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Fermi-level pinning can determine polarity in semiconductor nanorods
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First-principles calculations of polar semiconductor nanorods reveal that their dipole moments are strongly
influenced by Fermi-level pinning. The Fermi level for an isolated nanorod is found to coincide with a significant
density of electronic surface states at the end surfaces, which are either mid-gap states or band-edge states. These
states pin the Fermi level, and therefore fix the potential difference across the rod. We provide evidence that
this effect can have a determining influence on the polarity of nanorods, with consequences for the way a rod
responds to changes in its surface chemistry, the scaling of its dipole moment with its size, and the dependence
of polarity on its composition.
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I. INTRODUCTION

Semiconductor nanostructures in solution are a very excit-
ing class of material due to our growing ability to manipulate
their shapes and sizes, and the superstructures into which they
assemble, to produce a wide range of technologically useful
properties.1–7

Nanocrystals of binary semiconductors, such as those
of ZnO, have been observed to exhibit very large dipole
moments8–10 which affect their internal electronic structure
(and therefore their optical properties) as well as their
interactions with their environment. The latter may influence
the kinetics of self-assembly and the stability of the structures
formed.11

A detailed understanding of the factors contributing to this
polarity in nanocrystals has proven elusive12 for two main
reasons. First, many factors are involved, ranging from surface
chemistry, to the noncentrosymmetric nature of the underlying
crystal, to quantum confinement, to long-range electrostat-
ics, to interactions with the solvent and considerations of
thermodynamic stability. Second, the limitations of current
experimental techniques do not allow the level of control over,
or knowledge of, the state of the system, which is necessary to
be able to disaggregate these factors.

Computer simulation is an ideal tool for addressing
these problems.13–16 Recent developments in linear-scaling
density-functional theory (LS-DFT), make accurate quantum-
mechanical methods applicable to nanocrystals of realistic
sizes.

In our earlier work17 we presented results from LS-DFT
calculations using the ONETEP code18,19 of the ground-state
charge distributions in GaAs nanorods of sizes comparable to
those found in experiments. We found that the nanorod dipole
moment depends strongly on the surface termination, partic-
ularly of its polar surfaces, with full hydrogen termination on
polar surfaces strongly reversing its direction.

A common feature of all of the nanorods studied was that
the Fermi energy was found to coincide with a significant
density of states located at the end surfaces of the rods.
Fermi-level pinning (FLP) is known to occur in semi-infinite
semiconductor surfaces when states are found at the Fermi
energy, and in this work we show that a finite-surface version of
FLP plays a crucial role in determining the polar characteristics
of such nanorods.

In Sec. II we outline the simulation details and methodol-
ogy. In Sec. III we show that mid-gap states on the end surfaces
of the rod can pin the Fermi energy, which in turn determines
the potential difference across the nanorod, and therefore its
dipole moment.

In Sec. IV we take up an important observation from our
previous work, namely that nanorods terminated on their ends
with ions of very different ionic charge can nevertheless have
very similar dipole moments. This observation is particu-
larly problematic for simple ionic or bond-electron counting
models,12 which can fail to predict the dipole moments as a
result. These models are not able to explain the magnitudes
of the differences in polarity between nanorods of different
surface terminations. We show that our FLP model can
rationalize these observations.

In Sec. V we calculate the variation of nanorod polarization
with rod length and cross-sectional area. The dipole moment is
found to increase with nanorod size in a manner consistent with
maintaining a “pinned” Fermi level at the end polar surfaces
of the nanorod.

Finally, in Sec. VI we study the variation in polarity between
nanorods of different compositions (specifically GaAs, GaN,
and AlN), again illustrating the determining role of FLP for
the rod polarizations.

