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Lattice thermal conductivity of (Bi1−xSbx)2Te3 alloys with embedded nanoparticles
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The lattice thermal conductivity of (Bi1−xSbx)2Te3 alloys, with and without spherical nanoparticle inclusions,
has been computed using the Boltzmann transport equation with classical interatomic potentials within the
relaxation time approximation. The experimental thermal conductivity of the pure alloys is fairly well reproduced
as a function of concentration. We establish upper and lower limits for the thermal conductivities that could be
obtained via seamlessly embedded spherical nanoparticles as a function of their size, density, and volume
fraction. Large reductions in thermal conductivities (40–50%) can only be achieved with small nanoparticles
with diameters below 10 nm.
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I. INTRODUCTION

Alloys (or solid solutions) of BiSbTeSn are currently the
best compounds for commercial room temperature thermo-
electric energy conversion. Very recently, it has been possible
to increase the dimensionless thermoelectric figure of merit1

ZT of bulk (Bi1−xSbx)2Te3 alloys from its long standing
value of 1, up to ZT = 1.4, via sintering of nanosized
powders.2,3 This increase is mainly due to a large reduction
of the lattice thermal conductivity κL induced by enhanced
phonon scattering at grain boundaries, defects, nanodots, and
precipitates generated during the synthesis process.

Despite its importance, κL of (Bi1−xSbx)2Te3 alloys has
not been theoretically explored in detail because of the
complexity of this system, constituted by heavy elements
bonded by partially covalent bonds and arranged in a compli-
cated crystal structure.4 Only recently interatomic potentials
suitable to describe anharmonic effects in Bi2Te3 have been
developed.5,6 They have been used to investigate, by molecular
dynamics (MD) simulations, the mechanical and/or transport
properties of bulk Bi2Te3,5–7 Bi2Te3 nanowires,8,9 and Bi2Te3

nanofilms.10 The question of whether κL of (Bi1−xSbx)2Te3 al-
loys can also be well described for any arbitrary concentration
x is therefore a relevant one. Here we show that with a suitable
rescaling of the interatomic potentials developed initially for
Bi2Te3, it is possible to solve the Boltzmann transport equation
(BTE) for phonons, with dispersions and alloy scattering rates
calculated from these rescaled potentials, and derive thermal
conductivities for (Bi1−xSbx)2Te3 alloys which are in fair
agreement with experimental results at any concentration.

A second, more pressing question is to what extent the
presence of nanoinclusions can affect the thermal conductivity
of these alloys. The fundamental role of the nanoinclusions
in decreasing the thermal conductivity below that of the
alloy has been established previously.11 Such a nanoparticle-
embedded-in-alloy thermoelectric (NEAT) approach12 has
been experimentally demonstrated for ErAs nanoparticles
in a InGaAs matrix13 and theoretically investigated for
silicide nanoinclusions in a SiGe matrix.14–16 At present,
(Bi1−xSbx)2Te3 alloys with embedded nanoparticles and high
ZT values have been experimentally reported,2,3,17 but the
decrease of κL due to the presence of nanoparticles has not
been quantified. Our calculations show that, using nanoparticle

volume fractions below 3% in an otherwise defect-free matrix,
one does not expect reductions beyond 40–50%. Such decrease
can only be achieved for nanoparticle diameters not exceeding
10 nm.

The following sections contain a description of the theoret-
ical approach (II) and a discussion of the results and their im-
plications (III), followed by a summary and conclusions (IV).

II. THEORY

This section gives details on the computation of the lattice
thermal conductivity, the calculation of the alloy scattering
rates, and the interatomic potentials.

A. Lattice thermal conductivity

In the relaxation time approximation (RTA) the thermal
conductivity κL is given by an integral over frequency
ω as16

κL(T ) = 1

kBT 2

∫ ∞

0
n0(ω)[n0(ω) + 1](h̄ω)2�ph(ω)dω (1)

with n0(ω) = [exp(h̄ω/kBT ) − 1]−1 being the equilibrium
Bose distribution function and

�ph(ω) = 1

8π3

∑
α

∫
BZ

τα,q
(
vz

α,q

)2
δ(ω − ωα,q)dq. (2)

