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Model quantum Hall states including Laughlin, Moore-Read, and Read-Rezayi states are generalized
into appropriate anisotropic form. The generalized states are exact zero-energy eigenstates of corresponding
anisotropic two- or multibody Hamiltonians, and explicitly illustrate the existence of geometric degree of
freedom in the fractional quantum Hall effect. These generalized model quantum Hall states can provide a good
description of the quantum Hall system with anisotropic interactions. Some numeric results of these anisotropic
quantum Hall states are also presented.
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I. INTRODUCTION

Variational wave functions play a fundamental role in
our understanding of fractional quantum Hall (FQH) effect,
with the Laughlin wave function1 being the most prominent
example. New classes of quantum Hall trial wave functions
have been proposed as correlation functions in various confor-
mal field theories,2,3 by generalizing the clustering properties
of the wave functions,4,5 or as Jack polynomials with a
negative parameter and a matching root configuration.6 For
a long time, it has been understood that the Laughlin wave
function, as well as other FQH trial wave functions, contains no
variational parameter. This understanding is the consequence
of our interest in searching for topologically distinct quantum
Hall wave functions; geometry, as oppose to topology, is
believed to be redundant. Recently one of us7 pointed out
that such topological description of FQH wave functions is not
complete; in his geometrical description, the original Laughlin
wave function is simply a member of a family of Laughlin
states, parameterized by a hidden (continuous) geometrical
degree of freedom. The family of the Laughlin states, with the
geometrical factor as a variational parameter, should provide
a better description of the FQH effect in the presence of either
anisotropic effective mass or anisotropic interaction, which are
present in real materials.

The anisotropic FQH states are of present interest, both
theoretically8–10 and experimentally.11 In Ref. 9, some of
us studied the quantum Hall effects in a fast rotating quasi-
two-dimensional gas of polarized fermionic dipoles. The fast
rotation is equivalent to the high magnetic field according
to the Larmor theorem. And since p-wave interaction for
the polarized fermions is typically very small, unless in
the resonance regime, the only significant interaction is the
dipole-dipole interaction that could be tuned by adjusting the
applied electric and magnetic fields. By tuning the direction of
the dipole moment with respect to the z axis, the dipole-dipole
interaction becomes anisotropic in the x-y plane. Specifically,
the system contains two parameters: the confining strength
determined by the rotation frequency and the tilt angle
determined by the applied field. Thus such systems have highly
tunable anisotropic interactions and are ideal for studies of
anisotropic FQH states. Results in Ref. 9 clearly indicate the

inadequacy of the known variational wave functions in the
description of such states.

As a matter of fact, consideration of possible anisotropic
FQH states has a long history,12–14 with variational wave
functions constructed that are straightforward modifications of
the original Laughlin wave function.12,13 Unlike the original
Laughlin wave function and the states to be discussed here,
however, these earlier anisotropic FQH states are not exact
eigenstates of special two-body Hamiltonians. Interest in such
states was partially motivated by the observation of com-
pressible states with strong anisotropic transport properties
in high Landau levels (LLs).15,16 In all these states, the
rotation symmetry is broken spontaneously. Very recently,
an anisotropic FQH state has been observed at ν = 7/3.11

In this case, the rotation symmetry is broken explicitly by an
in-plane magnetic field, whose direction dictates the transport
anisotropy. Generalizations of the FQH states to spin models
yield the supersymmetric valence bond solid states17 and to
lattice models with zero net magnetic field and full lattice
translation symmetry are also called for to describe fractional
quantum anomalous Hall states and fractional topological
insulators.18

Reference 7 pointed out the existence of a family of
Laughlin states that are zero-energy ground states of a family of
Hamiltonians consisting of projection operators, which depend
on a parameter called guiding center metric. However, the
states themselves were not constructed explicitly, and only
some of their qualitative properties were mentioned briefly.
The main motivation of this work is to explore the construction
of a family of wave functions in closed form with numerical
comparisons to facilitate the study of the geometrical aspects
of anisotropic FQH states as a result of anisotropic interaction
in the planer geometry.

The rest of the paper is organized as follows. In Sec. II, we
introduce the anisotropic LL basis states using the unimodular
transformation. In Sec. III, we focus on the recipe to generate
the anisotropic many-particle states due to the unimodular
transformation. Section IV covers the numerical studies on
various properties of the family of Laughlin states, including
the density profile, pair correlation function, and variational
energy. We summarize the paper in Sec. V.
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II. ANISOTROPIC LANDAU LEVEL BASIS STATES

The original Laughlin wave function was most easily
written down on a disk, using the symmetric gauge in which the
single-particle basis states are angular momentum eigenstates.
The key to explicitly constructing the anisotropic Laughlin
states proposed in Ref. 7 (on a disk) is the usage of a set
of anisotropic LL basis states. We will, however, continue
to use the symmetric gauge, in which the lowest LL (LLL)
wave functions are holomorphic. The same set of basis states
appeared earlier in the consideration of deformation of shape
of quantum Hall liquids in the context of Hall viscosity,19

although the wave functions were not explicitly given. In the
following, we generate them explicitly. In addition, we also
use them to construct the corresponding integer quantum Hall
wave function, as a warm-up for their later application to FQH
states.