II. SIMULATION METHODOLOGY

This work uses linear-scaling density-functional theory
(LS-DFT) as implemented in the ONETEP code.18,19 This
method combines the benefits of linear scaling, in that
computational resources for calculating the total energy of
an N -atom system scales as O(N ), with the accuracy of
plane-wave methods.20 In ONETEP the single-particle density
matrix is represented by an optimized set of nonorthogonal,
strictly localized, Wannier-like orbitals {φα(r)}, and is written

ρ(r,r′) =
∑

αβ

φα(r)Kαβφ∗
β(r′), (1)

where Kαβ is the density kernel representing a generalization
of the occupation numbers to a nonorthogonal basis. Both
the local orbitals and the density kernel are optimized during
the calculation. The three tuneable parameters controlling the
quality of the representation are21 the “plane-wave” cutoff
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energy Ecut, defining the grid-spacing for the grid on which
the local-orbitals are represented; the local-orbital cutoff radius
Rφ for each atomic species; and the density kernel cutoff radius
RK .

Exchange and correlation is treated within the local
density approximation (LDA). Errors resulting from the
supercell approximation, which can be large in systems
with a monopole or a strong dipole, are eliminated using a
truncated Coulomb potential.22,23 Basis-set superposition error
that could affect the treatment, within a local-orbital frame-
work, of surface adsorption is eliminated by the optimization
procedure.24

A further advantage of our method over other computational
methods that have been used to study nanocrystals16 is that the
whole of the nanostructure is included in the calculation in a
way that allows the electrons throughout the nanostructure to
reach a global equilibrium. We are therefore able to accurately
account for any coupling that may (and in fact does, as we shall
show) occur between different regions of the nanostructure.
We caution that this method presupposes integer occupations,
which precludes partial occupancies of states that might
otherwise occur in a traditional calculation where the system
is treated as metallic. We have also performed test calculations
which permit fractional occupancies (albeit with cubic-scaling
computational cost) on representative smaller systems, which
confirm that the states presented here are indeed lowest in
energy.

Primarily, we study nanorods of wurtzite GaAs (though
we also model GaN and AlN), since it exhibits all of
the important characteristics of a polar semiconductor, i.e.,
elements of both ionic and covalent bonding character and a
noncentrosymmetric lattice structure. Ion cores are represented
using norm-conserving pseudopotentials. It has been shown in
previous work25 that an adequate description of the geometry
of systems containing Ga requires either the explicit inclusion
of the Ga 3d electrons in the calculation, or, if the 3d

electrons are frozen into the pseudopotential, nonlinear core
corrections26 should be applied. To reduce the computational
cost, we have chosen the latter approach for both the Ga and
As pseudopotentials.

An effectively infinite kernel cutoff radius RK was used
in order to treat insulators and metals on an equal footing.
Calculations using plane-wave DFT, as implemented in the
CASTEP code,27 show that setting Ecut = 400 eV is sufficient to
converge bond lengths, bond angles, and total energies of bulk
GaAs, Ga2, and As2 dimers to within 0.02% of their 800 eV
values, using our pseudopotentials. We find that bond lengths
are underestimated by 1.3%, which is typical for LDA. ONETEP

is known to require a 10%–20% larger Ecut than CASTEP for
the same level of convergence,19 thus, the calculations in this
work use Ecut = 480 eV and a generous local orbital radius of
Rφ = 0.53 nm.

For analysis of the dipole moment, we calculate the
quantity d = − ∫

n(r)r dr + ∑
I ZI RI from the density n(r)

in the whole simulation cell, and the positions RI of the
ions of charge ZI . The internal electric field is calculated
from the gradient of the value of the local effective po-
tential smoothed over a volume equivalent to one prim-
itive cell of the underlying material, as in our previous
work.17

III. FERMI-LEVEL PINNING IN NANORODS

We first consider the ground-state electronic structure
of a structurally relaxed nanorod of length 12.8 nm and
cross-sectional area 3.56 nm2, comprising 2862 atoms. The
rod (represented schematically in Fig. 1) is labeled H/H-r,
where the first three symbols (H/H) denote that the lateral/end
surfaces are terminated with hydrogen atoms, and “-r” denotes
that it is structurally relaxed.

