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Analytical bond-order potential for the cadmium telluride binary system
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CdTe and Cd1-xZnxTe are the leading semiconductor compounds for both photovoltaic and radiation detection
applications. The performance of these materials is sensitive to the presence of atomic-scale defects in the
structures. To enable accurate studies of these defects using modern atomistic simulation technologies, we have
developed a high-fidelity analytical bond-order potential for the CdTe system. This potential incorporates primary
(σ ) and secondary (π ) bonding and the valence dependence of the heteroatom interactions. The functional forms
of the potential are directly derived from quantum-mechanical tight-binding theory under the condition that the
first two and first four levels of the expanded Green’s function for the σ - and π -bond orders, respectively, are
retained. The potential parameters are optimized using iteration cycles that include first-fitting properties of a
variety of elemental and compound configurations (with coordination varying from 1 to 12) including small
clusters, bulk lattices, defects, and surfaces, and then checking crystalline growth through vapor deposition
simulations. It is demonstrated that this CdTe bond-order potential gives structural and property trends close
to those seen in experiments and quantum-mechanical calculations and provides a good description of melting
temperature, defect characteristics, and surface reconstructions of the CdTe compound. Most importantly, this
potential captures the crystalline growth of the ground-state structures for Cd, Te, and CdTe phases in vapor
deposition simulations.
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I. INTRODUCTION

CdTe and Cd1-xZnxTe (CZT) crystals are very important
semiconductor materials. As one example, CdTe is a leading
semiconductor for terrestrial solar cell applications1,2 due to
its manufacturability, high solar energy absorption coefficient,
and optimal band gap for photoelectric conversion under
solar radiation.3–5 Currently, CdTe modules have the lowest
cost compared to any other photovoltaic technologies.6–8 As
another example, CdTe-based CZT crystals have been the
dominant semiconductor compounds for radiation detection
applications.9–12 This is a result of the material’s high atomic
numbers for efficient radiation-atomic interactions, and ideal
band gaps for both a high electron-hole creation and a low
leakage current.

While CdTe and CZT have been successfully applied in
solar cell and radiation sensing fields, the possibility for
further material improvement is still tremendous. In solar cell
application, the record energy conversion efficiency currently
achieved is only ∼16% as compared to the theoretical
predictions of 29%.3,13–15 This difference is due to various
micro/nanoscale defects in the multilayered films.5,8,13,16–18

In radiation detection applications, property nonuniformity
results in both poor performance and high material cost
(arising from a low yield of usable portions of ingots).9 The
presence of micron-scale defects such as grain boundaries and
tellurium inclusions/precipitates affects carrier transport and
uniformity.9,19,20 These large defects are difficult to remove
without understanding their formation mechanisms. Many
smaller-scale defects also exist, such as vacancies, antisites,
interstitials, and dislocations.21–23 It is unclear if minimizing
only large defects will result in uniform transport properties
because the presence of smaller defects, which have not been
rigorously studied in the past, could also interact with charge

carriers. In particular, experimental evidence has indicated that
dislocations can directly affect charge carriers24,25 and can also
serve as nucleation sites for tellurium precipitates.9 Clearly,
an effective approach to study small-scale defects and ways of
controlling them during growth can not only improve charge
carrier properties directly but can also help limit nucleation of
larger-scale defects.

Direct experimental observations of atomic-scale defects
are extremely challenging. Recent advances in computa-
tional materials science technologies, including high-fidelity
potentials26,27 and massively parallel molecular dynamic (MD)
simulation codes (e.g., Large-Scale Atomic/Molecular Mas-
sively Parallel Simulator LAMMPS28,29), allow us to study
configurations of atomic-scale defects and their formation
mechanisms in detail. The key to high-fidelity MD simula-
tions of CdTe or CZT is a highly transferrable (applicable
for a variety of configurations) interatomic potential that
accurately defines the interactions between various atoms.
A literature survey indicates that two CdTe interatomic
potentials are already developed: one30 is based upon the
Stillinger-Weber (SW) formulation,31 and the other one32

is a Rockett modification33 of the Tersoff potential (TR).34

Our detailed analysis35 indicated that neither potential is
sufficiently accurate at predicting properties necessary for
understanding defects.