Let us start from the eigenvalues problem of a two-
dimensional charged particle subjected into a uniform mag-
netic field B = B ẑ. The one-body Hamiltonian is given by

H0 = 1
2 (m−1)abπaπb, π = p − eA, (1)

where we used the Einstein convention, mab is the cyclotron
effective mass tensor, e > 0 is the charge of the particle, A is
the vector potential of the uniform magnetic field B, and the
dynamical momentum π satisfies

[πa,πb] = iεabh̄
2�−2 (2)

with εab = εab the 2D antisymmetric Levi-Civita symbol and
� = √

h̄/(eB) the magnetic length. In terms of a complex
vector ω, the effective mass tensor can be written as

mab = m (ω∗
aωb + ω∗

bωa), (3)

(m−1)ab = m−1(ωa∗ωb + ωb∗ωa). (4)

We note that the assumption that it is isotropic in the (x,y)
Cartesian coordinate system means

(ωx,ωy) = (ωx,ωy) = 1√
2

(1,i). (5)

The one-body Hamiltonian can now be expressed as

H0 = 1
2h̄ωc(b†b + bb†), (6)

where h̄ωc = h̄2/m�2 is the cyclotron energy and the Landau
orbit ladder operators are given by

b = h̄−1�(ω · π ), b† = h̄−1�(ω∗ · π ), (7)

with [b,b†] = 1. By introducing the “guiding center” coordi-
nates R,

Ra = ra + h̄−1�2εabπb, (8)

which satisfy

[Ra,Rb] = −iεab�2, [Ra,πb] = 0, (9)

we could define a second set of “guiding center” ladder
operators, a and a† that commute with b and b† (and hence
with H0)

a = �−1(ω∗ · R), a† = �−1(ω · R), [a,a†] = 1. (10)

To proceed further, let us choose the vector potential of the
uniform magnetic field in the symmetric gauge,

A = 1
2 B × r = 1

2B(−y,x), (11)

and define the complex coordinate,

z = ω · r
�

. (12)

Let us note that for the case of isotropic mass the complex
coordinate is explicitly given by

z = x + iy√
2�

, (13)

which is not the most standard definition in the literature.
Then we could express the Landau orbit ladder operators as
(neglecting the trivial −i and i),

b = 1
2z + ∂z∗, b† = 1

2z∗ − ∂z, (14)

where ∂zf (z,z∗) is the partial derivative ∂f/∂z|z∗ , etc., and the
“guiding center” ladder operators as

a = 1
2z∗ + ∂z, a† = 1

2z − ∂z∗ . (15)

The Hamiltonian H0 has a rotational symmetry generated
by

L0 = a†a − b†b, [L0,H0] = 0, (16)

where

[L0,x] = iy, [L0,y] = −ix, (17)

[L0,px] = ipy, [L0,py] = −ipx. (18)

Simultaneous diagonalization of H0 and L0 allows a complete
orthonormal basis of one-particle states |ψnm〉 that used to be
constructed as

H0|ψnm〉 = (n + 1
2 )h̄ωc|ψnm〉, (19)

L0|ψnm〉 = (m − n)|ψnm〉, (20)

|ψnm〉 = (a†)m(b†)n√
m!n!

|ψ00〉, (21)

a|ψ00〉 = b|ψ00〉 = 0. (22)

This is, of course, the commonly used basis states associated
with the symmetric gauge.

However, it is possible to construct a set of closely related
but different set of basis states. First, let us write

L0 = L̄ − L, (23)

L = 1
2 (b†b + bb†), H0 = h̄ωcL, (24)

L̄ = 1
2 (a†a + aa†). (25)

The conventional basis is then just the set of the simultaneous
eigenstates of H0 and L̄,

L̄|ψnm〉 = (m + 1
2 )|ψnm〉. (26)

We may write L̄ = L̄(g0), where

L̄(g) = 1

2�2
gabR

aRb, (27)
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and gab is a positive-definite Euclidean metric tensor with det
g = 1. Note that L̄(g0) uses the “Galilean metric” derived from
the effective mass tensor,

mab = m(ω∗
aωb + ω∗

bωa) = mg0
ab. (28)

However, as has been stressed by one of us,7,20 before
specifying the two-body interactions, there is no fundamental
reason to choose a guiding-center basis that is adapted to the
shape of the Landau orbits. There is a more general family of
bases parameterized by a unimodular positive-definite guiding
center metric.7

This metric can be factorized by a complex vector ω̄7

gab = ω̄∗
aω̄b + ω̄aω̄

∗
b,

where the unimodular property that ω̄∗
xω̄y − ω̄xω̄

∗
y = i is the

only constraint. Generally, the complex vector may be written
as

ω̄a = uωa + vω∗
a, uu∗ − vv∗ = 1.