This rod has a large negative dipole moment of −600 D and
a large internal field of +0.1 V/nm in the center of the rod.
We adopt the convention that a negative dipole moment is one
whose direction opposes that of the spontaneous polarization
of the underlying wurtzite crystal lattice (the wurtzite [0001]
direction, which is referred to as the z direction in this work).
In Fig. 1 we plot the “slab-wise” local density of electronic
energy states (LDOS) for this rod. We define a slab LDOS
as follows: the rod is nominally divided into 20 slabs along
its length (the z direction), each consisting of four planes of
atoms: two each of Ga and As. The slab LDOS is the sum
of the contributions to the total DOS from the local orbitals
centered on those atoms. In Fig. 1 we superpose these slab
LDOS. It is clear that the electric field shifts the individual
slab LDOS with respect to one another.

The Fermi energy can thus be considered to coincide with
a significant density of states on both polar surfaces of the
nanorod. On the Ga(-H) polar surface these states are mid-gap
states, and on the As(-H) surface, these mid-gap surface states
are adjacent to the conduction band edge. These are very
stable positions for the Fermi level because small deviations

-3 -2 -1 0 1 2 3
Energy (eV)

FIG. 1. (Color online) Structurally relaxed, fully hydrogen ter-
minated GaAs nanorod (left) and the LDOS (right) for each slab,
consisting of four planes of atoms (two As and two Ga). The
filled curves indicate the occupied (valence) states at each slab. The
band-edge states at opposite ends of the rod are seen to coincide in
energy.
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from these positions would cause changes in occupancy of
the surface states, resulting in a redistribution of charge and
a potential opposing the redistribution. This is analogous
to Fermi-level pinning exhibited by some semiconductor
surfaces, in which a group of mid-gap states fixes the Fermi
level at the surface at the position of their average energy
due to the action of surface states as donors or acceptors,
which get filled or emptied to compensate for any change that
may affect the relative position of the Fermi level (e.g., the
application of a voltage). We see this principle in action in
Fig. 1, in that any significant occupancy of the lowest-energy
empty state on the As(-H) surface (which appears to lie below
the Fermi level) would in fact bring it above the Fermi
level due to the change in the electric field produced by
the charge redistribution. Of course, although this filling and
emptying of states can occur unaided in a DFT calculation,
it would, in real systems, depend on the availability of free
charges in the environment, implying an important role for the
solvent.

There are at least two important differences between
FLP on semi-infinite surfaces and the finite end surfaces of
nanorods. First, on surfaces of area A, changes in surface
charge density �σ due to changes in occupancy of surface
states come in discrete amounts (i.e., �σ = e/A), meaning
that the continuous variability of the surface charge density
on semi-infinite surfaces gives way to a discrete variability
on finite surfaces. Second, the analog of the depletion region
associated with FLP is the charged region on the opposite end
of the nanorod, meaning that the two surfaces are coupled.
This second effect may confer an important role on the
environment surrounding the nanorod, which may mediate
the interaction between the coupled ends by facilitating
the transfer of electrons between them as the system is
perturbed.

In our previous work,17 we studied rods with a range of
different polar surface terminations, and with dipole moments
ranging from +330 to −614 D. In all cases, the nanorods
exhibited this same feature of having Fermi levels coinciding
with the energies of large densities of mid-gap states on the
end polar surfaces of the nanorods. The arguments made here
about FLP apply to all nanorods with this feature.

One immediately obvious consequence of this picture is
that the dipole moment and internal field of a nanorod are
dependent on the energies of the pinning states on both ends of
the rod, relative to their local (slab) band edges. The difference
between these relative energies defines how much the energy
spectrum is shifted between the top and bottom ends of the
nanorod, i.e., the potential difference �V between the ends.
If the Fermi level is pinned on both ends of the rod, then the
potential difference �V must also be pinned. We will find, in
each of the subsequent sections in this work, that this pinning
of �V plays a crucial role in determining the polarity of a
nanorod.