Bond-order potentials (BOPs) are based upon quantum-
mechanical theories and can in principle offer a more accurate
description of interatomic interactions compared to SW
and Tersoff potentials. It is pointed out that Tersoff34 and
Brenner36 types of potentials can be viewed as a simple
empirical BOP, building on the framework of empirical
pseudopotentials,37 and considering only the σ bonding
with a second-moment approximation.38 To improve beyond
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Tersoff-Brenner potentials, a more advanced four-moment
analytical BOP incorporating both σ and π bondings26,38–42

can be used. By analytically deriving the BOP from quantum-
mechanical theory, its transferability to different phases
can approach that of quantum-mechanical methods. The
fidelity of BOP has been demonstrated in a number of
previous studies.27,43 A valid potential format, however, does
not itself ensure a high-quality potential without careful
parameterization.44 One difficulty in parameterizing a com-
plicated potential such as BOP is that because it is very
flexible, any phase or configuration can have a large variation
in energy with respect to a small change in parameters.
Consequently, many phases must be specifically fitted to
ensure that the ground-state (lowest-energy) phase matches
that of experiments and quantum-mechanical calculations.
While it is impossible to consider all possible configurations
and difficult to ensure the inclusion of important phases during
parameterization, simulations of melt- or vapor-phase growth
can be used to test the validity of the parameterization as they
sample a variety of local configurations statistically formed
on a growth interface. More importantly, if any abnormal
interfacial configuration has an incorrect energy lower than that
of the equilibrium phase, it can trigger amorphous structures
during the growth simulation of the equilibrium phase. Our
previous study35 reveals that SW potentials can be easily
parameterized to predict crystalline growth in vapor deposition
simulations but at the cost of not predicting correct energy
trends of different phases. In contrast, Tersoff potentials
can more accurately capture the property trends, if correctly
parameterized. However, Tersoff potentials are difficult to
parameterize without checking crystalline growth using an
iterative parameterization approach. Indeed, our simulations
of vapor deposition confirmed that in the literature many
Tersoff potentials32,45,46 predict amorphous growth. Yet, we
also confirmed that both Tersoff potentials47,48 and BOP27

can predict crystalline growth of semiconductor compounds in
vapor deposition simulations43,49,50 if carefully parameterized.

The present work looks to develop a four-moment, σ + π

analytical BOP for the CdTe system that captures both property
trends and crystalline growth; to describe a new procedure for
improving Tersoff and BOP-like potential parameterization;
to generate a comprehensive database characterizing our new
CdTe BOP (including property trends of a variety of clusters
and lattices for Cd and Te elements and CdTe compounds, as
well as melting temperature, defect characteristics, and surface
reconstructions of CdTe); to validate the CdTe BOP by com-
paring the database with the corresponding properties obtained
from experiments and our high-level density functional theory
(DFT) calculations; and to demonstrate the potential’s ability
of capturing crystalline growth of Cd, Te elements, and CdTe
compounds using vapor deposition simulations.

II. BOND-ORDER POTENTIAL

BOPs seek to improve over empirical potentials by formally
coarse graining and linking the electronic structure inherent
in a quantum-mechanical tight-binding model to atomic
bonding.51 Pettifor and his collaborators26,39,40,52 have derived
a general analytic expression for the BOP from tight-binding
theory. In this theory, the bond energy is a multiplication of

the bond-order and bond (hopping) integral,53 where the bond
order is defined as one-half the difference between the number
of bonding and antibonding electrons in the molecular orbitals
between adjacent atoms,54 and the bond integral is related to
the probability of an electron hopping from one molecular
orbital to another and therefore depends on nearest-neighbor
and orbital type.55 The BOP formalism includes separate
contributions from σ - and π -type bonds.39 The original BOP
was derived for open-phase (half-filled valence shell) materials
but later expanded to also include close-packed structures40

and compounds.38 The newest BOP has been generalized to
incorporate the effects of valence shell filling,42 which enables
the modeling of elements across the periodic table.