We shall define γ ∗ = v/u with |γ | < 1 and make the gauge
choice that u is real positive. Now the complex vector becomes

ω̄a = (1 − |γ |2)−1/2(ωa + γ ∗ω∗
a), (29)

that determines a unimodular metric gab(γ ),

1

1 − γ ∗γ

(
(1 + γ )(1 + γ ∗) i(γ − γ ∗)

i(γ − γ ∗) (1 − γ )(1 − γ ∗)

)

according to

gab(γ ) = ω̄∗
aω̄b + ω̄aω̄

∗
b. (30)

We can then construct a basis of eigenstates |ψnm(γ )〉 of H0

and L̄(γ ) ≡ L̄(g(γ )), which is accomplished by defining a
new set of “guiding center” ladder operators, also considered
in Ref. 19,

aγ = �−1(ω̄∗ · R), a†
γ = �−1(ω̄ · R), (31)

and explicitly as(
aγ

a†
γ

)
= 1√

1 − γ ∗γ

(
1 γ

γ ∗ 1

)(
a

a†

)
. (32)

This is a Bogoliubov (or “squeezing”) transformation that
preserves the commutation relation [aγ ,a†

γ ] = 1. Then the
new simultaneous eigenstates of H0 and L̄(γ ) are given by

|ψnm(γ )〉 = (b†)n(a†
γ )m√

n!m!
|ψ00(γ )〉, (33)

aγ |ψ00(γ )〉 = b|ψ00(γ )〉 = 0. (34)

Note that |ψnm(0)〉 is the conventional basis |ψnm〉 in Eq. (21).
Since the model quantum Hall states are often defined in the

lowest Landau level (LLL) (n = 0), it is useful to examine the
wave functions ψ0m(γ,r) = 〈r|ψ0m(γ )〉. First of all, from the
LLL property bψ0m(γ,r) = 0, we have

ψ0m(γ,r) = f (z)ψ00(0,r) (35)

with

ψ00(0,r) = (2π )−1/2e−|z|2/2. (36)

Second, from aγ ψ00(γ,r) = 0, we immediately obtain

ψ00(γ,r) = λ1/2e− 1
2 γ z2

ψ00(0,r) (37)

with

λ =
√

1 − |γ |2. (38)

Next let us note that ψ0m(γ,r),[
1
2z − ∂z∗ + γ ∗ (

1
2z∗ + ∂z

)]m

λm
√

m!
ψ00(γ,r),

could be simplified by virtue of the property that bψ00(0,r) =
0, or

∂z∗ [ψ00(0,r)f (z)] = ( − 1
2z

)
ψ00(0,r)f (z) (39)

and aψ00(0,r) = 0, or

∂z[ψ00(0,r)f (z)] = ψ00(0,r)
(
∂z − 1

2z∗)f (z) (40)

and

∂z[e
− 1

2 γ z2
f (z)] = e− 1

2 γ z2
(∂z − γ z)f (z). (41)

Thus we obtain

ψ0m(γ,r) = ψ00(γ,r)
λm

√
m!

(
z + z2

0∂z

)m
1 (42)

= ψ00(γ,r)
λm

√
m!

Wm

(
z,z2

0

)
(43)

with

z2
0 = γ ∗/λ2 (44)

and Wm(z,z2
0) are the polynomials defined by W0(z,z2

0) = 1,
and the recursion relations,

Wm+1
(
z,z2

0

) = (
z + z2

0∂z

)
Wm

(
z,z2

0

)
, (45)

Wm

(
z,z2

0

) = ∂zWm+1
(
z,z2

0

)
/(m + 1). (46)

The first few of Wm(z,z2
0) are given by

W0
(
z,z2

0

) = 1,

W1
(
z,z2

0

) = z,

W2
(
z,z2

0

) = z2 + z2
0,

W3
(
z,z2

0

) = z3 + 3z2
0z,

and the general solutions are given by

W2k

(
z,z2

0

) = k!
(
2z2

0

)k
L

(− 1
2 )

k

( − z2/2z2
0

)
, (47)

W2k+1
(
z,z2

0

) = k!
(
2z2

0

)k
zL

( 1
2 )

k

( − z2/2z2
0

)
, (48)

where L
(α)
k (x) are generalized Laguerre polynomials defined

by

L
(α)
k (x) =

k∑
i=0

�(α + k + 1)

�(α + i + 1)�(k − i + 1)

(−x)i

i!
. (49)

These expressions do satisfy the reclusion relations (45) and
(46), which could be proved by using the following useful
identities for L

(α)
k (x),

L
(α)
k (x) = L

(α+1)
k (x) − L

(α+1)
k−1 (x), (50)
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FIG. 1. (Color online) The density profiles of the generalized LLL
wave functions ψ0m(γ = 1/2,r) with m = 0 (a), m = 1 (b), m = 2
(c), and m = 3 (d).

d

dx
L

(α)
k (x) = −L

(α+1)
k−1 (x), (51)

xL
(α+1)
k−1 (x) = (k + α)L(α)

k−1(x) − kL
(α)
k (x). (52)

Note that for |z|2 � |z2
0|, Wm(z,z2

0) → zm.
The densities |ψ0m(γ,r)|2 defined by the single-particle

orbitals have some noteworthy features. First, the density
profile is anisotropic for γ 	= 0. Take a simple example like
ψ00(|γ |,r),

|ψ00(|γ |,r)|2 ∝ exp

[
− (1 + |γ |)x2 + (1 − |γ |)y2

2�2

]
.