The pinning states in rod H/H-r on both ends of the rod
are mid-gap states, though they are adjacent to the band edges
in this case. Different surface reconstructions on the polar
surfaces may remove these mid-gap states or change their
positions relative to the local energy spectra. This could change
the potential difference across the rod and, therefore, the dipole
moment.

IV. EFFECT OF SURFACE CHEMISTRY
ON DIPOLE MOMENT

Another implication of the picture presented above is that
it is overly simplistic to cast the problem of nanorod polarity
in terms of an ionic model, or a simple bond-electron counting
model, since these models do not include constraints on the
potential difference across a nanorod imposed by FLP. In
previous work,17 we found that the dipole moment dz, the
charge on the bottom (As-rich) end Qb, and the electric field in
the middle of the rod Em for two unrelaxed nanorods (labeled
H/H and H/P) were all very similar, despite having surface
terminating species of very different ionic charge. Rod H/H is
fully hydrogen terminated on both the lateral (‖ to z) surfaces
and the polar (⊥ to z) surfaces. Rod H/P, on the other hand, is
terminated with hydrogen atoms on the lateral surfaces, while
on the polar surfaces there are pseudohydrogen28 atoms of
two different varieties. These pseudohydrogen atoms are used
to passivate the dangling bonds of their respective surfaces:
those on the Ga polar surface have an ionic charge of +1.25e,
while those used to terminate the As polar surface have an
ionic charge of +0.75e. These pseudoatoms are intended to
passivate dangling bonds on the polar surfaces, without adding
charge to them, and they have been shown in other work to
render the surfaces electronically inert.28

A simple bond-electron and ion counting argument predicts
that the Ga polar surface on H/P should have an additional
charge of +0.25e for each of the 27 bound pseudoatoms,
compared to H/H—a total change of +6.75e for each end.
Similarly, the As polar surface should have a reduced charge of
−0.25e per pseudoatom—a total change of −6.75e. Nanorod
H/P should therefore have a greatly reduced dipole moment
and potential difference across it. In fact, we observed dz,
Qb, and Em change from −614 D, 1.00e, and 0.100 V/nm
respectively in H/H, to −531 D, 0.95e, and 0.105 V/nm in
H/P—a much smaller change.

We plot the electron density difference between rods H/H
and H/P in Fig. 2. The densities have been integrated in the
x and y directions and convolved with a Gaussian of standard
deviation 0.32 nm in the z direction. The latter process smooths
out variations on length scales smaller than a unit cell length.
By integrating the resulting curve from each end to the center of
the rod, we find that there has been a transfer of 6.70 electrons
from one end of the rod to the other between rods H/H and
H/P, which almost entirely cancels the change in ionic charge.
In Fig. 3, we plot the LDOS of only the top (the Ga-rich polar
end surface) and bottom (the As-rich polar end surface) slabs
of both rods H/H and H/P. By summing the occupations of
the states plotted in this figure, we find that there has been a
change of 6 in the number of occupied states on each end of
the rod between H/H and H/P. The remaining charge transfer
of 0.70e must be associated with the polarization of occupied
states in slabs far away from the ends. This polarization of the
electron density can be observed in the inset to Fig. 2. The
potential difference between the ends �V is very similar for
both rods: 1.8 eV for H/H and 1.5 eV for H/P.

It is instructive to consider a fictitious adiabatic process
in which the ionic charge of the polar terminating species is
slowly tuned so as to go from rod H/P to H/H. The LDOS
on the rod ends begins with the Fermi level at the local band
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FIG. 2. (Color online) The difference in laterally integrated
electron density profiles between H/H and H/P. The standard
deviation of the Gaussian used to smooth the data parallel to the
nanorod axis is 0.32 nm. There has been a shift of 6.70 electrons
from left to right. We show that the majority of this redistribution is
attributable to changes in surface state occupancy.

