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Optically controlled phase gate for two spin qubits in coupled quantum dots
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We present a feasible scheme for performing an optically controlled phase gate between two conduction
electron spin qubits in adjacent self-assembled quantum dots. Interaction between the dots is mediated by the
tunneling of the valence hole state, which is activated only by applying a laser pulse of the right polarization
and frequency. Combining the hole tunneling with the Pauli blocking effect, we obtain conditional dynamics
for the two quantum dots, which is the essence of our gating operations. Our results are of explicit relevance to
the recent generation of vertically stacked self-assembled InAs quantum dots, and show that by a design which
avoids unintended dynamics the gate could be implemented in theory in the 10-ps range and with a fidelity over
90%. Our proposal therefore offers an accessible path to the demonstration of ultrafast quantum logic in quantum
dots.
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I. INTRODUCTION

Self-assembled semiconductor quantum dots (SAQDs)
possess many properties similar to real atoms, while simul-
taneously providing highly tunable properties for controlling
and manipulating individual electron spins.1,2 Such SAQDs
are promising candidates as qubits for quantum computation,
owing in part to the long coherence time3–5 and high speed for
optical coherent control.6,7 Recently, much progress has been
made using dot spin qubits to satisfy the DiVincenzo criteria
for quantum computation,8 such as spin initialization,9–11 the
coherent manipulation of electron spins,6,12 and fast spin
nondestructive measurement.13

A fundamental element in quantum computation is the
entangling two-qubit quantum gate. A number of theo-
retical protocols for two-qubit gate have been proposed,
including through optical Rudemann-Kittel-Kasuya-Yoshida
interaction,14 Coulomb or tunneling interactions between
excited state in neighboring dots,15–18 long-range coupling
through waveguide-cavity system,19 and phonon-assisted
Zeno effect.20 These schemes have yet to be demonstrated
experimentally, however.

Recently, ultrafast optical entanglement control utilizing
the ground-state conduction electron tunneling between two
quantum-dot spins was experimentally realized.21 In this
paper, we investigate an approach that takes advantage of the
same type of vertically stacked SAQDs in order to entangle
the two conduction electron spins in the dots, using the excited
valence hole tunneling as a means to couple the two electron
spins. By adjusting the voltage of the Schottky diode which
houses the dots so that the two hole levels line up when one
of the two electrons are optically excited into a trion, we
avoid the tunnel coupling of the two-electron spin qubits when
there is no optical excitation. This method enables simpler
single-qubit operations. The key physics to accomplish a
controlled phase gate is an optical rotation of only one basis
state of the two spins to change its sign, utilizing Pauli blocking
to prevent the unwanted transformation of the remaining three
basis states. Our computed results indicate that by using
three laser pulses a controlled phase gate with a fidelity

exceeding 90% can be implemented on a time scale as short
as 10 ps.

II. THE BASIC MODEL

The sample under study contains two vertically coupled
SAQDs embedded in a Schottky diode structure (Fig. 1).22–24

The two vertically stacked self-assembled InAs/GaAs quan-
tum dots (QDs) are separated by a thin GaAs barrier such
that the electrons or holes can tunnel between the two dots.
The two QDs have different thicknesses so that they have
different optical transition energies. As a result they can be
optically addressed separately with resonant laser frequencies.
The nominal height of dot 1, h1, is greater than that of dot
2, h2, so that dot 1 exhibits the lower transition energy. This
allows the hole levels to be brought into resonance by adjusting
the Schottky diode voltage V , while the electron level of dot
2 is shifted to a higher energy than that of dot 1. This is
a preliminary step and not part of the quantum information
processing.