Here the integral runs over the Brillouin zone. ωα,q represents
the angular frequency of the normal mode with wave vector
q and branch index α, τα,q is the phonon relaxation time, and
vz

α,q is the component of the phonon group velocity along the
direction of the thermal gradient (z in the above expression).
The normal vibrational modes of the system are obtained by
solving the classical equations of motion in the harmonic
approximation for each q point used in the sampling of the
Brillouin zone. These equations take the form of an eigenvalue
problem:19

ω2
λ|λ〉 = D(q)|λ〉, (3)

where we label the phonon (α,q) by the symbol λ. D(q)
is the dynamical matrix which contains the force constants
(second derivatives of the interatomic potential) and |λ〉 is the
eigenvector that specifies the displacement of each atom of the
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unit cell for the corresponding phonon mode. When the system
is polar, as is the case of (Bi1−xSbx)2Te3 alloys, D(q) has a
long-range contribution due to the electrostatic interactions.
The technical details to deal with these long-range interactions
can be found in Gonze et al..20

Once the ωα,q and |λ〉 are obtained through the diagonal-
ization of the dynamical matrix, the group velocities vλ can be
calculated:

vλ = ∇qωλ. (4)

Application of the Hellmann-Feynman theorem21 to Eq. (3)
leads to an expression equivalent to Eq. (4) but more suitable
for its practical implementation:

vλ = 1

2ωλ

∑
i

∑
j

〈λ|i〉∇qDij (q)〈j |λ〉, (5)

where the indexes i and j run over all degrees of freedom of
the unit cell.

B. Scattering rates

In general, the τ ’s in Eq. (1) can be calculated from
iteratively solving the BTE, using the 2- and 3-phonon scat-
tering probabilities obtained from the interatomic potential.22

A much simpler approach is to employ approximated ana-
lytical expressions for the τ ’s,18 which introduces adjustable
parameters. For the alloys considered here, we will show
that one needs a total of three experimentally adjustable
parameters. Two of them, related to the anharmonicity, require
the knowledge of κL for pure Bi2Te3 and for pure Sb2Te3.
The third one is needed to account for bond disorder effects.
On the other hand, the alloy scattering due to mass disorder
and the nanoparticle scattering contributions are calculated
directly from the atomistically computed phonon structure,
without any adjustable parameter, as we explain below.

The different scattering contributions are combined follow-
ing Mathiessen’s rule to yield the total scattering rate, τ−1(λ),
as a sum of anharmonic (a), alloy disorder (d), and nanoparticle
(np) scattering contributions:

τ−1(λ) = τ−1
a (ωλ) + τ−1

d (λ) + τ−1
np (λ). (6)

At temperatures near or above the Debye temperature, the
anharmonic scattering rate is reasonably well described by a
dependence23

τ−1
a (ω) = BT ω2. (7)

The B parameter is individually adjusted for each of the two
pure phases, Bi2Te3 and Sb2Te3, by fitting their experimental
bulk crystal thermal conductivities. For a (Bi1−xSbx)2Te3

alloy, we take the weighted average parameters: B = (1 −
x)BBi2Te3 + xBSb2Te3 .

The scattering due to the disordered arrangement of Sb and
Bi atoms in the alloy is computed within an effective medium
approach originally employed by Abeles.24 In this approach
the alloy is assumed to be a random mixture of atoms. The
disordered lattice is replaced by an ordered virtual crystal with
properties averaged between those of the pure components. An
atom of the virtual crystal is then replaced by an atom of the
alloy, which acts as a virtual impurity and scatters phonons.
The impurity scattering is due to mass and bond disorder of

the random alloy. In the Born approximation, the scattering
rate is given by16

τ−1
d (λ) = f




Vimp

π

2

[ (
�M

M

)2

+ ε

(
�r

r

)2 ]
ω2

λ

×
∑
i,j

〈λ|i〉〈i|ρ̂ph|j 〉〈j |λ〉, (8)

where f represents the volume fraction of impurities, Vimp is
the volume of the impurity, 
 is the volume into which the
phonon eigenstates |λ〉 are normalized, M and r are the host
atomic mass and radius, respectively, and �M = Mi − M and
�r = ri − r are the difference between the impurity and host
atomic masses and radius. ε is a phenomenological, adjustable
parameter, introduced by Abeles24 to account for bond dis-
order. The local indexes i and j run through the three atomic
degrees of freedom of the impurity, and 〈i|ρ̂ph|j 〉 is the phonon
density of states matrix. In the effective medium approach, M