For this Gaussian wave packet, the width along y axis is larger
than the width along x axis, so nonzero |γ | causes stretching
the wave function along some direction. Second, |ψ0m(γ,r)|2
has m zeros as can be seen from Fig. 1 in which we plot the
density profiles |ψ0m(1/2,r)|2 for m = 0,1,2,3. These zeros
are roots of Wm(z,z2

0), and they are aligned along the stretched
direction. In the limit of γ → 0, they collapse to a multiple
root at the origin. Third, the stretching direction is determined
by the phase of the complex number γ , arg(γ ), which is easy
to understand by noting that W3(z,z2

0) = 0 gives rise to three
roots, 0 and ±i

√
3z0. In Fig. 2, we plot |ψ03(eiφ/2,r)|2 with

φ = 0,π/2,π and 3π/2. Thus we realize that the density
profile |ψ0m(γ,r)|2 is equivalent to rotating clockwise the
density profile |ψ0m(|γ |,r)|2 by arg(γ )/2.

It is clear that the single-particle basis states are anisotropic,
with the degree of anisotropy controlled by γ . In addition, the
parameter z0 defined by Eq. (44) determines the splitting of the
multifold zeros in the conventional single-particle basis states,
which would be reflected in the multibody correlation function
of many-body states. Finally, as we will demonstrate below,
it is very natural to use these basis states to construct many-
body states with anisotropic two- and multibody correlations,
which can have lower variational energy than their isotropic
counterparts when interactions are anisotropic.

To proceed further, let us define here the noninteracting ba-
sis states to prepare for the many-body problem. For a bosonic

x( )

y
(

)

−6 0 6
−6

0

6 (a) (b) (c) (d)

FIG. 2. (Color online) The density profiles of ψ03(γ,r) with γ =
eiφ/2 for φ = 0 (a), φ = π/2 (b), φ = π (c) and φ = 3π/2 (d). Note
that the zeros are localized at z = 0 and ±i

√
3z0.

system, the noninteracting basis state in the generalized LLL
is given by

Mμ(γ ) ∝ perm[ψ0μ(γ,r)], (53)

where μ = [μ1,μ2, . . . ,μN ] is a nondecreasing partition and
perm[ψ0μ(γ,r)] is the permanent of the square matrix whose
matrix elements are ψμi

(γ,rj ) (i,j = 1, . . . ,N). For the
fermionic system, the noninteracting basis state is defined by
a Slater determinant,

slμ(γ ) = det[ψ0μ(γ,r)], (54)

where μ is a decreasing partition and det denotes the matrix
determinant.

As a special example, the Slater determinant slμ0 (γ ) with
the partition μ0 = [N − 1,N − 2, . . . ,1,0] is the generalized
N -particle IQH state, whose (unnormalized) expression could
be simplified as

�I (γ ) =
∏
i<j

(zi − zj )
∏

i

ψ00(γ,r i), (55)

as lower-degree polynomials must vanish due to the Pauli
exclusion principle (this is generally not the case for other
partitions, which is the key to understanding the anisotropic
FQH states).

The generalized IQH state can also be viewed as a
coherent superposition of the isotropic IQH state (or simple
Vandermonde determinant state) and its edge states with
angular momentum differences being multiples of 2h̄. This
is achieved by expanding the exponential factor in Eq. (55).
From the viewpoint of the superposition, this is consistent with
the numerical result in Ref. 9.

III. ANISOTROPIC MANY-PARTICLE STATES

In this section, we first consider the two-particle problem
and then simplify the interaction Hamiltonian projected into
the LLL in Sec. III A. More importantly, we present the
recipe to find the anisotropic counterpart of an LLL state
and elaborate it in Sec. III B. We specifically consider the
anisotropic counterpart of the prominent FQH states such as
the Laughlin state in Sec. III C.

A. Two-particle problem and the projected two-body
interaction Hamiltonian

If the interaction is dominated by the energy gap h̄ωc

between the lowest and second Landau levels, the interaction
Hamiltonian could be projected onto the lowest Landau level.
In terms of noncommuting “guiding center” coordinates Ri ,
the projected two-body interaction Hamiltonian we consider
here is given by7

Hint({Vm},γ ) =
∑
m

Vmhm(γ ), (56)

where Vm is the anisotropic Haldane’s pseudopotential and the
projection operator hm(γ ) is given by

hm(γ ) =
∫

d2q�2

π
vm[q,g(γ )]

∑
i<j

eiq·(Ri−Rj ), (57)

vm(q,g) = Lm(gabqaqb�
2) exp

( − 1
2gabqaqb�

2
)
, (58)
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where Lm(x) = L(α=0)
m (x) are the Laguerre polynomials. In

addition, the total angular momentum associated with the
guiding center is given by

L̄(γ ) = 1

2�2

∑
i

gabR
iaRib. (59)

For two particles, the LLL states that simultaneously diag-
onalize L̄(γ ) and the interaction Hint({Vk},γ ) are completely
fixed by symmetry. To clarify this, let us note that

L̄(γ ) = a
†
γ,1aγ,1 + a

†
γ,2aγ,2 + 1

= c†γ cγ + C†
γ Cγ + 1 (60)

with cγ = (a1γ − a2γ )/
√

2 and Cγ = (a1γ + a2γ )/
√

2, and the
only term containing operator in the interaction Hamiltonian,
R1 − R2, contains only cγ and c†γ . Therefore we could expand
L̄(γ ) and Hint({Vk},γ ) in the orthonormal basis

|Mm〉γ = (C†
γ )M (c†γ )m√
M!m!