Figure 2 shows the electron spin states and the lowest trion
levels for each QD.11,25,26 The qubit states are |↑〉 and |↓〉,
parallel or antiparallel to the x axis (the growth and optical
axis). The interband transition is to the trion state, consisting
of two electrons in a singlet state and a heavy hole. The two
trion levels are |↑↓⇑〉 = 1√

2
(|↑↓〉 − |↓↑〉)|⇑〉 and |↑↓⇓〉 =

1√
2
(|↑↓〉 − |↓↑〉)|⇓〉, where |⇑〉 = | 3

2 , 3
2 〉 and |⇓〉 = | 3

2 , − 3
2 〉

denote heavy hole states with spin 3/2 and −3/2 components
along x. Optical selection rules dictate that the σ+ polarization
could couple the transition from |↑〉 to |↑↓⇑〉, and the σ−
polarization could couple the transition from |↓〉 to |↓↑⇓〉.
Here, we have neglected hole mixing and assumed that the
in-plane magnetic field is zero, conditions to be relaxed later.

III. IMPLEMENTATION OF A TWO-QUBIT PHASE GATE

Among the entangling two-qubit quantum gates, one which
is well suited for realizing with atomlike systems such as QDs
is the phase gate. The ideal phase gate aims at a phase change
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FIG. 1. (Color online) Schematic diagram of the vertically cou-
pled QD system.22,23 The height of the dot 1 is h1, that of dot 2 is
h2, and the interdot barrier is d . The hole levels can be brought into
resonance by adjusting the Schottky diode voltage V .

in the basis state |↑〉1|↓〉2 without affecting the phases of the
other three states. It should also preserve the phase coherence
of a superposition of the four QD spin states. This operation
is a unitary transformation:

|↓〉1|↓〉2 → |↓〉1|↓〉2,

|↓〉1|↑〉2 → |↓〉1|↑〉2,
(1)

|↑〉1|↓〉2 → −|↑〉1|↓〉2,

|↑〉1|↑〉2 → |↑〉1|↑〉2.

We use the convention that the vertical arrows in the first and
second kets are, respectively, the directions of the spins in dot
1 and dot 2.

To obtain the two-qubit phase gate, we first use a σ−
polarized π pulse to excite the dot 1 spin down state to the trion
state. After waiting for a time interval allowing the hole of the
trion state to tunnel from dot 1 to dot 2, we apply a σ− 2π laser
pulse to rotate the dot 2 spin-down state via its trion state. The
Pauli blocking given by the tunneling hole guarantees that only
the |↑〉1|↓〉2 state of the two spins undergoes 2π Rabi rotation

FIG. 2. (Color online) The level diagram of a charged QD with
the one-electron spin states and the optically allowed transitions to
the trion states. The short solid arrows represent electrons and the
short open arrows represent heavy holes. All the arrows are aligned
in the x direction. Long arrows with solid lines indicate allowed
optical transitions with σ+ and σ− denoting two orthogonal circular
polarizations. Long arrows with dotted lines and the crosses (X)
denote optical transitions are forbidden.
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FIG. 3. (Color online) The gate operation process and dynamics
of the system under different initial states. The labels (i)–(v)
correspond to the operation steps. τ is the hole tunneling between
the two dots. (a)–(c) (i) If the electron in QD 1 is spin down, the trion
state can be excited by the laser pulse �π

1 (t), thus the state |↓〉1|m〉2

(m = ↓, ↑) to |↓↑⇓〉1|m〉2. (ii) The hole of the trion in QD 1 tunnels
to the QD2, thus the state |↓↑⇓〉1|m〉2 to |↓↑〉1|⇓m〉2. (iii) The laser
pulse �2π

2 (t − T0) performing a 2π rotation between |↑〉1|↓〉2 and
|↑〉1|↓↑⇓〉2 acquiring the π phase shift, while transition of state
|↓↑〉1|↓⇓〉2 is forbidden because of Pauli blocking (denoted by the
large X). Ideally, the same pulse does not cause the transition between
|↓↑〉1|⇓↑〉2 and |↓↑〉1|φ〉2 (where φ denotes the vacuum state)
because excited energy difference between exciton and trion � makes
this transition to be off resonance. (iv) The state |↓↑〉1|⇓m〉2 tunnels
back to |↓↑⇓〉1|m〉2. (v) The laser pulse �π