edge on each end of the rod, adjacent to the electronic states.
Therefore, we have �V ≈ Eg in this case. As the charges
of the terminating pseudoatoms decrease on the Ga end, and
increase on the As end, the energy of nearby electronic states
on the Ga end of the rod must increase, pulling some of those
that lay just below the Fermi level, above it, and vice versa on
the As end. This causes these states to change occupancy and
compensate some of the change in ionic charge. The higher
the density of states at the Fermi level, the less mobile is the
Fermi level (i.e., the more strongly the Fermi level is pinned).
To effect a given shift in the Fermi level, a larger change in
surface ionic charge is required if the density of states is high.
That is to say, energies coinciding with a high density of states
(such as the band edges) represent regions of high stability
for the Fermi level. The transition from H/P to H/H causes
the Fermi energy to run in to the (local) band edges, which is

FIG. 3. (Color online) Local densities of states for the slab of
atoms on the Ga-rich (top) and As-rich (bottom) ends of nanorods
H/H and H/P. The potential difference between the two ends
�V ∼ 1.8 eV for H/H and 1.5 eV for H/P.

why there is very little change in the pinned position of the
Fermi level on both ends, and therefore very little change in
the potential difference �V between the ends of the rod.

The general conclusion from this section is that changes in
nanorod polarity due to changes in ionic charge at the surfaces
of nanorods can be screened out due to FLP occurring at
the ends of the nanorod. This effect tends to preserve the
potential difference between the ends of the nanorod, �V , and
consequently, the dipole moment. The band-gap Eg, in effect,
imposes an approximate upper limit on �V , since the density
of states within the bands is so high that the Fermi level would
be very strongly pinned at its edges.

V. EFFECT OF LENGTH AND CROSS-SECTIONAL
AREA ON DIPOLE MOMENT

In this section, we look at how the dipole moment of
nanorod H/H varies with rod length L, and cross-sectional
area A, and show how it can be explained using our FLP
model.

We find, from Fig. 4, that the dipole moment increases
roughly linearly with L over the range studied, for rods of
A = 3.56 nm2. This implies that the excess polar surface
ground-state charge density on each end surface is independent
of nanorod length over this range.

In Fig. 5 we show how both the dipole moment and the polar
surface charge density σ on the bottom (As) end surface of the
rod change with A for a fixed nanorod length of L = 12.8 nm.
The charge density σ on the polar end surfaces decreases
rapidly with cross-sectional area, asymptotically approaching
a constant value that may well be slightly above zero for
nanorods of this length (because surfaces of polar thin films,
unlike semi-infinite surfaces, can support a nonzero charge12).

We turn to consider the causes of these scaling relationships,
focusing first on the variation in rod polarization with respect
to A. The slab-LDOS plots in Fig. 6 show that, for all of the
cross-sectional areas studied, the occupied states on the top
surface align closely with the unoccupied conduction band
edge on the bottom surface. In the previous section we argued
that the local band edges represented an effective upper and
lower limit for the Fermi energy on the ends of a nanorod, and
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FIG. 4. The magnitude of the dipole moment increases
linearly with nanorod length for nanorods of cross-sectional area
A = 3.56 nm2.
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FIG. 5. The magnitude of the dipole moment increases with
nanorod cross sectional areas for nanorods of length L = 12.8 nm.
Curves are fitted to the data, with functional forms σ (A) = c1/(

√
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c2 −
√

A + c2
2 ) and dz = c3A/(

√
A + c2 −

√
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2), derived from
Eq. (3). Over this range

√
A 	 c2, placing these rods firmly in the

“thin” regime.

that the polarization of rod H/H, in particular, is constrained
by these band edges (evidenced by the fact that going from
H/P to H/H does not change the dipole moment very much,
because the Fermi level touches the band edges at both ends
of the rod).

In such a rod, the potential difference between its ends, �V ,
is determined mostly by its band-gap Eg, so that �V ≈ Eg. We
will argue that this observation alone can qualitatively account
for the observed trends in dz and σ with A in Fig. 5. While we
do not expect the band gap of equivalent real nanostructures
to match exactly with the DFT gaps we observe (due to the
well-known band-gap error of DFT), we expect qualitatively
the same behavior to emerge.