|00〉γ , (61)

aγ,1|00〉γ = aγ,2|00〉γ = 0, (62)

and find that

Hint({Vk},γ )|Mm〉γ = Vm|Mm〉γ , (63)

L̄(γ )|Mm〉γ = (M + m + 1)|Mm〉γ . (64)

Thus the projected operator hm(γ ) for many-particle system
could be rewritten as

hm(γ ) =
∑
i<j

(∑
M

|Mm〉γ γ 〈Mm|
)

(i,j ) (65)

and in second quantized form as

1

2

∑
M

∑
m1m2m3m4

γ 〈m1,m2|Mm〉γ γ 〈Mm|m3,m4〉γ

g†
m1

g†
m2

gm4gm3 , (66)

with |m1,m2〉γ = |ψ0,m1 (γ )〉 ⊗ |ψ0,m2 (γ )〉 and g
†
m being the

creation operator that creates a particle in state |ψ0m(γ )〉.
For the rotationally invariant case, γ = 0,

�Mm(0,r1,r2) = (z1 + z2)M√
2MM!

(z1 − z2)m√
2mm!

2∏
i=1

ψ00(0,r i)

and the translation into the Heisenberg state is

|Mm〉γ = (a†
1 + a

†
2)M√

2MM!

(a†
1 − a

†
2)m√

2mm!
|00〉γ . (67)

Therefore we find the anisotropic deformation is now easily
achieved by the simple replacement

a
†
i → a

†
γ,i , (68)

and the vacuum state |�0(0)〉 → |�0(γ )〉 that satisfy
aγ,i |�0(γ )〉 = 0. In the next section, we shall utilize this idea
to consider the anisotropic deformation of a general LLL wave
function.

B. Anisotropic many-particle states

The general form of a rotationally invariant N -particle LLL
wave function in the symmetric gauge is

�(r1, . . . ,rN ) = F (z1, . . . ,zN )
∏

i

ψ00(r i), (69)

where F (z1, . . . ,zN ) is a homogeneous multivariate polyno-
mial with F (λz1, . . . λzN ) = λMF (z1, . . . ,zN ) and L̄(0)|�〉 =
(M + 1

2N )|�〉. The translation to the Heisenberg picture yields

|�(γ = 0)〉 = F (a†
1, . . . ,a

†
N )|�0(γ = 0)〉,

(70)
ai |�0(γ = 0)〉 = bi |�0(γ = 0)〉 = 0.

The deformation of this Heisenberg state becomes

|�(γ )〉 = F (a†
γ,1, . . . ,a

†
γ,N )|�0(γ )〉,

(71)
aγ,i |�0(γ )〉 = bi |�0(γ )〉 = 0.

The Schrodinger wave function for this state |�(γ )〉 will have
the form

�(γ,r1, . . . ,rN ) = Fγ (z1, . . . zN )
∏

i

ψ00(r i). (72)

We now need the formal construction of Fγ ({zi}), which
is still holomorphic, but no longer a polynomial. Using the
homogeneity of the polynomial F , the wave function is given
by

λ−MF
({

1
2zi − ∂z∗

i
+ γ ∗( 1

2z∗
i + ∂zi

)})∏
i

λ
1
2 e− 1

2 γ z2
i ψ00(r i).

Using the property aiψ00(r i) = 0, or

∂zψ00(r)f (z,z∗) = ψ00(r)
(
∂z − 1

2z∗)f (z,z∗), (73)

and biψ00(r i) = 0, or

∂z∗ψ00(r)f (z,z∗) = ψ00(r)
(
∂z∗ − 1

2z
)
f (z,z∗), (74)

the holomorphic part Fγ ({zi}) of the wave function becomes

λ−MF ({zi + γ ∗∂zi
})

∏
i

λ
1
2 e− 1

2 γ z2
i .

Using the equality

∂z[e
− 1

2 γ z2
i f (z)] = e− 1

2 γ z2
i (∂z − γ z)f (z), (75)

Fγ turns into(∏
i

λ
1
2 e− 1

2 γ z2
i

)
λMF

({
zi + z2

0∂zi

})
1,

which is easy to understand by noting Eq. (42). Using the
homogeneity of F , we obtain the final result

Fγ ({λ−1zi}) =
(∏

iλ
1
2 e− 1

2 γ z2
i

)
F

({
zi + z2

0∂zi

})
1. (76)

where λ and z2
0 are fixed by γ through Eqs. (38) and (44). This

expression no longer requires homogeneity of F ({zi}), and is
quite general for the deformation of the holomorphic part of a
LLL wave function.

Specially, the anisotropic counterpart of the rotationally
invariant noninteracting basis states (53) and (54):

Mμ(γ = 0), slμ(γ = 0), (77)
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are

Mμ(γ ), slμ(γ ). (78)

Therefore, if we could expand the many-body state �(γ =
0,r1, . . . ,rN ) in the noninteracting basis states Mμ(0) (53) or
slμ(0) (54), ∑

μ

c(b)
μ Mμ(0),

∑
μ

cμslμ(0), (79)

its anisotropic counterpart �(γ,r1, . . . ,rN ) would be∑
μ

c(b)
μ Mμ(γ ),

∑
μ

cμslμ(γ ). (80)

Here, we find the coefficients cμ and c(b)
μ are independent

of γ .
The γ independence of the coefficients results in γ

independence of the occupation number for each orbital

nm = 〈
�

q

L(γ )
∣∣g†

mgm

∣∣�q

L(γ )
〉
.