Retaining the previous nomenclature as much as
possible,26,38–42 the total energy of a system containing N

atoms (i = 1, 2, . . . N ) is expressed as

E = 1

2

N∑
i=1

iN∑
j=i1

φij (rij ) −
N∑

i=1

iN∑
j=i1

βσ,ij (rij ) · �σ,ij

−
N∑

i=1

iN∑
j=i1

βπ,ij (rij ) · �π,ij , (1)

where φij (rij ) is a short-range two-body potential representing
the overlap repulsion between a pair of ion cores,38 βσ,ij (rij )
and βπ,ij (rij ) are, respectively, σ and π bond integrals, �σ,ij

and �π,ij are σ and π bond orders, which are functions of
the local environment of atoms i and j , and the list j = i1,
i2, . . ., iN represents neighbors of atom i. The repulsive energy
φij (rij ) and the bond integrals βσ,ij (rij ) and βπ,ij (rij ) are
functions of the interatomic distance rij between atom i and
j . φij (rij ), βσ,ij (rij ), and βπ,ij (rij ) are expressed in a general
form as

φij (rij ) = φ0,ij · fij (rij )mij · fc,ij (rij ) (2)

βσ,ij (rij ) = βσ,0,ij · fij (rij )nij · fc,ij (rij ) (3)

βπ,ij (rij ) = βπ,0,ij · fij (rij )nij · fc,ij (rij ), (4)

where φ0,ij , βσ,0,ij , βπ,0,ij , mij , and nij are pair (ij ) dependent
parameters, fij (rij ) is a Goodwin-Skinner-Pettifor (GSP)
radial function,56 and fc,ij (rij ) is a cutoff function. The GSP
function is written as56

fij (rij ) = r0,ij

rij

exp

[(
r0,ij

rc,ij

)nc,ij

−
(

rij

rc,ij

)nc,ij
]

(5)

with r0,ij , rc,ij , and nc,ij being pairwise parameters. The
auxiliary cutoff function fc,ij (rij ) is given in Appendix A.

The bond orders can be viewed as environment-dependent
local variables that are ij bond specific.26 The maximum value
of the σ bond order (�σ ) is 1, while that of the π bond order
(�π ) is 2, attributing to a maximum value of the total bond
order (�σ +�π ) of 3. The σ and π bond orders reflect the ubiq-
uitous single-, double-, and triple-bond behavior of chemistry.
Their analytical expressions can be derived from tight-binding
theory by recursively expanding an intersite Green’s function
as a continued fraction.26,39 In particular, a Lanczos recursion
algorithm57,58 was used to derive the σ bond order, and a
matrix recursion59,60 was used to derive the π bond order.
To accurately represent the bonding with a computationally

115206-2



ANALYTICAL BOND-ORDER POTENTIAL FOR THE . . . PHYSICAL REVIEW B 85, 115206 (2012)

efficient potential formulation suitable for MD simulations,
the derived BOP takes (and retains) the first two and the first
four levels of the recursive representations for the σ and π

bond orders, respectively, similar to Murdick et al.44

Bond-order terms can be understood in terms of molec-
ular orbital hopping paths based upon the Cyrot-Lackmann
theorem.26 In general, the nth moment of the electronic
eigenspectrum can be represented by all hopping paths of
length n around the bond.61 These hopping paths naturally

incorporate the effects of local configuration around the bond,
including bond lengths and (three- and four-body) bond angles.
Many possible hopping paths around a bond exist; the most
important ones were determined and are shown in Fig. 1. These
hopping paths are incorporated in the BOP as will be clear
below.

Based on the approach described above, the two-level σ

bond order for the BOP approximation with a half-full valence
shell is written as

�
(1/2)
σ,ij = βσ,ij (rij )√

β2
σ,ij (rij ) + cσ,ij · [

β2
σ,ij (rij ) · �i

2σ + β2
σ,ij (rij ) · �

j

2σ

] + ς1

, (6)

where cσ,ij is a pair-dependent empirical parameter that compensates for some of the error introduced by a two-level σ bond-order
approximation, �i

2σ and �
j

2σ are local variables arising from the 2-hops shown in Fig. 1(a) whose expressions will be given below.
Note that Eq. (6) is modified from previous expressions26,27 by multiplying the numerator and denominator by βσ,ij (rij ) and
retains unity in the absence of neighbors. To implement BOP in numerical MD codes, four small numbers ςn (n = 1–4 represents
an index number) are introduced. These numbers remove singularities (such as divide-by-zero or square root of negative values)
but are small enough to virtually have no effect on the results. Detailed expressions for �i

2σ and �
j

2σ are given in Appendix A.
Equation (6) pertains to a half-full valence shell. A general σ bond-order term that includes valence shell occupancy can be

extrapolated from the half-full bond order by using a combination of symmetric and asymmetric bond-order functions:27,42