1 (t − 2T0) deexcites the
trion state in dot 1, thus the state |↓↑⇓〉1|m〉2 back to |↓〉1|m〉2. (d) If
the electrons in both QDs are spin up, they are not affected by the σ−

polarized laser pulses.

and acquires the −1 factor, thus realizing a conditional phase
gate. After allowing the hole tunnels back to QD 1, we use
another π laser pulse to deexcite the trion state in dot 1. The
system will return to its original state with a controlled phase
shift. Figure 3 shows the gate operation process and dynamics
of the system under different initial states. The detailed gate
operation process are as follows.

(i) An ultrafast σ− polarized π pulse [marked �π
1 (t)] is

applied to excite the dot 1 spin-down state to the trion state,
thus, the state |↓〉1|m〉2 (m = ↓, ↑) to −i|↓↑⇓〉1|m〉2 (for
details, see the Appendix).

(ii) We utilize the free evolution of the tunnel process
by the Hamiltonian (in the subspace of two tunneling states
[|↓↑⇓〉1|m〉2, |↓↑〉1|⇓m〉2])

Ht =
(

0 τ

τ 0

)
, (2)
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where τ is the hole-tunneling rate between the two dots. After
a precise time t1 = T0 = π/(2τ ), the state −i|↓↑⇓〉1|m〉2 will
evolve to −|↓↑〉1|⇓m〉2. In the two steps of the process, the
states |↑〉1|↑〉2 and |↑〉1|↓〉2 are not affected by the laser pulse.

(iii) An ultrafast σ− polarized 2π pulse [marked �2π
2 (t −

T0)] rotates the single trion state in dot 2. The state |↑〉1|↓〉2

makes a complete 2π rotation through the state |↑〉1|↓↑⇓〉2

and thereby acquires an extra π phase shift,

|↑〉1|↓〉2 → −|↑〉1|↓〉2. (3)

The transition from the state |↓↑〉1|⇓↓〉2 to |↓↑〉1|⇓↓,↑⇓〉2

and back is forbidden by the Pauli exclusion principle.
Ideally, the same pulse does not cause the transition between
|↓↑〉1|⇓↑〉2 and |↓↑〉1|φ〉2 (where φ denotes the vacuum state)
because the excited energy difference between the exciton and
trion � makes this transition to be off resonance. We consider
the possible deviation from the ideal process later.

(iv) We utilize the hole tunneling again. After time
t2 = T0 = π/(2τ ), the state −|↓↑〉1|⇓m〉2 tunnels back to
i|↓↑⇓〉1|m〉2.

(v) Another ultrafast σ− polarized π pulse [marked as
�π

1 (t − 2T0)] deexcites the trion state in dot 1 and thus the
state i|↓↑⇓〉1|m〉2 back to |↓〉1|m〉2. The state |↓〉1|m〉2 is
unchanged by the entire sequence of operations because it is
equivalent to two complete state rotations.

Table I summarizes the state evolution, in which the first
row numbers the operation steps, the second row shows the
time sequence of the pulse, and each subsequent row shows
how the evolution of a basis state in the first column transforms
in time.

The alternate expression for the phase gate in the basis
[| − z〉1| − z〉2, | − z〉1| + z〉2, | + z〉1| − z〉2, | + z〉1| + z〉2]
is

1

2

⎡
⎢⎣

1 1 −1 1
1 1 1 −1

−1 1 1 1
1 −1 1 1

⎤
⎥⎦ ,

and in the basis [|↓〉1| − z〉2, |↓〉1| + z〉2, |↑〉1| − z〉2, |↑〉1| +
z〉2] is

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎦ ,

where | ± z〉 are electron spin states aligned in the z direction.
This expression shows a phase gate in combination with single-
qubit rotations being equivalent to an entanglement gate or the
controlled-NOT gate.

