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We have developed a theory of charge transport in a system of noninteracting polarons. The theory is conducted
to a compact relation through a nonperturbative method based on electron-phonon Hamiltonian. The derived final
result represents two different limits of band and phonon-assisted transport, which depends on temperature and
electron-phonon coupling strength.
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I. INTRODUCTION

Charge carrier transport phenomena coupled to harmonic
vibration of lattice are of great interest in quantum solid-state
physics. The coupling of the charge movement to the vibra-
tional states results in the dressing of the charge carriers by
phonon clouds, or polaron formation. Polaron mass becomes
larger with increasing electron-lattice coupling strength, while
this heavy quasiparticle is much less mobile than a bare
electron or hole. The state of the art of theoretical condensed-
matter and computational modeling in the last decades made it
possible to develop a comprehensive understanding of charge
transport mechanism of various materials using first principle
methods including density functional theory (DFT).1–6 Using
DFT has the advantage of mapping a system of interacting
electrons into a system of noninteracting electrons with
the same ground-state density. The aim of this work is to
present a theoretical model to calculate charge transport in a
system with electron-phonon interaction of arbitrary strength.
The recent works from Hannewald et al.7–13 provided a
unified approach beyond Holstein formalism for calculating
conductivity of organic materials consisting of polarons of
arbitrary size and temperature using tight-binding model. They
have performed an analytical evaluation of Kubo formula
using the method of canonical transformation incorporating
the electron-phonon interaction in a nonperturbative manner.13

Especially, they simplified the complicated time evolution of
the electron and phonon creation and annihilation operators
by employing an approximated Hamiltonian resulting from
thermal averaging over phonon substates. Therefore, they
could separate polaron and phonon terms in the transformed
Hamiltonian.10 According to Ref. 13, the predicted mobility
resulting from this model has well reproduced the available
experimental results. So in our nonperturbative theoretical
method, we have applied the same approximations as have
been used in Ref. 13. Consistent with Refs. 11 and 13,
the final result of our model shows two different transport
behaviors depending on the temperature and electron-phonon
coupling strength. In low temperature limit, band transport is
the dominant phenomena. If the coupling strength is strong
enough, with increasing temperature a phonon-assisted charge
transport behavior gradually begins to be observed. Therefore,

the complicated dual behavior of charge transport in terms
of the temperature for a system with strong coupling can be
explained by our model.

This article is organized in seven main sections.
The methodology of our analytical work and applied-
approximations are described through Sec. II. In Sec. III, the
Hamiltonian of the system is investigated and a displacement
transformation is applied to decouple the electronic part of
the Hamiltonian from its phononic counterpart. Following
Refs. 7–13 in Sec. IV, by averaging over the phononic
substates, we derive a diagonal Hamiltonian for each electronic
level . This diagonal Hamiltonian will be used to approximate
the time evolution of creation and annihilation operators in
Sec. V, in which we will derive a compact relation for mobility
in k space. The different aspects of transport, depending on
coupling strength and temperature, are discussed in Sec. VI,
and finally a brief summary and conclusion is presented in
Sec. VII.

II. METHODOLOGY

There is a substantial difference between this work and the
Hannewald et al. model. Their theory has been constructed in
real space within a tight-binding model. This will impose some
complications in deriving relations, especially in calculating
the anisotropic effects of coupling on mobility. In contrast,
our theory is established and developed in reciprocal space
using many body techniques. Consequently, our final result
depends directly on momentum vectors and can be used in a
much simpler way in simulating of charge transport within
the DFT framework using plane wave basis set. Another
advantage of the present work is generalization of the theory
to both acoustical and optical phonons. Acoustical phonons
have a more important role in lower temperatures and often
have to be ignored for the sake of simplicity in simulation
by tight-binding model in real space. However, in order to
be analytically traceable, we approximate Bloch electrons by
plane waves and at the same time change the electron mass m

into the effective mass m∗. This approximation is best valid
for translational-invariant media, when the spatial extension
of the polaron is large compared to the lattice parameter
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(Fröhlich-type polarons, where the bandwidth is large). For
other systems, which are characterized by localized polaron,
this model must be used with more caution.