This also suggests that the entanglement spectrum,21 which
encodes the topological properties of the state, is also invariant,
if the appropriate cut in the space of the total angular
momentum associated with guiding center is chosen. We see
that topological properties of a FQH state are built into the
coefficients (relative weight), which are manifested, e.g., in
the entanglement spectrum calculation. On the other hand,
geometrical properties of the anisotropic FQH states are
encoded into the deformation of the noninteracting basis.
Nevertheless, geometrical information can be revealed by
exploring the properties of the family of variational wave
functions and the corresponding variational energies; this point
will be illustrated by examples in Sec. IV.

C. Anisotropic FQH states

In this section, let us consider some prominent variational
functions such as the Laughlin wave function, Moore-Read
state, and so on. The ν = 1/q Laughlin wave function is given
by

�
q

L(γ = 0) =
∏
i<j

(zi − zj )q
∏

i

ψ00(0,r i), (81)

and its anisotropic counterpart is given by

�
q

L(γ ) =
∏

i

ψ00(γ,r i)
∏
i<j

[
zi − zj + z2

0

(
∂zi

− ∂zj

)]q
1.

(82)

The anisotropic Laughlin states �
q

L(γ ) are the [minimum total
L̄(γ )] zero-energy ground state of the Haldane’s pseudopoten-
tial Hamiltonian Hint({Vm},γ ) with

Vm<q > 0 and Vm�q = 0. (83)

To prove this, we may consider the diagonalization of the
projected interaction Hamiltonian matrix and note the γ

independence of the matrix elements

〈slμ(γ )|Hint({Vm},γ )|slμ′(γ )〉 or

〈Mμ(γ )|Hint({Vm},γ )|Mμ′(γ )〉,
which results from the γ independence of γ 〈m1,m2|mM〉γ .

For two particles, the anisotropic counterpart of the ν = 1/q

Laughlin state

�0q(0,r1,r2) = (z1 − z2)q�00(0,r1,r2) (84)

is given by

�0q(γ,r1,r2)

= ψ00(γ,r1)ψ00(γ,r2)
[
z1 − z2 + z2

0(∂z1 − ∂z2 )
]q

1,

= ψ00(γ,r1)ψ00(γ,r2)
(
z12 + 2z2

0∂z12

)q
1,

= ψ00(γ,r1)ψ00(γ,r2)Wq

(
z12,2z2

0

)
, (85)

with z12 = z1 − z2 and ∂z12 = 1
2 (∂z1 − ∂z2 ). Among these

states, the straightforward (anisotropic) generalization of the
ν = 1/2 bosonic Laughlin state is �02(γ,r1,r2) in which the
double zero of the undeformed state at z1 = z2 is split into
zeros at z1 − z2 = ±i

√
2z0. While for the ν = 1/3 fermionic

Laughlin state �03(γ,r1,r2), the triple zero at z1 = z2 is
split into a single zero at z1 = z2, and displaced zeros at
z1 − z2 = ±i

√
6z0. This suggests the splitting in the pattern of

zeros can be used as a tool to study the anisotropic deformation
of a quantum Hall wave function.

The other FQH state, such as the Moore-Read state,2 the
Read-Rezayi state,3 the Haldane-Rezayi state,22 etc., could
be generalized in this way, as long as the corresponding
wave functions could be expanded in the noninteracting LLL
basis. In addition, we also conclude that the anisotropic Zk

parafermion states3 are also the (minimum total general-
ized angular momentum) zero-energy ground state of some
special (k + 1)-body interaction. This kind of interaction
could be expressed in terms of the generalized (k + 1)-body
pseudopotentials23 since the Zk parafermion states are the
(minimum total angular momentum) zero-energy ground state
of (k + 1)-body short-range interaction.3,24

For example, the ν = 1/q anisotropic Moore-Read states
are given by

�
q

MR(γ ) =
∏

i

ψ00(γ,r i)Pf

[
1

zi − zj + z2
0

(
∂zi

− ∂zj

)
]

×
∏
i<j

[
zi − zj + z2

0

(
∂zi

− ∂zj

)]q
1, (86)

where Pf means the Pfaffian, the square root of the determinant.
Among these states, the anisotropic ν = 1 bosonic Moore-
Read states �

q=1
MR (γ ) is the [minimum total L̄(γ )] zero-

energy ground state of the anisotropic 3-body pseudopotential
Hamiltonian,

Hint(γ ) = V0h0(γ ), V0 > 0, (87)

where the projection operator h0(γ ) is given by
∞∑

M=0

∑
m1m2m3m4m5m6

γ 〈m1,m2,m3|�M〉γ

γ 〈�M |m4,m5,m6〉γ g†
m1

g†
m2

g†
m3

gm6gm5gm4

with the three-body basis state |m1,m2,m3〉γ = |ψ0,m1 (γ )〉 ⊗
|ψ0,m2 (γ )〉 ⊗ |ψ0,m3 (γ )〉 and

|�M〉γ = (a†
γ 1

+ a†
γ 2

+ a†
γ 3

)M√
3MM!

