-filling is given by

H = 1

2π

∑
ν=c,o

vν

[
Kν(∇θν)2 + 1

Kν

(∇φν)2

]

+ 2

(2πα)2
Ueff cos(2

√
2φo) − 2

(2πα)2
Ueff cos(2

√
2φc),

(57)

where the Luttinger parameters and velocities are

Kcvc = Kovo = v, vc(o)/Kc(o) = v

(
1 ± Ueff

πv

)
. (58)

Thus, the charge and orbital modes are decoupled, and each
mode has a SU(2) symmetry. The total symmetry is SU(2) ×
SU(2) = SO(4).

Translating the analysis for the Hubbard model32 to our
charge-orbital model, we found the following results. For
incommensurate filling, the last umklapp term in Eq. (57)
vanishes, and the charge mode is massless. Also, the SU(2)c
symmetry is broken to U(1)c. About the orbital sector, we find
the following:

(i) Ueff > 0. Orbital density wave (ODW) has the longest
correlation, and both orbital and charge modes are massless.
The SU(2)o symmetry requires that ODWs about all three
directions (x,y,z) are degenerate.

(ii) Ueff < 0. The orbital sector becomes massive, and
the phase with slowest decaying correlation is orbital-singlet
superconductivity with parallel spins, i.e., p′

yTS in Ref. 29.
At half-filling, the charge mode becomes massive (Kc =

1/2) when the effective interaction is repulsive; the system
is Mott insulating. The orbital part still gives ODW, and
this FM + ODW state in the U > 3J regime is observed
both analytically29,48,49 and numerically.50,51 For the attractive
side, the charge mode is gapless (Kc = 1) with an orbital
gap by the p′

yTS order; this is the Luther-Emery phase. This
triplet superconductivity agrees with the numerical result by
Sakamoto et al.51 The results are summarized in Fig. 8.

Now, we turn to the case with kA �= kB : there is a
pseudomagnetic field acting on the orbital space. At very
small filling, only a single band is filled, so the ground state is
a ferromagnetic Luttinger liquid of a single gapless mode.
When we dope enough, the two bands start to share the
Fermi surface. The SU(2)o symmetry is reduced to U(1)o,
and the cos(2

√
2φo) term vanishes due to two different Fermi

momenta. Thus, the orbital sector is always massless. With
an attractive interaction, the band degeneracy occurs with
smaller filling than with a repulsive interaction since we
guess the upper band is pulled down by the lower filled
band for Ueff < 0. The charge mode is massive (massless) for

FM+ODW
(C1O1)

C0O1

FM+ODW
(C1O1)

py' TS

(C1O0)

1
n0

U − 3 J

(a)kA = kB

LL

LL

FM + ODWx,y

(C1O1)

px,y' TS

(C1O1)

Orbital
Selective
Mott

FM + ODWx,y

(C1O1)

1
n0

U − 3 J

(b)kA �= kB

FIG. 8. Schematic phase diagrams for the spin-polarized model
for two equivalent bands or slightly different bands. When kA �= kB ,
the ODWx and ODWy phases have the same correlation exponent,
and so do p′

xTS and p′
yTS. Filling closer to n = 2 is not investigated.

“CnOm” represents a state with n massless charge modes and m

massless orbital modes.

repulsive (attractive) interaction at half-filling. At tree level, the
states with the longest correlations are ODWx and ODWy for
Ueff > 0, and p′

xTS and p′
yTS for Ueff < 0. Since the orbital

symmetry is explicitly broken, the exponents of correlation
may differ for different directions. Finally, contrary to the
complete degenerate case, we speculate that an orbital selective
Mott phase appears near n = 1 for inequivalent bands; once
one band is half-filled, the commensurate wave vector opens
a gap, and the other band remains metallic. Further filling just
goes to the metallic band until it reaches half-filling. Figure 8
presents the general phase diagram for this case.