represents the atomic mass in the virtual crystal, and the total
impurity scattering rate is obtained by adding the scattering
rates of each virtual impurity (Bi and Sb in our case). For a
(Bi1−xSbx)2Te3 alloy, taking as reference the rhombohedral
unit cell (5 atoms per unit cell), M = (1 − x)MBi + xMSb,
�MBi = x(MBi − MSb), �MSb = (1 − x)(MSb − MBi), Vi =
[(1 − x)VBi2Te3 + xVSb2Te3 ]/5, where VBi2Te3 and VSb2Te3 are the
corresponding unit cell volumes. We have taken the covalent
radius25 for ri (rBi = 0.148 nm, rSb = 0.139 nm) and r was
calculated in the same way as M . Approximating the volume
fraction f by the molar fraction, then fSb = 2x

5 , fBi = (2−2x)
5 .

The density of states matrix should reflect the point symmetry
of the virtual crystal lattice site where the impurity is located.
In our case, the point symmetry is 3m, which makes the matrix
diagonal with ρph,11 = ρph,22 �= ρph,33.

Even in the effective medium approach, the bond disorder
is not rigorously described by Eq. (8). However, a suitable
choice of the ε parameter makes it possible to derive in a simple
way thermal conductivities in good agreement with experiment
in the entire range of compositions. On the other hand, this
simplified model for the bond disorder has no influence in the
study of the embedded nanoparticles since, as we will show,
nanoparticles mainly scatter the low-frequency phonons for
which the anharmonic scattering is much stronger than the
alloy one.

The nanoparticle scattering contribution is computed using
an interpolation between the long- and short-wavelength
scattering regimes:16

τ−1
np =

(
1

τ−1
s

+ 1

τ−1
l

)−1

= v
(
σ−1

s + σ−1
l

)−1
ρ. (9)

s and l stand for short and long wavelength, respectively, v is
the phonon velocity, ρ is the density of nanoparticles, and
σs and σl are the corresponding scattering cross sections.
Assuming spherical nanoparticles of radius R, noting that
σs is twice the geometrical cross section11 and that ρ can
be related to the volume fraction of nanoparticles f and the
volume of an individual nanoparticle Vnp through ρ = f/Vnp,
the short-wavelength limit is given by

τ−1
s = v2πR2 f

Vnp
. (10)
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The long-wavelength limit for a nanoparticle constituted
by N cells of the virtual crystal is given, in the Born
approximation, by a generalization of Eq. (8) for the disorder
scattering:16

τ−1
l (λ) = f N

π

2
ω2

λDλ,

Dλ =
∑
α′

∫ ∣∣∣∣∣
∑

i

(
�Mi

M

)
〈λ|i〉〈i|λ′〉

∣∣∣∣∣
2

× |S�q|2δ(ωλ′ − ωλ)
dq′

VBZ
. (11)

Now the index i runs through all degrees of freedom of the
unit cell, �q = q − q ′, and S�q = 1

N

∑
T e�q·T is the struc-

ture factor for the nanoparticle, where T represents the lattice
translation vector for each cell that belongs to the nanoparticle.
However, Eq. (11) is somewhat incomplete as it neglects
the scattering due to the differences between the nanoparticle
and matrix force constants and/or crystal structure, and also to
the strain field that could be originated by the lattice mismatch,
if any.26 Therefore, taking into account only the scattering due
to the mass difference between the matrix and the nanoparticle
ensures that the calculated thermal conductivity constitutes an
upper bound. A lower bound can also be estimated. From
Eq. (9) it can be seen that the actual scattering cross section
of the nanoparticle cannot be larger than σs and σl at any
frequency. While at high frequencies σl � σs and σnp ∼ σs , at
low frequencies σl 	 σs and σnp ∼ σl . The transition region
between both regimes is determined by the density difference
between the matrix and the nanoparticle, |�ρ|. As |�ρ|
increases, σl becomes larger, the transition takes place at lower
frequencies, and σs dominates over a wider frequency range,
decreasing the lattice thermal conductivity. The lower bound,
i.e., the largest possible reduction of the thermal conductivity,
is achieved when σnp = σs for all frequencies. This lower
bound corresponds to �ρ = ∞, the limit of infinite mass at
which the nanoparticle is completely rigid and can not transmit
any lattice wave.