III. HAMILTONIAN DESCRIPTION OF A SYSTEM
UNDERGOING INTERACTION WITH PHONONS

The initial Hamiltonian of noninteracting electrons coupled
to longitudinal phonons has the form of

H = He + Hph + He−ph, (1)

where

He =
∑
nk

εn(k)a+
nkank, (2)

Hph =
∑
λQ

h̄ωλ
Q

(
b+

QλbQλ + 1

2

)
, (3)

He−ph =
∑
nλ

kQ

h̄ωλQgλ

k−Qk
× (b+

Qλ + b−Qλ)a+
nk−Qank. (4)

Here we neglect electron-electron interaction, since we
suppose the system constructed from Nc noninteracting charge
carriers within DFT framework. ak(a+

k ) are annihilation
(creation) operators of electrons with wave vector k; bQ(b+

Q)
are phonon operators with wavevector Q; gλ

k−Qk
is the matrix

element of the electron-phonon interaction; εn(k) illustrates
the energy of an electron in state k in band energy level n;
and ωλ

Q represents phonon frequency in the mode λ with wave
vector Q. For simplicity, we will neglect electron band and
phonon mode indices in the rest of the article. By applying
Lang-Firsov displacement transformation,14 H̃ = eUHe−U ,
we treat electron-phonon interaction in a nonperturbative
manner using an anti-Hermitian operator (−U = U+)

U =
∑
kQ

gk−Qk(b+
Q − b−Q)a+

k−Qak. (5)

We also introduce matrix C with matrix elements Ck′k
determined with

Ck′k = gk′k(b+
k−k′ − bk′−k). (6)

Under this transformation and by means of Baker-
Campbell-Hausdorff formula,15 eUake

−U = ak + [U,ak] +
1
2! [U,[U,ak]] + · · ·, the transformed electron and phonon
creation and annihilation operators would be in the form

ã+
k = eUa+

k e−U =
∑

k′
(eC)k′ka

+
k′ , (7)

and

b̃+
Q = eUb+

Qe−U = b+
Q −

∑
k

gk+Qka
+
k+Qak. (8)

We therefore obtain the transformed Hamiltonian as

H̃ = H̃e + H̃ph + H̃e−ph, (9)

with

H̃e = eUHee
−U =

∑
kk′k′′

(eC)k′kεkk(e−C)kk′′a+
k′ak′′ , (10)

where we introduced a diagonal matrix ε with its elements
defined as

εkk′ = δk
k′εkk = ε(k). (11)

H̃ph = eUHphe
−U = Hph −

∑
kQ

h̄ωQgk−Qk(b+
Q + b−Q)a+

k−Qak

+
∑

k

h̄ωQgkk−Qgk−Qka
+
k ak, (12)

and

H̃int =
∑
kQ

k1k2

h̄ωQ[(eC)k1k−Qgk−Qk(e−C)kk2a
+
k1

ak2 ](b+
Q + b−Q)

− 2
∑
kQ

k1 . . . k3

h̄ωQ[(eC)k1k−Qgk−Qk(e−C)kk2a
+
k1

ak2 ]

× (gk3+Qk3a
+
k3+Qak3 ). (13)

But∑
k

(eC)k1k−Qgk−Qk(e−C)kk2 = [eCg(Q)e−C]k1k2 , (14)

where we defined matrix g(Q) with elements g
(Q)
kk′ = gkk′δk′

k+Q.
If anisotropic coupling has a weak feature compared to
isotropic coupling,16 approximately we have [C,g(Q)] ≈ 0. As
a result we find

[eCg(Q)e−C]k1k2 = gk1k2δ
k2
k1+Q + [C,g(Q)]k1k2 + · · ·

≈ gk1k2δ
k2
k1+Q. (15)

Under the above assumption, Eq. (13) will be simplified to

H̃int =
∑
kQ

h̄ωQgkk+Q(b+
Q + b−Q)a+

k ak+Q

− 2
∑
Qkk′

h̄ωQgkk+Qgk′+Qk′a+
k ak+Qa+

k′+Qak′ . (16)

We also assume for a system of low density carriers
and therefore approximate a+

k ak+Qa+
k′+Qak′ ≈ a+

k ak′δk
k′ , and

finally from Eqs.(10)–(16) we find the total Hamiltonian as

H̃ = Hp + Hph, (17)

with polaron part in the form of

Hp =
∑
kk′

Ẽkk′a+
k ak′ , (18)

where

Ẽkk′ =
∑

k1

(eC)kk1εk1k1 (e−C)k1k′ − δk
k′

∑
Q

h̄ωQgkk+Qgk+Qk.