IV. HOLE MIXING AND UNINTENDED DYNAMICS

For error analysis of the gate operation, we now include
the effects of hole mixing and unintended dynamics in our
analysis. From the Luttinger Hamiltonian,27,28 the top four
states of the valence hole, rather than the “bare” heavy-hole
states | 3

2 , ± 3
2 〉, are mixed by confinement,

h
†
±|φ〉 = cos θm

∣∣ 3
2 , ± 3

2

〉 − sin θme∓iφm
∣∣ 3

2 , ∓ 1
2

〉
, (4)

where | 3
2 , ∓ 1

2 〉 are light-hole states aligned in the x direction,
and θm and φm are mixing angles. With the mixing, the light-
matter interaction Hamiltonian for σ− polarized light with
Rabi frequency �(t) becomes

H− = �(t)

2

∑
i=1,2

(cos θme
†
i↑h

†
i− −

√
1/3 sin θme−iφme

†
i↓h

†
i+)

+ H.c., (5)

where i = 1, 2 denote the two QDs. A σ+ polarized laser pulse
with Rabi frequency �(t) has the Hamiltonian

H+ = �(t)

2

∑
i=1,2

(cos θme
†
i↓h

†
i+ −

√
1/3 sin θmeiφme

†
i↑h

†
i−)

+ H.c., (6)

where the factor of
√

1/3 in the second term comes from the
different weights of in-plane components of the valence-band
wave functions. However, by adjusting the polarizations of the
laser, one may establish the actual axis about which the laser
pulse will rotate the state.29 Instead of σ− polarized pulse, the
new one has the polarization

σ = (1 − 2/3 sin2 θm)−1/2

× (cos θmσ− +
√

1/3 sin θme−iφmσ+), (7)

and Rabi frequency �(t), the Hamiltonian can be written as

Hσ =
∑
i=1,2

�eff

2
e
†
i↑h

†
i− + H.c., (8)

with the effective Rabi frequency

�eff = �(t)(1 − 2/3 sin2 θm)1/2. (9)

Thus, θm and φm can be obtained by data fitting after measuring
the effective Rabi frequencies of laser pulses with different
polarizations. The effect of hole mixing is to slightly decrease
the effective Rabi frequency �eff, and this can simply be
compensated by a proportionate increase in �(t). Use of this
new polarization therefore allows us to account for the effects
of hole mixing and proceed directly as outlined in the previous
sections.

TABLE I. The operation steps, pulse sequence, and state evolution.

Operation step (i) (ii) (iii) (iv) (v)
Pulse �π

1 (t) t1 �2π
2 (t − T0) t2 �π

1 (t − 2T0)

|↓〉1|↓〉2 −i|↓↑⇓〉1|↓〉2 −|↓↑〉1|⇓↓〉2 −|↓↑〉1|⇓↓〉2 i|↓↑⇓〉1|↓〉2 |↓〉1|↓〉2

|↓〉1|↑〉2 −i|↓↑⇓〉1|↑〉2 −|↓↑〉1|⇓↑〉2 −|↓↑〉1|⇓↑〉2 i|↓↑⇓〉1|↑〉2 |↓〉1|↑〉2

|↑〉1|↓〉2 |↑〉1|↓〉2 |↑〉1|↓〉2 −|↑〉1|↓〉2 −|↑〉1|↓〉2 −|↑〉1|↓〉2

|↑〉1|↑〉2 |↑〉1|↑〉2 |↑〉1|↑〉2 |↑〉1|↑〉2 |↑〉1|↑〉2 |↑〉1|↑〉2
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In order to avoid the unintended excited transition
|↓↑〉1|⇓↑〉2 → |↓↑〉1|φ〉2 caused by the ultrafast laser pulse
�2π