C. (Bi1−xSbx)2Te3 interatomic potentials and
phonon density of states

An interatomic potential to calculate the lattice thermal
conductivity of Bi2Te3 was developed by Huang and Kaviany5

(henceforth the HK potential) by fitting the energy surface from
ab initio calculations. It consists of a short-range interaction
described by two- and three-body terms, and a long-range
interaction (Coulombic terms) that is computed with the Ewald
method.27 Due to the complicated three-body term, Qiu and
Ruan6 modified the short-range part of the HK potential
and developed a simpler expression based only on two-body
terms (henceforth the QR potential). Both potentials reproduce
well the experimental dispersion of acoustic-phonon modes
but not the dispersion of the optical ones. This is probably due
to the rigid-ion model that neglects the high polarizability of
Bi and Te atoms. As the phonon transport is dominated by
the acoustic-phonon modes, the lattice thermal conductivity
predicted by both potentials is in good agreement with the
available experimental data.

On the other hand, there has not been a similar theoretical
work on the Sb2Te3 system and to the best of our knowledge
no interatomic potential suitable to study the phonon transport
properties of this system has been developed. However Bi2Te3

and Sb2Te3 are closely related materials whose atoms are
arranged in the same crystalline structure, and due to their
chemical similarity they can be combined in a solid solution
(Bi1−xSbx)2Te3 for any composition. Then one should expect
that the functional form of the Bi2Te3 interatomic potentials
should be suitable also to describe the bonding in Sb2Te3 and
its alloys.

The dispersion of the acoustic-phonon modes is almost
linear, the slope depending on the elastic constants of
the material. This suggests that with a suitable rescaling
of the Bi2Te3 interatomic potential, for any alloy composition
the low-frequency region of the phonon spectrum and then
the lattice thermal conductivity could be well accounted for.
Therefore the question is how to determine the rescaling factor
for a given composition x. As we explain below, this rescaling
factor can be inferred from the analysis of the experimental
phonon density of states (PDOS).

The generalized PDOS of Bi2Te3, (Bi0.5Sb0.5)2Te3, and
Sb2Te3 has been measured by inelastic neutron scattering.28 At
higher frequencies the main peak of the PDOS, G(ν), does not
shift, which indicates that the corresponding lattice modes are
mainly due to the motion of Te atoms. At the lower frequencies
which are relevant to the thermal transport (ν < 2 THz) the
group V element strongly influences G(ν), as is expected since
the low-frequency vibrational modes consist of the motion
of all the atoms of the unit cell. Taking as a reference the
PDOS of Bi2Te3, the corresponding low-frequency PDOSs of
(Bi0.5Sb0.5)2Te3 and Sb2Te3 are shifted to higher frequencies
by a factor of 1.19 and 1.43, respectively. If the shift were only
due to the change in mass, the previous factor should be given
by

√
MBi2Te3/M(Bi1-xSbx)2Te3 , which takes the values 1.06 and

1.13 for the equimolar and pure antimony alloys, respectively.
Then it is clear that the observed shifts at low frequencies
cannot be accounted for by considering only the mass ratio,
but the change in force constants should be also taken into
account. Therefore, to calculate the phonon modes of the
(Bi1−xSbx)2Te3 alloys, one can use the following procedure.
Starting with the potential for Bi2Te3, one replaces the Bi
mass by (1 − x)MBi + xMSb. This substitution accounts for
the mass shift. To reproduce the experimental observed shift,
the force constants are rescaled by the square of the empirical
factor 1.19/1.06 (x = 0.5) and 1.43/1.13 (x = 1.0). For other
values of x, one performs a quadratic interpolation. It is
important to note that this rescaling only provides accurate
results for the low-frequency region of the PDOS (ν < 2 THz).