(19)

According to Eq. (19), in addition to get dressed by phonon
momentum, the polaron energy is shifted down (red shift) with
the value of

∑
Q h̄ωQgkk+Qgk+Qk.

IV. THERMAL AVERAGING OF POLARON ENERGY

Still Hamiltonian Eq. (17) is not diagonal and the polaron
part includes phonon operators. It is not possible to solve this
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Hamiltonian exactly. However, one can continue by making
an average over phononic terms for each electronic band
structure and find the effective influence of the electron-
phonon interaction on the electronic levels. This procedure
was first introduced by Holstein7,18 and will help us to evaluate
mobility analytically. We use this approximation and replace
the polaron operator with its expectation value in phonon
space:

¯̃E(k) = ≺Ẽkk′�Ph = ¯̃ε(k) − �(k),

¯̃ε(k) = ≺
∑

k1

(eC)kk1εk1k1 (e−C)k1k′�Ph

= ≺(eCεe−C)kk′�Ph,

�(k) =
∑

Q

h̄ωQgkk+Qgk+Qk. (20)

Now we expand the quantity ¯̃ε(k) in a power series of matrix
elements Ckk′ introduced in Eq. (6), ¯̃ε(k) = ∑+∞

m=0
1
m!

¯̃ε(m)
kk′ ,

with ¯̃ε(m)
kk′ = ≺[C,[C, . . . [C,ε]] . . .]kk′�Ph. For simplicity, we

remove the bracket indices, ≺ . . . �Ph. Using Baker-Campbell-
Hausdorff formula with “m” number of commutators for
m > 0 and from Eq. (11) we find the zeroth order as

¯̃ε(0)
kk′ = ≺εkk′� = ε(k)δk

k′ , (21)

which is simply the energy of electron in the absence of
electron-phonon interaction. Since the creation and anni-
hilation operators of odd orders have zero average, only
even orders give rise to a nonzero contribution and must be
calculated.

The second order has been calculated as

¯̃ε(2)
kk′ = ≺[C,(C,ε)]kk′�

= 2δk
k′

∑
k1

|gkk1 |2
(
2Nk1−k + 1

)
[ε(k1) − ε(k)], (22)

where at a given temperature T, phonon population fol-
lows Bose-Einstein statistic, NQ = ≺b+

QbQ� = 1

exp(
h̄ωQ
kBT

)−1
,

with kB as the Boltzmann constant. Here we introduce new
auxiliary functions Ḡ(k) = ∑

k1
|gkk1 |2(2Nk1−k + 1), Gkk1 =

|gkk1 |2(2Nk1−k + 1), and Xkk1 = −Ḡ(k)δk1
k + Gkk1 . By sub-

stituting in Eq. (22), we get a simpler form for ¯̃ε(2)
kk′ :

¯̃ε(2)
kk′ = δk

k′
∑

k1

ε(k1)(2X)kk1 . (23)

By means of the linked cluster expansion method,19 higher-
order ¯̃ε(2m)

kk′ is evaluated by

¯̃ε(2m)
kk′ = δk

k′
∑

k1

ε(k1)[(2X)m]kk1 × (2m − 1)(2m − 3) . . . 3.1.

(24)

Using identity (2m − 1)(2m − 3).3.1 = (2m)!
2mm! , which shows

the number of different arrangements of the m number of
bubbles in Feynman diagrams, the whole power series can be
summed up to give a compact result:

¯̃εkk′ = δk
k′

∑
k1

ε(k1)
∑
m

1

2m!

2m!