2 (t), we propose a remedy by pulse shaping.30 Instead of a
2π single pulse �2π

2 (t), we use a combination of two phase-
locked pulses of σ− polarization, resonant respectively with
the transitions |↑〉1|↓〉2 → |↑〉1|↓↑⇓〉2 and |↓↑〉1|⇓↑〉2 →
|↓↑〉1|φ〉2,

�2(t) = �0
2(exp[−(t/s)2 − iε2t]

− exp[−(t/s1)2 − i(ε2 + �)t]), (10)

where ε2 (ε2 + �) is the trion (exciton) excited en-
ergy of QD 2. We choose the parameters satisfying the
conditions

�0
2(s − s1 exp[−(�s1/2)2]) = √

π ,
(11)

s1 − s exp[−(�s/2)2] = 0,

so that the pulse can produces a 2π rotation for trion resonance
|↑〉1|↓〉2 → |↑〉1|↓↑⇓〉2 and brings the exciton pseudospin to
the original state |↓↑〉1|⇓↑〉2.

Other sources of error are the spontaneous emission and the
laser intensity-dependent dephasing as a function of tempera-
ture. The dominant spontaneous emission path is the direct re-
combination exciton pair e+

↑ h+
↓ in the states |↓↑⇓〉1|m〉2 (m =

↓,↑,|↓↑〉1|⇓↑〉2, and |↑〉1|↓↑⇓〉2. Experiments31,32 showed
laser intensity dependence of the exciton Rabi oscillations. The
temperature-independent effect31 is unimportant for control.
We examine the temperature-dependent effect,32 which gave
the additional rate of exciton pure dephasing 
2 ≈ AT �2(t)
due to the exciton-phonon interaction, where A is a constant, T
is the temperature, and � is the average Rabi frequency of each
pulse. We assess the effects through the numerical integration
of the master equation for the system in the Lindblad form.20,33

Experiments have shown that the lifetime of the exciton is
of the order of te = 1 ns.34,35 We choose the laser pulses,
�π

1 (t) =
√

π

2s
exp[−t2/s2 − iε1t], where ε1 is the trion excited

energy of QD 1, �2(t) is defined by Eqs. (10) and (11), with
s = 0.2 ps, � = 4 meV,36 and the tunneling τ = 2 meV,24

T0 = π/(2τ ) = 3.27 ps, T = 1 K, A = 11 fs K−1 taken from
Ref. 32. For the initial state

|�0〉 = 1
2 (|↓〉1|↓〉2 + |↓〉1|↑〉2 + |↑〉1|↓〉2 + |↑〉1|↑〉2),

(12)

the dynamics of the density matrix elements ρ(|↓〉1〈↓| ⊗
|↓〉2〈↓|), ρ(|↓〉1〈↓| ⊗ |↑〉2〈↑|), ρ(|↑〉1〈↑| ⊗ |↓〉2〈↓|), and
ρ(|↑〉1〈↑| ⊗ |↓〉2〈↑|) are shown in Fig. 4. The figure shows
the key feature of the phase gate that, after the �2(t)
pulse, the joint two-qubit coherence (or off-diagonal element)
ρ(|↑〉1〈↑| ⊗ |↓〉2〈↑|) gains a minus sign. Simultaneously,
the joint “up-down” population, ρ(|↑〉1〈↑| ⊗ |↓〉2〈↓|), returns
to its original value after the 2π rotation. Similarly, both
the “down-down” and “down-up” populations, ρ(|↓〉1〈↓| ⊗
|↓〉2〈↓|),ρ(|↓〉1〈↓| ⊗ |↑〉2〈↑|), return to their initial values
with visible errors after the pulses �π

1 (t) and �π
1 (t − 2T0).