�σ,ij = �s,ij

(
�

(1/2)
σ,ij ,fσ,ij

) ·
⎡
⎣1 −

(
fσ,ij − 1

2

)
· kσ,ij

β2
σ,ij (rij ) · R3σ,ij

β2
σ,ij (rij ) + β2

σ,ij (rij )·�i
2σ +β2

σ,ij (rij )·�j

2σ

2 + ς2

⎤
⎦ , (7)

where 0 � fσ,ij � 1 is a pairwise band-filling parameter representing the number of electrons in the valence shell normalized
by the full valence shell (eight electrons), kσ,ij is a pairwise skewing parameter, R3σ,ij is a local variable arising from the
three-member ring hops shown in Fig. 1(a), and �s,ij is a symmetric band-filling function that modifies the half-full valence shell
bond-order expression. The second term in Eq. (7) approximates the asymmetric eigenspectrum with a skewing term proportional
to the normalized three-member ring contribution. Further expressions for R3σ,ij and �s,ij are included in Appendix A.

Based upon the derivation of Pettifor,26,38 the analytic expression for the π bond order is expressed as

�π,ij = aπ,ij · βπ,ij (rij )√
β2

π,ij (rij ) + cπ,ij · ( β2
π,ij (rij )·�i

2π,ij +β2
π,ij (rij )·�j

2π,ij

2 +
√

β4
π,ij (rij ) · �4π,ij + ς3

) + ς4

+ aπ,ij · βπ,ij (rij )√
β2

π,ij (rij ) + cπ,ij · ( β2
π,ij (rij )·�i

2π,ij +β2
π,ij (rij )·�j

2π,ij

2 −
√

β4
π,ij (rij ) · �4π,ij + ς3 + √

ς3
) + ς4

, (8)

where cπ,ij and aπ,ij are pairwise parameters. Equation (8)
can be calculated from β2

π,ij (rij ) · �i
2π,ij and β4

π,ij (rij ) · �4π,ij

corresponding, respectively, to the 2- and 4-hops shown
in Fig. 1(b). The expressions of these terms are given in
Appendix A.

To summarize, the analytic BOP developed here is ex-
pressed in terms of bonding and repulsive energy components,
Eq. (1). The bonding energy is split into σ and π bonding
terms, each of which is a product of a bond integral and
a bond order. The repulsive energy, Eq. (2), and the bond
integrals, Eqs. (3) and (4), are approximated with two-body
GSP functions. The σ bond order with a half-full valence
shell, Eq. (6), is used to extrapolate the bond-order expression
that incorporates explicit valence band filling, Eq. (7). This σ

bond-order expression also contains a three-member ring term
that allows implementation of an asymmetric density of states,
which helps to either stabilize or destabilize close-packed
structures. The π bond order, Eq. (8), includes hopping paths
of length 4. This enables the incorporation of effects of a
dihedral angle as can be seen from Eq. (A10) in Appendix A.

III. PARAMETERIZATION

The BOP parameterization of CdTe can be done inde-
pendently for elemental Cd, elemental Te, and finally for
CdTe. As stated above, the ability to capture crystalline
growth is a critical component of a high-fidelity interatomic
potential. In general, a more transferrable (flexible for many
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FIG. 1. A schematic representation of the hopping paths that
sample the local configuration around the ij bond: (a) the primary σ

bond and (b) the secondary π bond.

phases) potential is more difficult to parameterize for capturing
crystalline growth because the properties of various phases
vary more dramatically with changes of the parameters. The
parameterization of the sophisticated BOP is not trivial and
hence is described in detail.

A. Fitting parameters

The CdTe binary BOP model includes a total of 69
parameters, as listed in Tables I through IV of Appendix B.
However, many parameters can be fixed prior to the fitting
process. First, the four global parameters ς1–ς4 are chosen to
be small numbers as shown in Table I. Next, the characteristic
bond lengths r0, rc, r1, rcut are selected, as shown in Table III,
based upon the criteria that r0 approximately scales with the
bond length of the corresponding atomic pair in the equilibrium
structure, rc equals r0, rcut roughly scales with r0, and r1 is
midway between r0 and rcut. The pairwise parameters cπ and
aπ are set to unity as were originally derived for the π bond
order.39,40 The CdTe zb crystal structure has a half-full valence
shell and does not make use of the symmetric and asymmetric
σ bond-order terms; therefore, we set fσ = 0.50 and kσ = 0 for
the Cd-Te bond. Finally, we set the three-body parameter g0

to be the normalized value of unity for all the triples as shown
in Table IV. This leaves 39 parameters to be determined.