2mm!
[(2X)m]kk1 . (25)

Finally, by replacing the average polaron energy over
phononic states, the Hamiltonian Eq. (17) would be changed
into a diagonal form of

H̃ ′ =
∑

k

¯̃E(k)a+
k ak +

∑
Q

h̄ωQ

(
NQ + 1

2

)
, (26)

with

¯̃E(k) = ¯̃ε(k) − �(k)

= e−Ḡ(k)
∑

k1

ε(k1)(eG)kk1 −
∑

k1

h̄ωk−k1 |gk1k|2. (27)

Now the polaron part of Hamiltonian Eq. (26), which is
consistent with the deduced Hamiltonian in Ref. 8, contains
no phonon operators. The phonon effective influences on the
energy of state k are collected in e−Ḡ(k) and (eG)kk1 terms.
Also, Eq. (27) shows two interesting features. First, Similar
to Eq. (19), the polaronic band energy is shifted down (red
shift) compared to the original value. Second, a bandwidth
narrowing effect is introduced through the exponential term
Ḡ(k), which depends on the temperature and the second power
of the electron-phonon coupling strength. This means that
the electronic coupling bandwidth can be reduced by lattice
thermal fluctuation from its value at zero temperature and
in fixed geometry. This effect may change the nature of the
transport phenomena from band-like mechanism into hopping
motion.

Thermal averaging has a great advantage of making the
analytical solution traceable. The disadvantage of removing
phonon operators from Hamiltonian Eq. (17) is neglecting
thermal broadening of polaron spectral bandwidth resulting
from residual polaron-phonon interaction. This interaction is
actually responsible for scattering of polarons by phonons,
which leads to a finite polaron lifetime, and according to the
uncertainty principle to a polaron finite bandwidth as well. In
addition to polaron-phonon interaction, other passivation pro-
cedures like crystal disorder, impurities, and finite lifetime of
the optical phonons associated with the crystal anharmonicity
reduce the polaron lifetime.20 These effects can be introduced
into the final result via τ as a finite lifetime.9,21 Sometimes
scattering of such properties are assumed by a Gaussian
characteristic function and may enter in a phenomenological
approach into the final result in the form of e−(t/τ )2

.22

V. DERIVING MOBILITY

This section describes the construction of the main part of
our work, while we are interested only in the dc conductivity or
long wavelength and zero frequency limit. By means of Kubo
formula, dc conductivity can be obtained from current-current
correlation function within linear response function theory

σαβ = 1

2kBT
lim

ω → 0
q → 0

∫ +∞

−∞
dteiωt≺jα(q,t)jβ(−q,0)�H .

(28)

Mobility of charge carriers in the above-mentioned system
is defined as μ = σ

eNc
, where e represents elementary charge.

μ as a very useful quantity can be directly measured by time-
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of-flight experiment.17 From Eq. (28) the dc mobility (q → 0
limit) at a given temperature T is given by

μαβ = 1

eNc

1

2kBT
lim

q → 0

∫ +∞

−∞
dt≺jα(q,t)jβ(−q,0)�H .

(29)

The current-current correlation function,
≺jα(q,t)jβ(−q,0)�H , will be evaluated from the elementary

definition of ≺A�H = T r[Ae−βH ]
T r[e−βH ] and using Wick’s theorem.19

We are proceeding this section with electronic current
derivation in k space and in the absence of a magnetic field. In
such a framework and from second quantization formalism,
the particle current (paramagnetic current) is obtained as
follows:

j(r) = eh̄

2mi
{ψ+(r)∇ψ(r) − ∇ψ+(r)ψ(r)}, (30)

with particle mass m and Planck’s constant h̄. ψ(r) and ψ+(r)
are second quantization field operators. These two latter can
be expanded in terms of the basis sets

ψ+(r,t) =
∑

k

a+
k (t)ϕ∗

k(r), (31)

ψ(r,t) =
∑

k

ak(t)ϕk(r). (32)

ϕ(r) and ϕ∗(r) are ordinary first quantization wave func-
tions. Working with a periodic lattice, it is often convenient to
use plane wave as the basis set.

ψ+(r,t) = 1√
�

∑
k

a+
k (t)e−ik.r, (33)

ψ(r,t) = 1√
�

∑
k

ak(t)eik.r, (34)

where � denotes primitive cell volume. In addition to
translational-invariant property, using plane wave makes the
analytical study of transport model traceable. However, it may
not be a suitable basis set for localized small polarons.