|0,0,0〉γ .
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And the anisotropic ν = 1/2 fermionic Moore-Read states
�

q=2
MR (γ ) is the [minimum total L̄(γ )] zero-energy ground

state of the following anisotropic three-body pseudopotential
Hamiltonian,

Hint(γ ) = V1h1(γ ), V1 > 0, (88)

where the projection operator h1(γ ) is given by

∞∑
M=0

∑
m1m2m3m4m5m6

γ 〈m1,m2,m3|�3,M−3〉γ

γ 〈�3,M−3|m4,m5,m6〉γ g†
m1

g†
m2

g†
m3

gm6gm5gm4 ,

with the three-body state |�3,M−3〉γ being

|�3,M−3〉γ = BM (a†
γ 1

− a†
γ 2

)(a†
γ 1

− a†
γ 3

)(a†
γ 2

− a†
γ 3

)

(a†
γ 1

+ a†
γ 2

+ a†
γ 3

)M−3|0,0,0〉γ
and BM being the appropriate normalization factor.

IV. NUMERICAL RESULTS FOR THE ANISOTROPIC
FQH STATES

In this section, we numerically study some properties of
the anisotropic Laughlin states �

q

L(γ ) and its applicability in
a system with dipole-dipole interaction. We first demonstrate
the deformation of the FQH droplet in density profile. The
anisotropy leads also to the deformation of the correlation
hole, which can be understood by the split of the third-order
zero to three adjacent first-order zeros. As a trivial example,
we show that the isotropic Laughlin states, among the family
of generalized states, is the ground state in the variational
sense for isotropic hard-core interaction. On the other hand,
the anisotropic dipole-dipole interaction picks a variational
ground state with a finite γ parameter as expected.

A. Density profiles

The density profile for the anisotropic Laughlin state is most
easily calculated using the Jack polynomials.6,25 Explicitly for
a finite number of particles, we can write

�(γ,r) = 〈
�

q

L(γ )
∣∣�̂†(r)�̂(r)

∣∣�q

L(γ )
〉
, (89)

where �̂(r) is the field operator. In Fig. 3, we plot the density
profile �(γ,z) with γ = 1/2 for an N = 10 fermionic system at
ν = 1/3 and compare with that of the isotropic Laughlin wave
function. Roughly speaking, in the anisotropic case the FQH
droplet is stretched along the y direction, while it maintains its
value around 1/3, in units of 1/(2π�2) in the bulk (indicated
by the yellow color in the color plot).

B. Pair correlation function

The density-density correlation function represents the
conditional probability of find one particle at r when another is
simultaneously at r ′. For the anisotropic Laughlin state �

q

L(γ ),
the density-density correlation function is defined by

G(2)(γ,r,r ′) = 〈
�

q

L(γ )
∣∣�̂†(r)�̂†(r ′)�̂(r ′)�̂(r)

∣∣�q

L(γ ).
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FIG. 3. (Color online) The density profiles [in units of 1/(2π�2)]
of the ν = 1/3 anisotropic Laughlin state with γ = 1/2 (a) and
γ = 0 (b) for an N = 10 system. Note the yellow bulk whose value
approximates 1/3.

Without loss of generality, we consider the pair correlation
function with r ′ fixed at the origin,

g(γ,r) = G(2)(γ,r,0)

�(γ,r)�(γ,0)
. (90)

In Fig. 4, we compare g(γ,r) of an N = 10 Laughlin
state at ν = 1/3 with γ = 1/2 and 0. The two cases are
clearly distinguishable, as the correlation hole for γ = 1/2 is
stretched nonmonotonically along the y direction, along which
the density profile is stretched. The center of the hole is strictly
zero but two other minima developed in the y direction are not.
To explore more details, we analyze g(γ,x,y) as a function of
x (or y) along the y axis (x axis) in Fig. 5. The comparison
shows that the asymptotic behavior of g(γ 	= 0,r → 0) is very
different from that of g(γ = 0,r → 0). The difference roots
in the two-particle Laughlin states �0q(γ,r1,r2) in Sec. III C,
from which we expect that g(γ 	= 0,r → 0) vanishes as |r|2,
while g(γ = 0,r → 0) as |r|6, as indicated by Eqs. (84) and
(85). The insets (a) and (b) in Fig. 5 confirm the asymptotic
behavior.

We emphasize that in the anisotropic case the pair correla-
tion function is isotropic for small enough |r|, reflecting the
first-order zero in the fermionic wave function enforced by
the Pauli exclusion principle. The two-particle wave function
can be regarded as the asymptotic wave function when two
particles are significantly closer than their distance to any
other particles. For |r| comparable to |γ |, the pair correlation
function becomes anisotropic. The observed anisotropy at
short distances encodes the geometrical deformation of the
Laughlin state. When two particles are close to each other,
each particle sees q zeros (for the Laughlin state at ν = 1/q);
the spatial spread of them reflects the extent of the deformation.
Topological properties, manifested in the isotropic case by the
qth-order zero, can be identified when one looks not too close
(|r| � |γ |).
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FIG. 4. (Color online) The pair correlation function for ν = 1/3
Laughlin state with γ = 1/2 (a) and γ = 0 (b) of an N = 10 system.
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FIG. 5. (Color online) The pair correlation function g(γ,0,y),
g(γ,x,0) with γ = 1/2 and g(0,x,0) of an N = 10 anisotropic
Laughlin state. The inset (a) shows the asymptotic (green solid)
line of g(0,x,0), which is proportional to x6. The inset (b) shows
the asymptotic (green solid) line of g(γ,x,0) [g(γ,0,y)], which is
proportional to x2 (y2).