B. Target structures

An effective approach to ensure a highly transferable,
growth-simulation-enabling interatomic potential for semi-
conductors is to directly fit (or at least monitor) the atomic
volumes, cohesive energies, and elastic properties of a correct
set of target structures, including Cd, Te, and CdTe clusters and
phases with coordination from 1 to 12. After extensive trial-
and-error parameterization iterations with crystalline growth
simulations included as part of the validation tests, we nar-
rowed down our target structures to the following clusters and
lattices: For clusters, we have dimer (di), trimer (tri), square
(sq), rhombus (rhom), tetrahedron (tetra), and four-atom-chain
(ch) for each of the three materials (element or compound) Cd,
Te, and CdTe, plus two nonstoichiometric trimers Cd2Te and
CdTe2. For lattices, we have diamond-cubic (dc), simple-cubic

(sc), body-centered-cubic (bcc), face-centered-cubic (fcc),
hexagonal-close-packed (hcp), graphite (gra), and graphene
(grap) phases for Cd and the same for Te with the addition of
γ -Se (A8); zinc-blende (zb), wurtzite (wz), NaCl (B1), CsCl
(B2), binary-graphite (bgra), binary-graphene (bgrap), AuCu
(L10), CuPt (L11), NiAs (B81), CrB (B33), AlSb (sc16), and
face-centered square (fcs) for the stoichiometric compound
CdTe; and Ag2O (cP4) and ZrO2 for the two nonstoichiometric
compounds CdTe2 and Cd2Te. Although all these phases
are not used in a particular parameterization, monitoring the
energies of many structures helps select the important ones
and their weighting factors for fitting to ensure the lowest
energies for the equilibrium phases. For example, the L10, L11,
and sc16 structures of the CdTe compound sometimes became
more stable than the equilibrium zb phase with relatively small
changes in the parameters.

C. Two-step fitting method

We discovered that a simple minimization of the sum of
square deviation of the BOP determined properties from the
real properties (obtained either from experiments or quantum-
mechanical calculations) of the target structures does not lead
to a good set of parameters for the complex BOP potential,
regardless of which structures are included. Albe et al.48

discovered that for Tersoff potentials, the pairwise energy func-
tions can be independently determined from the equilibrium
target values of bond length, bond energy, and bulk modulus of
a variety of structures without considering the angular terms.
Once the pair functions are determined using this method, the
angular function parameters can be optimized in a second
step to best match additional properties. In Appendix C,
we derive a similar two-step fitting method that is effective
in high-quality BOP parameterization. Using this two-step
method, the pairwise parameters φ0, m, n, and nc are first
determined by fitting some properties of the nearest-neighbor
structures using Eqs. (C3) and (C4). The remaining parameters
are then determined in a second step by fitting other properties,
including those of the non-nearest-neighbor structures.

D. Constraints on parameters

Appropriate target structures and fitting methods alone are
not sufficient to create a physically sound BOP. Many parame-
ters critically require valid bounds. It is not trivial to determine
the bounds of all the parameters. The bounds of the parameters
that we used do not necessarily represent the optimum choices
but were obtained from a combination of physical intuition
and extensive trial-and-error experimentations. These bounds
are listed in Table V of Appendix D. Some key points are
mentioned here. The ratio of the pair function parameters m to
n equals the relative hardness R′(r)

R(r) /
U ′(r)
U (r) characteristic of the

shape of the energy curve,54 where R(r) and U (r) represent,
respectively, the repulsive and attractive pair functions. For
a hard-sphere potential, m/n = ∞, but for real materials,
m/n is normally around 2 (m/n = 2.2 for carbon, m/n =
1.8 for silicon,54 and the conventional Lennard-Jones62 and
Morse63 potentials both have m/n= 2). Hence, m/n is targeted
at 2.0 with slight adjustment. In addition, the pair function
parameters are constrained so that Eqs. (2)–(4) decay to small
values near the cutoff distances even without multiplying them
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by the cutoff function. This ensures that the pair functions
smoothly decay to zero when multiplied by the cutoff function.
Finally, the parameters of the angular function are constrained
so that Eq. (A5) is monotonic between θ = 0◦ and θ = 180◦.