III. RESULTS

The RTA described in Sec. II constitutes a semiempirical ap-
proach that requires the knowledge of the experimental values
of κL for the pure components of the alloy in order to set the B

parameter of Eq. (7). Although MD simulations5,6 have shown
that the QR and HK potentials respectively underestimate and
overestimate the κL of Bi2Te3 somewhat, when these potentials
are used in the RTA with their corresponding B values we have
not observed any significant differences in the κL calculated
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for the alloys. Due to the greater simplicity of the QR potential,
we present the results obtained with it.

The PDOS and κL have been computed using the tetrahe-
dron method29 to integrate Eq. (2). A grid of 6370 q points
belonging to the irreducible Brillouin zone was used. The
adjustable parameter B was set by fitting the experimental data.
κ has been measured as a function of composition by several
authors.30–33 In all cases κ was measured along the (111) plane.
There are large differences between the different data sets,
which are mainly attributed to the choice of the Lorenz number
for the calculation of the electronic component of κ . For
Bi2Te3 we have set κL = 1.7 W m−1 K−1, in close agreement
with the measurements of Birkholz,31 Satterthwaite,34 and
Ismaiylova.35 On the other hand, Sb2Te3 has not been as
extensively studied as Bi2Te3. In Fig. 2 very large discrepancies
can be seen between different measurements for Sb2Te3.
Using the Lorenz number 2.1 × 10−8 reported by Stordeur
and Simon,36 the κL derived from recent measurements of the
total thermal conductivity37,38 is approximately 1.8 W m−1

K−1, close to the value of 1.65 reported by Goldsmid.30 We
have set the same κL value for Sb2Te3 which leaves the B

parameter invariant. The ε parameter has been set by fitting κL

for x = 0.75.
This is the optimum composition for thermoelectric ap-

plications, and the one we have used to investigate the
NEAT approach. The fitted values are BBi2Te3 = BSb2Te3 =
7.6 × 10−18 s/K, ε = 150. The fitted B is of the same order
of magnitude as the B predicted by Eq. (13) of the work of
Klemens,23 which relates B with κL (∼1.7 W m−1 K−1), the
sound velocity (∼2000 m/s),5,37 and the Debye temperature
(∼160 K).37 It is also of the same order as the one reported for
Sb2Te3 by Yang et al..39 The fitted ε makes the contribution
of bond disorder of the same order as the mass disorder one.
This can be understood comparing the relative changes in
mass (�M/M) and force constants (�K/K), the latter one
derived from the rescaling factors (see Sec. II C). For x = 0.5,
�M/M ∼ 0.26, �K/K ∼ 0.23, which are almost equal.

The experimental generalized PDOS and the corresponding
theoretical PDOS are shown in Fig. 1. For Bi2Te3 the PDOS
derived from MD6 is also shown. The finite simulation time
of the MD broadens the spectrum, but there is a very good
agreement between our calculated PDOS and that of Qiu and
Ruan6 regarding the position of the spectrum maxima, the
width of the gap, and the cutoff frequency. The generalized
PDOSs shown in Fig. 1 are weighted representations of the
true PDOSs, with the contribution of each atom weighted by
its neutron scattering length. Then a direct comparison with
the theoretical PDOS should not be attempted, but only the
position of peaks should be compared. The acoustic PDOS
of Bi2Te3 (0 ∼ 1.6 THz) correlates well with the position of
the experimental peaks. This is the contribution to the total
PDOS that needs to be well described since, at 300 K, the
heat transport is largely dominated by these phonons. Our
calculations predict that the acoustic phonons carry more
than 90% of the heat. The contribution derived from MD
simulations is of similar order.5 The agreement holds also for
(Bi0.5Sb0.5)2Te3 and Sb2Te3, as expected, since the rescaling
factor was derived from the observed experimental shifts.
Regarding the optical phonon modes, we can see that the
gap predicted by the QR potential for Bi2Te3 is absent in
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FIG. 1. (Color online) Circles: Generalized PDOS measured by
inelastic neutron scattering (Ref. 28). Dashed lines: Theoretical
PDOS derived from the diagonalization of the dynamical matrix.
Dotted line: Theoretical PDOS derived from MD (Ref. 6).