Inserting Eqs. (33) and (34) into Eq. (30) we get the
momentum representation of current,

jα(r) = h̄e

m�

∑
kk′

(k + k′)αe−i(k−k′).ra+
k ak′ . (35)

Finally, by performing the Fourier transformation of
Eq. (35), together with

∫
dre−i(k−(k′+q)).r = �δk,k′+q, we

obtain the second quantization current operator in k-space
representation

jα(q) = h̄e

m

∑
k

a+
k+qak

(
k + q

2

)
α

. (36)

Now we apply the Lang-Firsov transformation on each
side of Eq. (36) and use expression eUe−U = 1. The current
operator is transformed into

j̃α(q) = h̄e

mα

∑
k

ã+
k+qãk

(
k + q

2

)
α

. (37)

In the effective mass approximation, m would be replaced
with polaron effective mass m∗, which can be calculated from
the polaron energy dispersion curve

1

m∗
α

= 1

h̄2

∂2 ¯̃E(k)

∂k2
α

. (38)

Hamiltonian Eq. (9) is responsible for time evolution of
Eq. (37) according to

j̃ (q,t) = e( iH̃ t
h̄

)j̃ (q,0)e( −iH̃ t
h̄

)

≈ e( iH̃ ′ t
h̄

)j̃ (q,0)e( −iH̃ ′ t
h̄

). (39)

In contrast to H̃ , the Hamiltonian given by Eq. (26),
namely H̃ ′, is diagonal in both the polaron and phonon
operators and enables us to trace an analytical solution for our
problem. The disadvantage imposed by this assumption is only
neglecting some effects due to the finite polaron bandwidths, as
described in the previous section. The great advantage of this
approximation lies in fully separable polaron and phonon parts
of the Hamiltonian. We rewrite the transformed current-current
correlation function presented in Eq. (29) in a new form of

≺j̃α(q,t)j̃β(q′,0)�H̃ ≈ ≺j̃α(q,t)j̃β(q′,0)�H̃ ′

= e2h̄2

m∗
αm∗

β

∑
kk′

(
k + q

2

)
α

(
k′ + q ′

2

)
β

×
∑

k1...k4

≺a+
k1

(t)ak2 (t)a+
k3

(0)ak4 (0)�H̃ ′

×≺(eC(t))k1k+q(e−C(t))kk2

× (eC(0))k3k′+q′ (e−C(0))k′k4�H̃ ′ , (40)

in which the time evolution of polaron and phonon operators
can be easily computed from the polaron and phonon band
energy in Eq. (26) using the following relations:

a+
k (t) = e( iH̃ ′ t

h̄
)a+

k e(− iH̃ ′ t
h̄

) = a+
k e

i ¯̃Ek t

h̄ ,

Ck′k(t) = gk′ke
( iH̃ ′ t

h̄
)(b+

k−k′ − bk′−k)e(− iH̃ ′ t
h̄

)

= gk′k(b+
k−k′e

iωk−k′ t − bk′−ke
−iωk′−kt ). (41)

An interesting feature in construction of this theory is that
the obligation of q′ = −q and conservation laws will appear
automatically. Using Wick’s theorem, first we simply treat the
polaronic part, while for convenience we will again drop the
bracket indices, ≺ . . . �H̃ ′ , in the rest of the paper.

≺a+
k1

(t)ak2 (t)a+
k3

(0)ak4 (0)�
= ≺a+

k1
(t)ak2 (t)�≺a+

k3
(0)ak4 (0)�

+≺a+
k1

(t)ak4 (0)�≺ak2 (t)a+
k3

(0)�,

= nk1nk3δ
k1
k2

δ
k3
k4

+ e
it
h̄

[ ¯̃E(k1)− ¯̃E(k2)]nk1

(
1 − nk2

)
δ

k1
k4

δ
k3
k2

. (42)

Compared to n(1 − n), the term n2 is negligible. Accord-
ing to Fermi-Dirac distribution nk = ≺a+

k ak� = 1

exp(
¯̃E(k)−ζ

kB T
)+1

with ζ = ζ (T ,Nc) presented as chemical potential. Here we
introduce new matrices K (α,q) and K (β,q′) with elements de-
fined as K

(α,q)
kk′ = (k + k′)αδk′

k−q and K
(β,q′)
kk′ = (k + k′)βδk′

k−q′ ,
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respectively. With the aid of these new matrices, Eq. (39) will
be reduced to:

≺j̃α(q,t)j̃β(q′,0)�

= e2h̄2

m∗
αm∗

β

∑
k1k2

e
it
h̄

[ ¯̃E(k1)− ¯̃E(k2)]nk1 (1 − nk2 )

× 1

4
≺[(eC(t))Kα,q(e−C(t))]k1k2

× [(eC(0))Kβ,q′
(e−C(0))]k2k1�, (43)

and we are left with evaluating Xk1k2 (t) with

Xk1k2 (t) =
∑
m

1

m!
(X(m))k1k2 = 1

4
≺[(eC(t))Kα,q(e−C(t))]k1k2

× [(eC(0))Kβ,q′
(e−C(0))]k2k1�. (44)

Compared to how the electronic part is treated in Eq. (42),
calculation of this term is a very elaborate task. We follow the
similar approach introduced to calculate ¯̃Ekk′ = ≺Ẽkk′� in
Sec. IV. We apply the Baker-Campbell-Hausdorff theorem to
the right-hand side of Eq. (44) and then regroup all terms into
a single power series. Again, only even orders have nonzero
contributions. The zeroth order is given by

X
(0)
k1k2

= 1

4
(k1 + k2)α(k1 + k2)βδ

k2
k1−qδ

k1
k2−q′

=
(

k1 + q

2

)
α

(
k1 + q

2

)
β

δ
k2
k1−qδ

−q
q′ , (45)

and if inserted into Eq. (43), the resulting mobility is simply
the well-known Boltzmann transport equation. We will discuss
this limit in detail in the next section. As indicated in the
right-hand side of Eq. (45), from now on the obligation of δ

−q
q′

comes automatically into our relations. The second term itself
is composed of three parts:

X
(2)
k1k2

= 1

2
[≺[C(t),K (α,q)]k1k2 [C(0),K (β,q′)]k2k1�

+K
(β,q′)
k2k1

≺ 1

2!
[C(t),[C(t),K (α,q)]k1k2�

+K
(α,q)
k1k2

≺ 1

2!
[C(0),[C(0),K (β,q′

)]k2k1�]. (46)

The first part is evaluated as follows:

−2

{[(
k2 + q

2

)
α

(
k1 − q

2

)
β

][
gk1k2+qgk2k1−q

]
φk2−(k1−q)(t)δ

q
−q′

−
[(

k2 + q

2

)
α

(
k2 + q

2

)
β

][
gk1k2+qgk2+qk1

]
φk2−(k1−q)(t)δ

q
−q′

−
[(

k1 − q

2

)
α

(
k1 − q

2

)
β

][
gk1−qk2

gk2k1−q

]
φk2−(k1−q)(t)δ

q
−q′

+
[(

k1 − q

2

)
α

(
k2 + q

2

)
β

][
gk1−qk2

gk2+qk1

]
φk2−(k1−q)(t)δ

q
−q′

}
,

(47)

where the thermal average ≺C(t)C(t ′)� has been done through
Eq. (48), and the auxiliary function φ is defined according to

Eq. (49) for phonon frequency ωQ and occupation number NQ.

≺(b+
Q(t) − b−Q(t))(b+

Q′(t ′) − b−Q′ (t ′))�,

= −≺b+
Q(t)b−Q′(t ′)� − ≺b−Q(t)b+

Q′(t ′)�,

= −δ
Q
−Q′ [NQeiωQ(t−t ′) + (1 + NQ)e−iωQ(t−t ′)], (48)

φQ(t) = NQexp[iωQt] + (1 + NQ)exp(−iωQt). (49)

From here we continue with the limit of small q (q → 0),
or long wavelength condition in our relations. So the Eq. (47)
will be simplified to

2(k2 − k1)α(k2 − k1)β
∣∣gk1k2

∣∣2
φk2−k1 (t). (50)

The sum of the two last terms in the right-hand side of
Eq. (46) is given by:

−2δ
k2
k1

×
{

(k1)α(k2)β
∑

k

[φk−k1 (0)|gk1k|2 + φk−k2 (0)|gk2k|2]

+ (k2)α
∑

k

φk−k1 (0)|gk1k|2kβ

+ (k1)β
∑

k

φk−k1 (0)|gk2k|2kα

}
(51)