The “up-up” populations, ρ(|↑〉1〈↑| ⊗ |↑〉2〈↑|), not shown in
the figure, are unchanged by the gate operation. The figure
also shows that the total time of implementing the phase
gate is Tg ≈ 7 ps. We calculate the fidelity of the phase gate
F = 0.956. Besides the spontaneous emission, the error of
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FIG. 4. (Color online) Dynamical evolution of selected density
matrix elements for the initial state |�0〉 in Eqs. (10) during the
gate operation via numerical simulation. The selected density matrix
elements are ρ(|↓〉1〈↓| ⊗ |↓〉2〈↓|) denoted by the solid (blue) line,
ρ(|↓〉1〈↓| ⊗ |↑〉2〈↑|) the dotted (red) line, ρ(|↑〉1〈↑| ⊗ |↓〉2〈↓|) the
dashed (green) line, and ρ(|↑〉1〈↑| ⊗ |↓〉2〈↑|) the ×-marked (black)
line.

tunneling time also decreases the fidelity of the gate. For a 10%
error in the tunneling time, the fidelity is further reduced to
F = 0.94.

Figure 5 shows the notable effect of the temperature and
intensity-dependent exciton dephasing on the fidelity of the
phase gate as a function of the pulse duration s and for
the temperatures T = 0–4 K, with the parameters in the
caption.
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FIG. 5. (Color online) Fidelity of the phase gate as a function of
the pulse duration S and for the temperatures T = 0–4 K, with the
parameters � = 4 meV, ge

z = 0.48, gh
z = 0.31, τ = 2 meV, te = 1 ns,

and A = 11 fs K−1 (Ref. 32).
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V. COMPATIBILITY WITH SINGLE-QUBIT
ROTATION

In addition to a two-qubit phase gate, single-qubit rotations
are required to demonstrate universal quantum computing.
In order to make our operation compatible with the single
qubit rotation schemes in Refs. 29 and 37, a static magnetic
field B is required in the z direction (perpendicular to
the growth direction x). The single-qubit operations can be
performed by using off-resonance Raman processes through
the virtual excitation of an exciton of a single dot. The QDs
can be optically addressed separately with resonant laser
frequencies.

The application of the magnetic field renders the qubits in
the phase gate no longer energy eigenstates. Consequently,
the effect of the magnetic field on the fidelity of the gate has
to be examined. The qubit states, |↑〉 = 1√

2
(| + z〉 + | − z〉)

and |↓〉 = 1√
2
(| + z〉 − | − z〉), now precess about the z axis at

the Larmor frequency ge
zμBB/h̄, where ge

z is the effective
electron in-plane g factor and μB is the Bohr magneton.
The excited hole states are |⇑〉 and |⇓〉 and precess at the
frequency gh

z μBB/h̄, where gh
z is the effective hole in-plane

g factor. To find the magnetic-field effect on the phase gate
fidelity, we calculate the dynamics of the system using the
measured values11 ge

z = 0.48, gh
z = 0.31 and the Gaussian

pulses, �π
1 (t) =

√
π

2s
exp[−t2/s2 − iε1t], with �2(t) defined

by Eqs. (10) and (11), � = 4 meV, the tunneling τ = 2 meV,
T0 = π/(2τ ) = 3.27 ps, the trion lifetime te = 1 ns, A = 11
fs K−1, and the temperature T = 1 K. For an initial state |�0〉
in Eq. (12), we plot the phase gate fidelity F as a function
of the magnetic field B and the inverse pulse duration s−1 in
Fig. 6. We can see that the fidelity decreases with increasing
magnetic field, because the bandwidth of the gate pulses must
be larger than the Zeeman splitting. The controlled phase gate
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FIG. 6. (Color online) Contour plot of the phase gate fidelity F

for the initial state |�0〉 in Eqs. (12) as a function of the magnetic field
B and the inverse pulse duration s−1 with the parameters � = 4 meV,
ge

z = 0.48, gh
z = 0.31, τ = 2 meV, te = 1 ns, T = 1 K, and32 A = 11

fs K−1.

can be implemented with a fidelity over 0.90 in the case of
B = 1 T and s−1 = 1 THz.