We can analyze this behavior in terms of a simple
electrostatic model, and compare this to the results in Fig. 5.
The electrostatic potential due to a circular disk of radius a and
area charge density σ at a distance z along its axis is given by

V (z) = 2πσ (
√

a2 + z2 − |z|). (2)

This expression simplifies to the familiar results for a point
charge in the limit that z 
 a and infinite slab when z 	 a.
Assuming equal and opposite densities at the two ends of the
rod, z = 0 and z = L, the total potential difference is �V =
2[V (0) − V (L)] (≈ Eg in this case), which rearranges to give

σ ≈ Eg

4π (a + L − √
a2 + L2)

. (3)

For “thick” rods, a 
 L, σ ∼ Eg/L, independent of a to
leading order, whereas for “thin” rods, a 	 L, σ ∼ Eg/a ∝
Eg/

√
A. The rod dipole moment dz = σAL therefore scales

as dz ∼ EgA for thick rods but as dz ∼ Eg

√
AL for thin rods.

Substituting a ∝ √
A into Eq. (3) yields a general expression

for σ (A), which we fit to the data in Fig. 5. We also fit the
curve given by the expression dz = σAL to the data for dz.

FIG. 6. (Color online) Slab-wise local densities of states for rods
of four different cross-sectional areas, sampled at three positions on
the rod: (top) the slab on the Ga-rich end, (middle) the slab in the
middle of the rod, and (bottom) the slab on the As-rich end. For ease
of comparison, we have shifted the energy of the highest occupied
state for each rod to zero. The Fermi level can be imagined to remain
adjacent to the band edges for all rods, and the band-gap is larger for
thinner rods due to quantum confinement.

Evidence of deviation between our model and the data can
be seen at smaller values of A in the data for dz. The smaller
A is, the larger the error in our model. This is not surprising
because the model assumes that charge is localized on planes
at the ends of the rod, but we know that as A becomes smaller,
the surface charge becomes increasingly delocalized along z.
Furthermore, at small A the rod cross section is increasingly
dominated by edge atoms rather than atoms truly belonging to
the polar surface. For these reasons, a breakdown of the model
is expected at very small values of A. Despite this complication
it is clear from the fitting parameters that our rods are in the
thin regime, as defined above, as the model form correlates
well with the observed behavior. In summary, thinner nanorods
exhibit stronger decay of their internal potential, due to finite
width effects, therefore thinner rods require a larger charge
density on the nanorod ends, in order to generate the required
potential difference �V , than do thicker rods.

There is a second and less significant feature in the LDOS
plots of Fig. 6, that serves slightly to complicate the picture
described above. From the data sets in the middle panel of
Fig. 6, thinner nanorods are found to exhibit a larger local
band gap than thicker rods. The local band gap in the middle
of the rod is found to be 1.3 eV in the thinnest rod, and 0.9 eV in
the thickest. This is due to quantum confinement of electronic
states in the lateral direction, which is stronger in thinner rods.
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As the band gap increases, the potential difference between
the ends of the rod can increase, which further increases the
amount of charge density required on the end surfaces of
the thinner nanorods in order to meet the resulting increased
pinned potential difference.

Although both of these effects (i.e., loss of the internal field
due to finite-size effects, and the increase in the band gap due to
quantum confinement) play a role in generating the behavior
seen in Fig. 5, the first is more significant, since quantum
confinement produces only a 44% increase in the band gap
over the range of rods studied, which does not come close to
accounting for the 740% increase in the polar surface charge
density over the same range.

We return now to the variation in nanorod polarization with
L. We did not observe quantum-confinement-related variation
as was observed over the range of A. Presumably, this is due
to the large extent of the rods in the z direction. However, just
like over the range of A, we found that the Fermi level remains
pinned close to the band edges over the range of L, resulting in
the potential difference between the nanorod ends remaining
constant.