the experiment, overestimating the frequencies of the optical
modes. For (Bi0.5Sb0.5)2Te3 and Sb2Te3 the agreement is even
worse since our rescaling procedure is not longer valid for
the high-frequency region of the phonon spectrum, but this
limitation does not influence so much the calculated value
of κL since anharmonic scattering is described through the
parameter B, which is adjusted to match the measured κL

value of the matrix material.
The predicted κL parallel to the (111) plane, together

with the experimental conductivities measured by Goldsmid,30

Birkholz,31 and Rosi32 along this plane, are shown in Fig. 2
as a function of composition, x. The recent measurement of
Poudel et al.2 is also shown. The calculated κL curve goes
through the experimental data sets of Goldsmid30 and Rosi,32

with discrepancies no larger than 15% on the Bi2Te3-rich side.
The three experimental data sets show an asymmetric shape,
with the minimum located at x ∼ 0.75. The calculated curve
is nearly symmetric, with the minimum close to the equimolar
composition. This is due to the limitation of the simplified
bond disorder model we have used. Regarding the alloy’s
conductivity along the perpendicular direction, we have found
experimental data only for pure Bi2Te3. The experimental
ratio between conductivities along and perpendicular to the
(111) plane is about 2.0.40 The predicted value is 1.7, in good
agrement with previous MD simulations.5,6

We now shall focus on the reduction of κL due to the
presence of nanoparticles in the alloy matrix. Experimentally,
high ZT values (ZT ∼ 1.4) have been reported2,3 for an
alloy matrix with composition (Bi0.25Sb0.75)2Te3, close to
the minimum in Fig. 2. This is the composition we have
chosen to calculate κL for a range of �ρ that covers the
experimental one. To the best of our knowledge, bismuth
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FIG. 2. (Color online) Predicted κL along the (111) plane at 300 K
as a function of composition, compared with the experimental data
of Birkholz (Ref. 31), Rosi et al. (Ref. 32), Goldsmid (Ref. 30), and
Poudel et al. (Ref. 2).

telluride NEATs have been reported containing nanoinclusions
of Te (�ρ/ρ ∼ 8%, Ref. 2), Sb (�ρ/ρ ∼ 1%, Ref. 3), ZnAlO
(�ρ/ρ ∼ 18%, Ref. 17), SiC (�ρ/ρ ∼ 53%, Ref. 41), and
also (Bi1−xSbx)2Te3 with x different from the alloy matrix
composition (�ρ/ρ < 13%, Refs. 2 and 3). In Fig. 3 we show
the calculated lattice thermal conductivities as a function of
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FIG. 3. (Color online) Thermal conductivity of (Bi0.25Sb0.75)2Te3

with 2% volume fraction of nanoparticles. Symbols: Upper limits for
different �ρ. Solid line: Lower limit (geometric scattering). The inset
show the position of the minimum as a function of �ρ. It roughly
varies as �ρ−1.

the diameter of the nanoparticles for a series of nanoparticle
mass densities (symbols), for a 2% volume fraction. These
curves represent an upper limit to the thermal conductivity (see
Sec. II). The geometric (lower) limit obtained using Eq. (10)
instead of Eq. (9) is also shown (solid line). The conductivities
shown correspond to the effective conductivities of a polycrys-
talline material. We have obtained these conductivities using
our calculated conductivities parallel and perpendicular to the
(111) plane within an effective medium model.42 There is a
minimum thermal conductivity at an optimal nanoparticle size,
which depends on the mass difference between the matrix and
the nanoparticle. From Eqs. (10) and (11) it can be seen that,
for a given volume fraction f , τ−1

l increases with R while
τ−1
s decreases, which implies that κL decreases or increases

with R depending on the scattering regime that dominates.
The minimum is found at the transition region between both
regimes. The inset of Fig. 3 shows that this minimum roughly
varies as �ρ−1. The exact position of the minimum depends
weakly on the volume fraction.