E. Fitting algorithm

Symbolic computations were performed using
Mathematica64 to derive complicated expressions for
the cohesive energies, pressure, and elastic constants of
various structures. Four Mathematica built-in numerical
optimization routines, namely a conjugate gradient method,65

the downhill simplex method of Nelder and Mead,66 a genetic
algorithm,67 and biased random walk (simulated annealing),68

were all used to determine the parameters that minimize the
mean-square difference between the target and predicted
properties. These numerical routines require initial values of
parameters that alter the difficulty level of the fitting. While
we used a trial-and-error approach to get progressively better
guesses of the initial parameters, future BOP development
can use the CdTe parameters determined in this work or the
GaAs parameters determined previously27 as good references
for the initial parameters. After each fitting iteration, the four
sets of parameters from the four optimization routines were
tested for a larger collection of structures and vapor deposition
simulations. If spurious low-energy structures existed (for
example, a structure was found to have a cohesive energy
lower than that of the ground-state phase), or vapor deposition
simulations predicted an amorphous growth, the entire
process was repeated with an appropriate adjustment of target
structures and target properties. The iterations continued until
one of the four optimization routines resulted in a satisfactory
set of potential parameters. The parameterization was first
conducted for elemental Cd and then for elemental Te. Finally,
the parameters determined for Cd and Te were used in CdTe
binary systems to determine the remaining parameters. The
BOP potentials thus determined are listed in Tables I–IV of
Appendix B for global, point-dependent, pair-dependent, and
three-body-dependent parameters, respectively.

IV. EVALUATION OF THE POTENTIAL

Using parallel MD code LAMMPS,28 extensive simulations
were performed to evaluate and validate the BOP. In particular,
geometries and energies of numerous small clusters; lattice
constants, cohesive energies, and bulk moduli of a variety
of lattice structures; and melting temperature, properties of
common point defects (interstitials, vacancies, and antisites),
and surface reconstructions of the lowest-energy zinc-blende
CdTe compound, are all studied. The results obtained from
both our BOP and SW30 and TR32 CdTe potentials in the
literature are compared with those obtained from our high-
level DFT calculations (as described in Appendix E) and the
published experiments. Finally, vapor deposition simulations
are presented, which capture crystalline growth.

A. Small-cluster properties

To test BOP’s transferability to different environments,
bonding energies and geometries of a variety of Cd, Te, and
CdTe clusters with different coordination numbers are studied.

FIG. 2. (Color online) Normalized binding energies per atom for
selected Cd, Te, and CdTe clusters.

Relaxed structures are determined from molecular statics
energy minimization simulations based upon a conjugate
gradient method.69 Similar calculations are performed using
the DFT method (see Appendix E). For numerical references,
results of the bonding energies and geometries of a variety
of small clusters are all tabulated in Tables VI through
IX of Appendix F. It is important to note that the DFT
method captures property trends but not necessarily absolute
values. In addition, the structures that are likely to form in
a dynamic simulation are really determined by the energy
trends of different phases. As a result, we examine the energy
trends of various clusters in Fig. 2. To focus on the trends
as opposed to the magnitudes of the energies, the binding
energies of different clusters shown in Fig. 2 are normalized
by the magnitudes of the energy of the lowest-energy clusters
determined in DFT calculations (tetra for Cd, rhom for Te, and
rhom for CdTe). It can be seen from Fig. 2 that BOP energy
trends are significantly closer to the DFT values than those
from the SW and TR potentials. In particular, BOP reproduces
the DFT trends from the low- (large magnitude) to high-energy
clusters for Cd, namely tetra-rhom-tri-sq-ch-di. Except for a
slightly underestimated magnitude of the energy for the Te
trimer cluster, and a slightly overestimated magnitude of the
energy for the TeCdTe trimer cluster, the BOP also gives
correctly the energy trends for Te, namely rhom-sq-ch-di, and
the energy trends for CdTe, namely rhom-CdTeCd-di.