The rods in Fig. 4 are able to maintain the charge on their
ends as L increases, without incurring a significant change
in the potential difference across the rod, because the rod is
very thin, and the internal potential decays very strongly: the
fields in the middle of rods of length 12.8, 25.6, and 51.2 nm
are found to decay to values of 0.1, 0.035, and 0.009 V/nm
respectively in the rod centers. If the rods were thicker, we
would expect this decay to be weaker, and the amount of
charge on the ends to be reduced with L to maintain the pinned
potential difference, thus reducing the rate at which the dipole
moment increases with length.

In summary, FLP plays a determining role in the scaling of
the dipole moment of the nanorods studied, with length and
cross-sectional area. This effect manifests itself in different
scaling behavior, the details of which depend primarily on the
rate of decay of the internal electric field (which is a function of
A), the length L of the rods, and the pinned potential difference
�V , which is close to the size of the band gap for rods in which
the Fermi level is pinned near the local band edges, as is the
case in the particular rods studied in this section. Quantum
confinement may also have some influence on this scaling by
affecting �V .

VI. EFFECT OF NANOROD COMPOSITION

In this section we investigate how the polar behavior of
nanorods depends on composition. We calculate the charge
distribution in three rods: one composed of GaAs, another of
GaN, and a third of AlN. These are all III-V semiconductors,
so their chemistry and response to terminating ligands can be
expected to be similar. We therefore terminate the rods with
the same atoms as in previous sections, as type H/P (lateral
surfaces fully covered with hydrogen atoms, and polar surfaces
fully covered with the appropriate passivating pseudohydrogen
atoms). All have the same number of atoms (2862), and
are constructed of the same number of unit cells in each
direction. Atoms are located at their bulk equilibrium values,
as calculated in the CASTEP plane-wave-DFT code, meaning
that the GaAs rod is longer than the GaN rod, which in turn

TABLE I. Some properties of AlN, GaN, and GaAs in nanorod
and in bulk. Experimental data for AlN were obtained from Refs. 29–
31, for GaN from Refs. 32–34, and for GaAs from Refs. 35,36.

AlN GaN GaAs

Bulk
DFT lattice param a (Å) 3.075 3.154 3.935
DFT lattice param c (Å) 4.941 5.132 6.486
DFT polarization (C/m2) 0.073 0.029 0.005
DFT (LDA) bandgap (eV) 4.5 2.7 0.9
Experimental bandgap (eV) 6.2 3.3 1.5
Experimental permittivity, εr 8.5 9.7 13.1

Rod
Length L (nm) 9.66 10.01 12.61
Cross-sectional area A (nm2) 2.26 2.33 3.62
dz (D) −713 −682 −531
Polarization (C/m2) −0.11 −0.098 −0.039
�V (eV) 4.2 3.2 1.5
Qb (e) 1.61 1.50 0.95
σb (e/nm2) 0.711 0.645 0.262
Qb decay constant (nm−1) 1.02 0.80 0.48

is longer than the AlN rod, because of the differences in bulk
lattice parameters.

The main characteristics of these rods and their charge
distributions are summarized in Table I, along with reference
information about the bulk properties of these semiconductors.

Figure 7 shows the distributions of charge along the lengths
of the rods for the three nanorods, integrated in the x and y

directions and in the z direction, convolved with a Gaussian of
standard deviation c/2 so as to smooth out variations on length
scales smaller than the length of half a unit cell length c (N.B.,
c is different for each of the rods, as summarized in Table I).

In Fig. 8 we plot the LDOS for the polar surfaces of the
three rods. In all cases, the Fermi level can be imagined as
being pinned by surface states near the band edges, for reasons
outlined in previous sections.