VIII. CONCLUSION

In this paper, we investigated a two-orbital Hubbard model,
which may encapsulate phenomena realized in transition-
metal nanowires. Along with many aspects of two-leg ladder
models, unique properties of transition-metal d orbitals lead
to several new results.

In our analysis, we used the ideas of dynamical symmetry
enlargement10,20,21 and duality relations23,24 to list eight insu-
lating phases at half-filling and six metallic phases away from
half-filling. Each phase is represented by a Gross-Neveu model
at low energy, and phases are related to each other by duality
mappings. The same analysis was done for weak-tunneling
models with the U(1)o symmetry about the z axis,24,30 and
for strong-tunneling models with the Ũ(1)o symmetry.10,16,17

Some cases we studied in this paper belong to the latter
category, and we obtained the same results. However, we
also studied a model with a different orbital symmetry, the
U(1)o symmetry about the y axis, and found that this form of
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interaction gives rise to a new combination of ground states,
half of which were found in weak-tunneling systems and the
other half were in strong-tunneling systems. This is because the
underlying orbital rotational symmetry involves a generator
that can not be written by a single local bosonic field. The
quantum phase transitions among those ground states were also
briefly summarized using Gross-Neveu models as low-energy
effective theories.16,23 The new combinations of ground states
we found means that the model we proposed can exhibit new
kinds of quantum phase transitions.

After classifying the possible ground states, we determined
the ground state of the model by numerically integrating the
RG equations. The phase diagrams are presented in Figs. 3–7.
The essential results for the physically relevant regime 0 <

J < U/2 are as follows:
(i) For two equivalent bands at half-filling, we found a

high-spin state RT for relatively large J , and a low-spin state
BDW for small J (Fig. 3). Keeping kA = kB but introducing
a velocity difference causes these phases to be replaced by a
C1S2 state where only a charge mode in a single band becomes
massive. Upon doping, the RT state turns into the d ′SS state
and the BDW state disappears (Fig. 4). A velocity difference
leads to a C2S1 phase for small J , but the d ′SS state still
survives in large J .

(ii) For the cases with two different Fermi momenta, similar
RG analyses have been done.7,8,16,17 Our main contribution for
this case is that we identify the ground states for our specific
model and interactions. The ground state in the physically
relevant region is the s ′BDW state for large J and the D-Mott
state for small J at half-filling (Fig. 5). These phases are robust
to velocity differences. The surprising result here is that we
have locally low-spin configurations even when J > 0, while
completely degenerate bands give high-spin states RT and d ′SS
in the same parameter regime. We think the low-spin configura-
tions are achieved by the destructive interference between two
different Fermi momenta, and therefore, the complete orbital
degeneracy is crucial to have locally high-spin states. When
the system is away from half-filling, a Luttinger-liquid phase
becomes dominant, although we observed the s ′CDW phase
for very small J (Fig. 6). This density-wave state is wiped away
by velocity difference and replaced by the Luttinger-liquid
state. When only a single band is commensurate, the system
exhibits an orbital-selective charge-gapped state due to the
intraband umklapp process, while all the other modes remain
massless (Fig. 7).

We also investigated the charge-orbital model obtained as a
result of full spin polarization. The model can be mapped to a
Hubbard model with an effective interaction Ueff = U − 3J .
For the repulsive side, we find that the FM + ODW phase with
massless charge and orbital modes is stable at most of the fill-
ings. When two bands are equivalent, we have a charge gap at
n = 1, while we expect an orbital-selective Mott phase around
n = 1 for inequivalent bands. The attractive side is dominated
by orbital-singlet superconductivity with an orbital gap when
two bands are equal. On the other hand, for inequivalent bands,
orbital-singlet and -triplet superconductivity have the longest
correlation, and the orbital gap is absent. The charge gap does
not develop in the attractive side.