Figure 2 compares the normalized energies. In terms of
real values, Table VI indicates that for Cd clusters, BOP
overpredicts the magnitude of the energies as compared with
the DFT values, whereas for Te and CdTe clusters, the BOP
magnitude of the energies agrees reasonably well with the
DFT values (note that DFT and experimental values also
differ). In addition to the binding energies, Tables VII through
IX indicate that the bond lengths for the Cd clusters are
underpredicted by 12–20%. The bond length of Te and CdTe
clusters also deviate from DFT values by 5–9% and 9–21%,
respectively. As discussed in Appendix C, the bond energy vs
bond length relation of different (nearest-neighbor) structures
always satisfy Eq. (C3) if φ and βσ are pair functions.
Regardless of the parameters, the bond energy specified by
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FIG. 3. (Color online) Normalized (a) cohesive energies and
(b) atomic volumes of a variety of Cd, Te, and CdTe lattices.

Eq. (C3) is a monotonically increasing function of bond length.
In contrast, the DFT bond energy vs bond length data is rather
scattered. As a result, it is necessary that some differences exist
between BOP and DFT. This observation was also observed in
the previous work.27 We feel that while the improved energy
trends are already a significant advantage of BOP over other
potentials, further improvement of the BOP is possible by
incorporating the environment dependence in the repulsive
and bond integral functions, i.e., the φ and βσ in Eq. (C3) are
no longer treated as pair functions.

B. Bulk lattice structures

Zero-pressure energy minimization simulations70 are per-
formed to determine the relaxed structures and properties
of different bulk lattices using our BOP, SW,30 and TR32

potentials, as well as the DFT calculations. A variety of Cd,
Te, and CdTe lattices with coordination numbers between 4
and 12 are considered. Again for numerical references, the
lattice constants and cohesive energies obtained from different
models and the available experimental data are tabulated in
Tables X through XII of Appendix F for Cd, Te, and CdTe
lattices, respectively. Here we compare cohesive energies
and atomic volumes (can be related to lattice constants)

obtained from different models and available experiments71,72

in Figs. 3(a) and 3(b), respectively. To again focus on trends,
energies and volumes shown in Fig. 3 are normalized by the
magnitude of the energy and volume of the experimentally
observed equilibrium structures for each model.

Experiments indicated that equilibrium phases for Cd, Te,
and CdTe are hcp, A8, and zb with cohesive energies of
−1.133 eV/atom, −2.168 eV/atom, and −2.178 eV/atom,
respectively.71,72 Figure 3(a) indicates that compared with the
SW and TR potentials, BOP calculates energy trends signifi-
cantly closer to those of the DFT method. Most importantly,
the BOP correctly captures the Cd-hcp, Te-A8, and CdTe-zb as
the lowest energy phases with an exact match of their cohesive
energies (refer to Tables X through XII). In sharp contrast,
the lowest energy phases are calculated to be Cd-dc, Te-dc,
and CdTe-zb by the SW potential30 and Cd-dc, Te-bcc, and
CdTe-B2 by the TR potential.32 In fact, the SW potential has
the only correct lowest-energy lattice of CdTe-zb. These results
indicate that the TR potential cannot be used to study any of
the equilibrium Cd, Te, or CdTe phases. Although the SW
potential seems to work for the equilibrium CdTe phase, the
results may be inaccurate as the potential does not transfer to
the Cd and Te (and hence the defective) regimes. As a result,
our CdTe BOP significantly improves over other widely used
potentials on energy trends of different configurations, leading
to a better description of defects in CdTe crystals.

Based on lattice constants,72 the experimental atomic vol-
umes of the equilibrium Cd-hcp, Te-A8, and CdTe-zb phases
are 21.46 Å3/atom, 33.76 Å3/atom, and 33.98 Å3/atom,
respectively. Figure 3(b) indicates that compared with the
other two literature potentials, BOP significantly improves the
calculated atomic volume trends of different Te and CdTe
phases. The largest deviation of the volume trends between
BOP and DFT occurs for the Cd phases. The only reason
attributed to this discrepancy is a large drop of the atomic
volume of the Cd-hcp phase. Experimentally, the Cd-hcp has
a significantly larger lattice constant ratio of c/a = 1.885,72 as
compared with the ideal ratio of 1.633. With extensive efforts,
we discovered that BOP could not fit a c/a ratio significantly
above the ideal ratio. As a result, we could not fit a bigger
atomic volume for the Cd-hcp phase, while ensuring other
property trends. Note that this issue is not specific to BOP; it
also occurs for other potentials.44 In fact, one previous method
to fit c/a ratio is to modify a SW potential so that the pair
functions give two energy minima to accommodate two lattice
constants a and c.73 Such an approach is obviously not desired.
Again, it should be recognized that the atomic volume trends
are constrained by Eq. (C3) when φ and βσ are treated as pair
functions. Further improvement can be achieved when φ and
βσ are not approximated as pair functions. Nonetheless, the
overall improvement of our BOP on the atomic volume trends
over the other potentials, Fig. 3(b), enables more accurate
description of strain energies when the system undergoes phase
transformation.