C. Variational energy

Given the family of Laughlin states �
q

L(γ ), we test the
variational principle on a trivial Hamiltonian with the isotropic
hard-core interaction, which renders the isotropic Laughlin
state as its exact zero-energy ground state, and a Hamiltonian
with anisotropic dipolar-dipolar interaction. In both cases, the
expectation value of the Hamiltonian develops a minimum,
which may be identified as the variational ground-state energy.
The minimum occurs at γ = 0 for the isotropic interaction and
a nonzero γ for the anisotropic interaction.

Because the Laughlin wave function is the zero-energy
ground state of the (isotropic) hard-core interaction, γ = 0
is naturally the minimum for the energy expectation value.
The variational energy per particle is expected to increase as
β|γ |2 for small |γ |, as can be quickly understood, e.g., from
the expansion of �

q

L(γ ) with respect to small |γ |,

�
q

L(γ ) =
[

1 − 1

2
γ

∑
i

z2
i + 1

2
γ ∗ ∑

i

∂2
zi

+ . . .

]
�

q

L(0). (91)

Here β, like stiffness, quantifies the energy cost of the fluc-
tuation of metric. In Fig. 6, we plot the hard-core interaction
energy per particle for the anisotropic fermionic Laughlin state
�

q=3
L (γ ),

E (N)
hc (γ ) =

〈
�

q

L(γ )
∣∣Hint({Vm},γ = 0)

∣∣�q

L(γ )
〉

N
, (92)

with Vm = V1δm,1. For the set of finite-size systems with N =
3–8, we confirm that the minimum of the hard-core interaction
energy occurs identically at γ = 0. Therefore the (isotropic)
Laughlin wave function is indeed the optimal state for the
hard-core interaction.

We now turn to the dipole-dipole interaction, which some
of us studied in Ref. 9 by exact diagonalization. For the dipole-
dipole interaction with the dipole moments being polarized in
the x-z plane, the potential in the x-y plane is given by

V (θ,x,y) =
∫

dξ
e−ξ 2/2d2

√
2πd2

cd

(x2 + y2 + ξ 2)5/2

× [x2 + y2 + ξ 2 − 3(ξ cos θ + x sin θ )2],

0 0.02 0.04 0.06 0.08 0.1
0

0.002

0.004

0.006

0.008

0.01

γ

E(N
)

h
c

(γ
)

(V
1
)

 

 

N = 8
N = 7
N = 6
N = 5
N = 4
N = 3
γ2

FIG. 6. (Color online) The hard-core interaction energy per
particle E (N)

hc (γ ) with respect to the distort parameter γ for N = 3–8
system. Here, we also plot γ 2 (solid line) for comparison.

where cd is the interaction strength and the motion of
all the particles along the z axis is frozen to the ground
state of the axial harmonic oscillator π−1/4d−1/2e−z2/2d2

with d � � being the axial oscillator length. Here, the tilt
angle θ is introduced to tune the dipole-dipole interaction
such that V (θ,z) is isotropic (anisotropic) on x-y plane
for θ = 0 (θ 	= 0). The dipole-dipole interaction energy per
particle in the anisotropic fermionic Laughlin state �

q=3
L

(γ ) is

E (N)
dd (θ,γ ) =

〈
�

q

L(γ )
∣∣∑

i<j V (θ,zi − zj )
∣∣�q

L(γ )
〉

N
. (93)

In Fig. 7, we plot E (N)
dd (θ = 30◦,γ ) with respect to γ

for a finite-size system with N = 3–8. We found that the
lowest ground-state energy of the dipole-dipole interaction
occurs for the anisotropic Laughlin state with a nonzero
γ . The further quantitative comparison between the model
anisotropic quantum Hall state and the exact ground state
of the anisotropic dipole-dipole interaction will be given
elsewhere.

V. SUMMARY

In this work, we have explicitly constructed families
of anisotropic fractional quantum Hall states, which are
exact zero energy ground states of appropriate anisotropic
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)
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d
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FIG. 7. (Color online) The dipole-dipole interaction energy per
particle E (N)

dd (θ = 30◦,γ ) with respect to the distort parameter γ for
N = 3–8 system. Here, axial oscillator length d is set as 0.01�.
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short-range two- or multiparticle interactions. These families
generalize the celebrated Laughlin, Moore-Read and Read-
Rezayi states. Each family is parameterized by a single
geometric parameter that describes the distortion of correlation
hole in the density-density correlation functions. These states
thus explicitly illustrate the existence of geometric degree
of freedom in fractional quantum Hall effect, as recently
demonstrated in Ref. 7. Application of these states in stud-
ies of systems with realistic anisotropic interactions, like

dipole-dipole interaction, will be pursued in the near future
and reported elsewhere.
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