Finally, we refer to possible experimental consequences.
From the band calculation, it is plausible that the real Co

nanowires exhibit a ferromagnetic state, meaning that the
system has relatively strong correlations.52 In particular, since
U is much larger than J in real materials, we guess the best
possible ground state is a ferromagnetic orbital density wave
from the discussion in Sec. VII. Of course, we have to note that
the result is based on strong assumptions such that the system
is fully spin polarized, and that the number of the bands is just
two.
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APPENDIX A: ABELIAN BOSONIZATION

In this Appendix, we briefly recall formulas from Abelian
bosonization, which are needed in the text.31–33,53 The
following formula gives transformation from a fermionic
Hamiltonian to a bosonic Hamiltonian:

ψmσr = ηmσ√
2πα

e∓i�mσr , (A1)

where m = A,B is orbital and r = R,L is chirality. The
bosonic fields satisfy the commutation relations

[�mσR(L)(x),�m′σ ′R(L)(x
′)] = ±iπδmm′δσσ ′sgn(x − x ′),

(A2)
[�mσR(x),�m′σ ′L(x ′)] = iπδmm′δσσ ′ .

The Majorana fermions take care of the fermionic properties
and obey anticommutation relations

{ηmσ ,ηm′σ ′ } = 2δmm′δσσ ′ . (A3)

A more convenient representation is given by the nonchiral
fields

φmσ ,θmσ = 1
2 (�mσL ± �mσR). (A4)

They are connected to density and current as ∇φ ∝ n and
∇θ ∝ j , and satisfy commutation relations

[φmσ (x),φm′σ ′(x ′)] = [θmσ (x),θm′σ ′(x ′)] = 0,
(A5)

[φmσ (x),θm′σ ′(x ′)] = iπδmm′δσσ ′�(x ′ − x),

where �(x) is the Heaviside step function. Finally, we move
to different combinations of these fields:⎡⎢⎣ φc0

φcπ

φs0

φsπ

⎤⎥⎦ = 1

2

⎡⎢⎢⎢⎣
1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

⎤⎥⎥⎥⎦
⎡⎢⎣φA↑

φA↓
φB↑
φB↓

⎤⎥⎦, (A6)

where μ = (c,s) represents charge and spin modes, and ν =
(0,π ) gives the bonding/antibonding basis. θ ’s are transformed
in the same manner.

The sign of each coupling constant is determined by
Klein factors and by a commutator between different chiral-
ity [�R,n(x),�L,n′ (x ′)] = iπδn,n′ . The eigenvalues of Klein
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factors composed of two Majorana fermions (different from
those introduced for refermionization) are taken to be

i = ηAsηBs = ηA↑ηA↓ = ηA↑ηB↓ = ηB↑ηA↓ = −ηB↑ηB↓.

(A7)

APPENDIX B: RG EQUATIONS FOR UNEQUAL
VELOCITIES

When two Fermi velocities are different, it is more conve-
nient to use current operators than using refermionization. We
follow the notation of Ref. 7 with slight modification:

Jmr =
∑
ss ′

ψ†
msrψms ′r , Jmr =

∑
ss ′

ψ†
msrσss ′ψms ′r , (B1)

Lr =
∑
ss ′

ψ
†
AsrψBs ′r , Lr =

∑
ss ′

ψ
†
Asrσss ′ψBs ′r , (B2)

Mmr = −iψm↑rψm↓r , Nrss ′ = ψrAsψrBs ′ . (B3)

When kA �= kB , the interaction terms are given by

−Hint = g̃1ρJARJAL + g̃1σ JAR · JAL

+ g̃2ρJBRJBL + g̃2σ JBR · JBL

+ g̃xρ (JARJBL + JBRJAL)

+ g̃xσ ( JAR · JBL + JBR · JAL)

+ g̃tρ(LRLL + H.c.) + g̃tσ (LR · LL + H.c.). (B4)

This expression is formally the same as that given in Ref. 7.
When kA = kB , we have additional processes

−H′
int = g̃aρ(LRL

†
L + H.c.) + g̃aσ (LR · L†

L + H.c.). (B5)

Umklapp processes are allowed when the filling is commen-
surate (n = 2):

−H′′
int = g̃1u(MARM

†
AL + H.c.) + g̃2u(MBRM

†
BL + H.c.)