Within the first Brillouin zone, the average contributions
of the two last terms of the relation Eq. (51) are negligible
compared to the first term. The auxiliary matrices F̄ (k1) and
F (t) are introduced as follows:

F̄ (k1) = 2
∑

k

φk−k1 (0)|gk1k|2, (52)

and

Fk1k2 (t) = ∣∣gk1k2

∣∣2
φk2−k1 (t). (53)

We therefore obtain

X
(0)
k1k2

= δ
k1
k2

(k1)α(k2)β,

X
(2)
k1k2

= −2(k1)α(k2)βF̄ (k1) for k1 = k2, (54)

X
(2)
k1k2

= 2(k2 − k1)α(k2 − k1)βF (t) for k1 �= k2.

Similar to what was done in Sec. IV, we apply linked cluster
expansion to evaluate the correlation function. This leads to

X
(2m)
k1k2

= (k1)α(k2)β[−2F̄ (k1)]m

× (2m − 1)(2m − 3) . . . 3.1 for k1 = k2,

X
(2m)
k1k2

= (k2 − k1)α(k2 − k1)β([2F (t)]m)k1k2

× (2m − 1)(2m − 3) . . . 3.1 for k1 �= k2. (55)

Therefore, we find

Xk1k2 = (k1)α(k2)βe−F̄ (k1), for k1 = k2, (56)

and

Xk1k2 = (k2 − k1)α(k2 − k1)β[eF (t)]k1k2 , for k1 �= k2. (57)

If inserted to Eq. (29), we are left with a compact surprising
relation for mobility in phase space, while anisotropic effect
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of coupling has been considered as far as possible.

μαβ = μ
(I )
αβ + μ

(II )
αβ , (58)

where

μ
(I )
αβ = 1

2kBT

eh̄2

Ncm∗
αm∗

β

∑
k1k2

(k1)α(k2)βnk1

(
1 − nk2

)
e−F̄ (k1)δ

k1
k2

×
∫ +∞

−∞
dte

it
h̄

[ ¯̃E(k1)− ¯̃E(k2)]. (59)

μ
(II )
αβ = 1

2kBT

eh̄2

Ncm∗
αm∗

β

×
∑

k1 �=k2

(k2 − k1)α(k2 − k1)βnk1

(
1 − nk2

)

×
∫ +∞

−∞
dte

it
h̄

[ ¯̃E(k1)− ¯̃E(k2)]
[
(eF (t))k1k2

]
. (60)

Equation (58) contains coherent band transport and inco-
herent scattering, including phonon-assisted current, and can
be better applicable for wide-bandwidth materials with the
Fröhlich type of electron-phonon coupling.

VI. DISCUSSION

A. Coherent band transport

The transport expression μ(I ) in Eq. (59) can be inferred as
a scattering event from an initial state k1 into a final state
k2. For a given coupling strength, such a scattering event
can happen with probability nk1 for the initial state to be
filled, and (1 − nk2 ) for the final state to be empty. e−F̄ (k1)

shows the decreasing rate of the probability by increasing the
temperature. This expression, which exists only for k1 = k2,
can be interpreted as band transport contribution. From the
time integration, the energy of the initial polaron, ¯̃Ek1 , must
be equal to the energy of the final polaron, ¯̃Ek2 , which
provides energy conservation. The Kronecker delta term can
be interpreted as momentum conservation. In general, these
two obligations can be completely satisfied simultaneously
for an elastic coherent transport process, see Fig. 1(a).
Approximately similar to what was introduced by Ref. 9, we
write the resulting mobility as

μ
(I )
αβ = 1

2kBT

e

Nc

∑
k

h̄kα

m∗
α

h̄kβ

m∗
β

nk(1 − nk)e−F̄ (k1), (61)

or

μ
(I )
αβ = 1

2kBT

e

Nc

∑
k

ṽα(k)ṽβ(k)nk(1 − nk)e−F̄ (k1), (62)

where the polaron band velocity

ṽα(k) = h̄kα

m∗
α

(63)

has been introduced through polaron effective mass m∗
α .