The polarization of the rod appears to increase propor-
tionally with the potential difference across the rod, �V ,
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FIG. 7. (Color online) Laterally averaged and Gaussian-
smoothed charge distributions along the lengths of nanorods of AlN,
GaN, and GaAs. The ordinate has been magnified in the lower panel.
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FIG. 8. (Color online) Local densities of states of the cation-rich
(top three data sets) and anion-rich (bottom three data sets) polar
surfaces of AlN, GaN, and GaAs. For ease of comparison, we have
shifted the energy of the highest occupied state of each rod to zero.

which is positively correlated with the bulk semiconductor
band gap. The nanorod of the largest band-gap semiconductor,
AlN, supports the largest polarization, and the nanorod with
the lowest, GaAs, supports the smallest. However, �V is
not equal to, or proportional to, the bulk band gap. This is
due to two factors: first, the effect of quantum confinement,
described in Sec. V, increases the band gap by an amount
that varies depending on the type of material; and second, the
polar surface states responsible for pinning the Fermi level,
particularly on the bottom surface of the rod, can be seen in
Fig. 8 to lie at different positions relative to the local band
edges in all three rods.

The amount of excess charge on the bottom ends of the rods
Qb is also positively correlated with the semiconductor band
gap. However, it is not proportional to dz, so there must be a
significant difference in how this charge is distributed along
the rods. We measure the decay rate of the long-range tails of
excess charge, which can be seen in the magnified plot in Fig. 7.
Nanorods of higher band-gap materials exhibit a larger decay
constant (Table I), and therefore, stronger localization of their
excess surface charges. This stronger localization is indicative
of the fact that rods of lower-permittivity materials more
strongly concentrate the field lines associated with surface
charge, and therefore exhibit a weaker long-range decay of
their internal electric fields for a given finite cross-sectional
area. Therefore, rods of lower- permittivity materials require
less excess charge density on their ends to attain a particular
potential difference �V (and polarization) than do rods of
higher-permittivity materials. This is a similar argument to
the one in Sec. V, which also concluded that rods exhibiting
weaker decay of their internal fields (i.e., thick rods), require
less excess surface charge density to attain a particular �V .
This effect can be partially incorporated in our model in
Sec. V, by introducing a material-dependent constant of
proportionality that determines the effective cross-sectional
area seen by the electrons for a given geometrical cross-

sectional area. This effective cross-sectional area is larger in
materials of lower permittivity.

VII. SUMMARY AND CONCLUSION

The potential difference across a nanorod due to its large
dipole moment shows up in the LDOS as a shifting of the
energy of the states as one moves along the length of the
rod. In this work and in our previous work,17 it has been
found that nanorods of a variety of surface terminations have
Fermi levels that coincide with a high LDOS at their polar
end surfaces. These are either mid-gap states or states close to
the band edges. In the latter case, this means that the potential
difference across the rod is approximately equal to its local
band gap.

These are very stable positions for the Fermi level because
small deviations from these energies result in changes in
occupancy and a redistribution of charge, which generates a
potential that opposes the initial change. This phenomenon is
a generalization of the FLP effect on semi-infinite surfaces to
structures of small dimensions.

In this work, we provide evidence that FLP plays a
determining role for the polarity of nanorods. Pinning of the
Fermi level results in a pinning of the potential difference �V

across the nanorod, and hence its dipole moment.
We demonstrate that simple ionic or bond-electron counting

models can be inadequate for describing, even qualitatively,
differences in polarity between nanorods of different surface
termination. In particular, we have shown that the effect of
varying the ionic charge on the ends of a rod can be screened
out, due to pinning at the nanorod ends, so as to maintain the
nanorod’s polarity.

We show that FLP can play a determining role in the
scaling of the dipole moment with nanorod size. It is also
able to account for differences in polarity between nanorods
of different composition.

A particularly striking consequence of this effect is that
it implies a crucial role for the solvent in determining the
properties of a nanorod. Not only does the choice of solvent
determine whether charge can be transferred between the ends
of the nanorod, because it mediates this transfer, but it can also
alter the LDOS on the nanorod ends by changing the surface
chemistry. We propose that this latter effect, coupled with FLP,
could have a dramatic effect on the dipole moment, and hence
the optical properties.

Clearly, the picture discussed in this work could have im-
portant consequences for the response properties of nanorods
in applied electric fields, and in the fields of neighboring polar
nanorods. This could be important, not only for their optical
properties, but also for the energetics of self-assembly of polar
semiconductor nanostructures.
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