+ g̃xu(MARM
†
BL + MBRM

†
AL + H.c.)

+ g̃tuρ(N †
RαβNLαβ − N

†
RαβNLβα + H.c.)

+ g̃tuσ (N †
RαβNLαβ + N

†
RαβNLβα + H.c.). (B6)

The g̃1u and g̃2u processes are allowed only when each band has
commensurate filling, i.e., km = π/2. We ignore all the chiral
scattering processes since they only renormalize the velocities.

In the following, we use the renormalized coupling con-
stants yi = g̃iπ

−1(vA + vB)−1. The RG equations for the

kA = kB = π/2 case are

ẏ1ρ = −β
(
y2

aρ + 3y2
aσ + 3y2

tuσ + y2
tuρ − y2

tρ − 3y2
tσ

) − αy2
1u,

ẏ2ρ = −α
(
y2

aρ + 3y2
aσ + 3y2

tuσ + y2
tuρ − y2

tρ − 3y2
tσ

) − βy2
2u,

ẏxρ = y2
aρ + 3y2

aσ − 3y2
tuσ − y2

tuρ − y2
tρ − 3y2

tσ − y2
xu, (B7)

ẏ1σ = −2β[yaσ (yaσ + yaρ) + ytuσ (ytuσ + ytuρ)

+ ytσ (ytσ − ytρ)] − 4αy2
1σ ,

ẏ2σ = −2α[yaσ (yaσ + yaρ) + ytuσ (ytuσ + ytuρ)
(B8)

+ ytσ (ytσ − ytρ)] − 4βy2
2σ ,

ẏxσ = −2[yaσ (yaσ − yaρ) + ytuσ (ytuσ − ytuρ)

+ ytσ (ytσ + ytρ)] − 4y2
xσ ,

ẏtρ = −2ytuρyxu + ytρyc− + 3ytσ ys−,
(B9)

ẏtσ = 2ytuσ yxu + ytρys− + ytσ (yc− − 2ys+),

ẏaρ = −ytuρ(αy1u + βy2u) − yaρyc− − 3yaσ ys−,
(B10)

ẏaσ = −ytuσ (αy1u + βy2u) − yaρys− − yaσ (yc− + 2ys+),

ẏ1u = −4(3βyaσ ytuσ + βyaρytuρ + αy1uy1ρ),

ẏ2u = −4(3αyaσ ytuσ + αyaρytuρ + βy2uy2ρ), (B11)

ẏxu = 4(3ytσ ytuσ − ytρytuρ − yxuyxρ),

ẏtuρ = −yaρ(αy1u + βy2u) − 2ytρyxu − ytuρyc+ − 3ytuσ ys−,

ẏtuσ = −yaσ (αy1u + βy2u) + 2ytσ yxu (B12)

− ytuρys− − ytuσ (yc+ + 2ys+),

where we defined yc(s)± = αy1ρ(σ ) + βy2ρ(σ ) ± 2yxρ(σ ) with
α = (vA + vB)/(2vA) and β = (vA + vB)/(2vB). For doped
cases, and kA �= kB cases, the coupling constants that are not
allowed by momentum conservation should be removed.

As we mentioned, the asymptotic behavior of a RG flow is
captured by the ansatz (55), and now the ratios of coupling
constants at fixed points depend on velocity differences.
However, we can easily distinguish phases with different fixed-
point structure by looking at the signs of relevant couplings
and irrelevant couplings. In that sense, we identify phases as
the same ones when the relevant couplings and the signs are
the same. When the relevant couplings are different, or the
signs of renormalized couplings are different, we regard them
as different phases.
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