VI. CONCLUSION

In conclusion, we have proposed a controlled-phase gate
for two coupled SAQDs in the Voigt configuration, which
is compatible with the previously designed single-qubit
rotations.29,37 The speed of our gate is essentially limited
by the hole tunneling between the two QDs. In Ref. 21 the
tunneling of the electron is always coupling the two spins of
QDs, which enables simpler two-qubit rotation while more
difficult single-qubit operations than our scheme. We have
shown that hole mixing can be simply incorporated into this
scheme through a change in laser polarization. The result
shows that we could implement the gate in the 10-ps range and
fidelity over 90%. Our proposal therefore offers an accessible
path to the demonstration of ultrafast quantum logic in
SAQDs.
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APPENDIX: EXCITATION OF THE DOT 1 SPIN-DOWN
STATE TO THE TRION STATE

The coupled SAQDs are illuminated with a σ− circularly
polarized laser pulse propagating in the x direction. The
laser is tuned such that it could create an exciton in the
QD 1, only if its state is |↓〉. This will not affect the
QD 2 because a trion in the smaller dot 2 is tens of
millielectron volts (meVs) higher than dot 1 in energy.21 In
the subspaces [|↓〉1|m〉2, |↓↑↓〉1|m〉2, |↓↑〉1|↓m〉2] (m = ↓,

↑), the Hamiltonian for the QDM under this laser excitation is

H =

⎛
⎜⎝

0 �0
2 0

�0
2 0 τ

0 τ 0

⎞
⎟⎠ , (A1)

where the energy is in units of h̄, �0 is the Rabbi frequency
of the laser pulse, and τ is the hole tunneling rate between
the two dots. Transforming the basis set of the excited hole
states, one in each dot, to a basis of tunneling eigenstates,
|±〉 = 2−1/2(|↓↑↓〉1|m〉2 ± |↓↑〉1|↓m〉2), we have

H =

⎛
⎜⎜⎝

0 �0

2
√

2
�0

2
√

2
�0

2
√

2
−τ 0

�0

2
√

2
0 τ

⎞
⎟⎟⎠ . (A2)
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Starting with the initial state |↓〉1|m〉2, the system evolves at the time t to

|ψ(t)〉 = 1√
2
(
τ 2 + �2

0

/
4
)

⎛
⎜⎜⎜⎝

√
2τ 2 + √

2�2
0

/
4 cos

(
t

√
τ 2 + �2

0

/
4
)

−i�0/2
√

τ 2 + �2
0

/
4 sin

(
t

√
τ 2 + �2

0

/
4
) + τ�0/2 cos

(
t

√
τ 2 + �2

0

/
4
) − τ�0/2

−i�0/2
√

τ 2 + �2
0

/
4 sin

(
t

√
τ 2 + �2

0

/
4
) − τ�0/2 cos

(
t

√
τ 2 + �2

0

/
4
) + τ�0/2

⎞
⎟⎟⎟⎠ . (A3)

At time t0 = π/(2
√

τ 2 + �2
0/4), the state is

|ψ(t1)〉 = 1√
2
(
τ 2 + �2

0

/
4
)

⎛
⎜⎜⎝

√
2τ 2

−i�0/2
√

τ 2 + �2
0/4 − τ�0/2

−i�0/2
√

τ 2 + �2
0/4 + τ�0/2

⎞
⎟⎟⎠ . (A4)

In the case �0  τ , t0 ≈ π/�0, |ψ(t1)〉 ≈ −i√
2
(|+〉 + |−〉) = −i|↓↑⇓〉1|m〉2. So for a sufficiently short-duration π pulse, the

equal combination state of the two tunneling eigenstates, |+〉 and |−〉, is created, which corresponds to a localized trion state
|↓↑⇓〉1|m〉2.
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