A significant reduction of the thermal conductivity is only
achieved for quite small nanoparticle sizes (∼10 nm) and
large mass differences (�ρ/ρ ∼ 50%). This situation is rather
different from the one encountered for silicide nanoparticles
embedded in a SiGe alloy matrix.14,15 It was shown there that
a 3.4% volume fraction results in much larger reductions of κL

(more than four times below the alloy’s thermal conductivity)
than the ones shown by Fig. 3 for a 2% volume fraction. Fur-
thermore the minimum for SiGe alloys is much wider than in
the case of BiSbTe alloys, and large deviations in particle size
still yield thermal conductivities nearly as low as the minimum.
As we explain below, these strong differences are ultimately

FIG. 4. (Color online) (a) Total and acoustic contributions to κL

as a function of the phonon frequency for the alloy with x = 0.75.
(b) Corresponding phonon lifetimes for anharmonic, alloy, and
nanoparticle scattering for 2% volume fraction of nanoparticles,
10 nm nanoparticle diameter, and �ρ/ρ = 40%.
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FIG. 5. (Color online) Lower limits for the thermal conductivity
as a function of nanoparticle size, for a series of volume fractions. κL

for the bulk alloy is also shown.

related to a relatively stronger anharmonicity than in the SiGe
system. Figure 4(a) shows the total and acoustic contributions
to κL for the alloy with x = 0.75. Acoustic phonons carry about
the 90% of the total heat. In Fig. 4(b) we show the anharmonic,
alloy, and nanoparticle phonon lifetimes, for a 2% volume
fraction of 15 nm radius nanoparticles and �ρ/ρ = 40%.
The effect of the embedded nanoparticles is small because
at low frequencies the anharmonic and nanoparticle scattering
are of the same order, which is a direct consequence of a
stronger anharmonicity. Hence the fraction of heat-carrying
phonons that are affected by the nanoparticles is reduced to
the very lowest frequencies, as can be inferred from Fig. 4.
Anharmonic scattering affects the scattering of all acoustic
phonons, whereas alloy scattering becomes significant only
for acoustic phonons with frequencies larger than 0.7 THz.

Finally, in Fig. 5 the geometric limit is shown for a series of
nanoparticle volume fractions. The usefulness of this figure
is twofold. On the one hand it predicts the κL reduction
for nanoparticle diameters larger than 40 nm, for which the
upper and lower limits coincide, as can be inferred from
Fig. 3 (�ρ/ρ � 40%). In this case scattering is dominated
by the geometric regime, and κL becomes independent of
the chemical nature of the nanoparticle and depends only

on its size and volume fraction. For a 3% volume fraction
the decrease of the thermal conductivity is expected to be
about 20% for 40 nm diameter nanoparticles. On the other
hand, for small nanoparticles κL depends also on the chemical
nature (composition and elastic constants) and the strain state
of the nanoparticle. Although Fig. 4 can no longer be used
to predict κL, it is still useful: For a given κ , the geometric
limit sets a rough upper limit for the nanoparticle size. To
achieve a reduction of about 40% (κL ∼ 0.5 W m−1 K−1),
the nanoparticle diameter cannot exceed 10 nm for a 3%
volume fraction. If significant stress is built around the
nanoparticle, the effective diameter will be larger. If the volume
fraction decreases, the nanoparticle should be even smaller.
Experimentally, large κL reductions in nanograined bismuth
antimony telluride alloys have previously been ascribed to
the combined effects of nanoparticle and grain boundary
scattering.2,3 Our results above suggest that this experimental
reduction is likely due to grain boundary scattering to a larger
extent than to embedded nanoparticles.

IV. CONCLUSIONS

The current classical interatomic potentials developed for
Bi2Te3, suitably rescaled, have been used to investigate the
lattice thermal conductivity of (Bi1−xSbx)2Te3 alloys. The
computed lattice thermal conductivities are in fair agreement
with experimental results in the entire range of compositions.
The effect of embedded spherical nanoparticles has also
been investigated. Reductions of thermal conductivity close
to 50% can be achieved, but only under certain conditions
regarding the size of the nanoparticle (diameter less than 10
nm) and its density difference compared to the embedded alloy
(�ρ/ρ ∼ 50%). These restrictions contrast with other systems
such as silicides embedded in SiGe matrices where a very
precise control of the size and chemical nature of the inclusion
is not essential in order to produce the desired lowering of
thermal conductivity. The existence of an optimal nanoparticle
diameter is also predicted. Its origin is due to the transition
between Rayleigh and geometrical scattering regimes, and it
varies with density difference as �ρ−1. It becomes important
when �ρ is large because of the narrowing of the minimum.
When the differences in force constants are not negligible, the
optimal sizes will be smaller than the ones predicted in the
present work.
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B 66, 125206 (2002).
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