Apart from exponential term, Eq. (62) is the reminiscent
of the expression derived from Boltzmann transport equa-
tion. However, the main difference arises from generalizing
the transport equation for polaron quasiparticles rather than
bare electrons. The exponential term in this equation empha-
sizes the reduction of the band transport with increasing the
temperature via electron-phonon interaction. If there is no
electron-phonon coupling, this term disappears and infinite
lifetime coherent transport could be the main mechanism.

B. Incoherent transport

The second part of the mobility, μ(II ), contains the
exponential term (eF (t))k1k2 , which can be expanded into a
power series in terms of the function F (t) introduced by
Eq. (53),

(eF (t))k1k2

=
∑

k(m)
1 ...k(m)

m−1

1

m!
[F (t)]k1k(m)

1
[F (t)]k(m)

1 k(m)
2

. . . [F (t)]k(m)
m−1k2

.

(64)

Equation (64) represents a transport event with electron-
phonon scattering processes, including all possible combina-
tions of intermediate wave vectors through phonon emission
or absorption. Therefore, the energy conservation mechanism
is not the same as the coherent band transport discussed in
the previous section. It will be accounted for all vibrational
energies through φQ(t) included in term F(t) in Eq. (60). The
polaron momentum after scattering (k2) is not the same as the
initial value (k1) and has been affected by the momentum
transferred via absorption or emission of phonons. Since
each scattering event is statistically independent, the whole
process can be regarded as stochastically independent, in
which the phase coherence due to the particles is destroyed
through each event. Zeroth order, m = 0, in Eq. (64) re-
sults in [F (t)]0

k1k2
= δ

k1
k2

and gives a zero contribution in
mobility through (k2 − k1) coefficients. First order, m = 1,
gives F (t)k1k2 = |gk1k2 |2φk2−k1 (t) and leads to a single-phonon

k1                   k2

k1

k2

Q
k1

k2Q1

Q3

(a)                                                 (b)                                                  (c)

FIG. 1. (a) Typical coherent process. (b and c) Incoherent processes including one (first-order incoherent process) and two phonons
(second-order), respectively.
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absorption or emission event with phonon wavevector Q =
k2 − k1. In this case, the energy conservation is also provided
by means of e

it
h̄

[ ¯̃E(k1)− ¯̃E(k2)] × e±iωQt . Second order, namely
m = 2, may involve two-phonon absorption or emission events
and so on for higher orders; see Figs. 1(b) and 1(c). For
weak electron-phonon interaction, the incoherent transport
contribution will nearly vanish. The next important incoherent
feature observed in Eq. (60) is temperature-assisted charge
transport due to electron-phonon coupling via exponential term
eF (t), while according to Eq. (52) apart from a vibrational
term the rest of the power term in eF (t) is positive. Therefore,
although phonon coupling into electrons motion increases
electron mass and reduces the band transport mobility, as was
considered in the previous section, it can provide a transport
promotion for higher temperatures.

VII. RESULTS AND CONCLUSION

By means of Kubo formula, we have presented an ana-
lytical solution for the charge transport theory based on a
nonperturbative treatment of electron-phonon Hamiltonian in a
system composed of noninteracting particles. The Lang-Firsov
transformation was applied to separate the electronic from
the phononic part of the Hamiltonian. Thermal averaging

over the polaron band energy led to a diagonal Hamiltonian
and was used for time evolution of polaron and phonon
operators in separate parts. Using Wick’s theorem enabled
us to derive a compact relation for polaron transport, while
anisotropic effects were conserved as much as possible. All
these were done before the coupling of the electron motion
was known to be limited to a special optical or acoustical
phonon mode. However, since plane wave basis sets were
used to expand field operators, this model is most valuable
as a translational-invariant and wide-bandwidth medium. The
resulting relation shows two different mechanisms based
on the electron-phonon coupling strength and temperature.
In the case of weak coupling and low temperature, band
transport is the dominant event and the relation reduces to the
well-known Boltzmann expression. By increasing temperature
and coupling strength, the transport event changes feature
and decreases by an exponential behavior. For higher tem-
peratures, another limiting feature by using phonon-assisted
transport character is also observed. In addition to deriving
a compact relation while conserving all possible properties
of polaron transport, this work has the advantage of fully
deriving relations in the reciprocal space and simplifies future
simulations of the charge transport in a complicated medium
using available codes within the DFT framework.
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