To further examine the fidelity of the BOP for CdTe simula-
tions, the single-crystal elastic constants of the CdTe-zb phase
are calculated and compared for different models and literature
experimental74/DFT75 data in Table XIII of Appendix F. It
can be seen that the BOP captures the elastic constants of the
CdTe-zb phase remarkably well, which significantly improves
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FIG. 4. (Color online) Normalized bulk moduli of a variety of
Cd, Te, and CdTe phases.

over the SW potential (the only other potential having the
correct lowest-energy CdTe phase). Note that these elastic
constants are not fitted, and their good values are indicative of
the transferability of the BOP model.

The bulk moduli of a variety of Cd, Te, and CdTe phases are
also calculated using different methods, and the normalized
results are compared in Fig. 4. It can be seen from Fig. 4
that BOP does a reasonable job of capturing the bulk modulus
trends of various phases. In particular, the bulk modulus trends
predicted by the BOP are significantly closer to those of the
DFT method, and BOP does not suffer from the problem of
an abnormally high bulk modulus of the CdTe-B2 phase as
shown by the SW potential.

In general, the BOP accurately captures the most important
energy trends of a variety of Cd, Te, and CdTe phases. It
also significantly improves the prediction of trends for atomic
volumes and elastic constants of different Cd, Te, and CdTe
phases over the other available potentials.

C. Melting temperature

Melting temperature simulations test a large number of
thermally activated configurations and have implications on
modeling thermodynamic properties. Thus, we calculate the
melting temperature of the CdTe-zb phase. We adopt the
MD technique proposed by Morris et al.76 for which one
slab of CdTe-zb crystal and one slab of liquid CdTe reach
an equilibrium temperature together. The simulations employ
periodic boundary conditions in all three coordinate directions.
We begin with a single-crystalline CdTe-zb crystal containing
7200 atoms constructed using the 0-K lattice parameter. The
crystalline half of the block contains 3600 atoms with positions
held fixed, while increasing the temperature of the other
3600 atoms to 2700 K over a 0.1-ns period. The pressure
is held at 1 atm under the NPT (constant number of atoms,
pressure, and temperature) conditions using a Nosè-Hoover
thermostat/barostat,77,78 with a temperature damping parame-
ter of 10.0 ps and a pressure damping parameter of 5.0 ps. The
constant pressure condition ensures that the sample dimension
could relax, thereby removing any unrealistic stresses in the
melt. After reaching a constant temperature for 0.05 ns, the
fixed crystal is released. Isenthalpic NPH (constant number of

atoms, pressure, and enthalpy) dynamics is then performed for
0.2 ns to bring the two slabs into thermal equilibrium where the
system temperature is well converged. Another 0.05-ns simu-
lation is conducted, and the melting temperature is calculated
as the average temperature in the final 0.05-ns period.

The CdTe-zb melting temperatures calculated by different
methods are compared in Table XIV of Appendix F along with
the available experimental value.79 It can be seen that the TR
potential significantly underpredicts the melting temperature
as the CdTe-zb phase is not even the equilibrium phase with
the TR potential. With only the CdTe-zb phase considered,
the SW potential parameterization explicitly fits the melting
temperature by adjusting the cutoff radius.30 As a result, it
is not surprising that the SW potential calculates the melting
temperature exactly. Without an explicit fitting, the BOP pre-
diction of the melting temperature comes remarkably close to
the experimental value. BOP could possibly approach a closer
value to the experimental melting temperature by adjusting the
cutoff radius. With so many phases considered, this refinement
is not trivial and is not pursued in the current work.

D. Point defects

In addition to examining different clusters and lattices,
defect properties are also studied to further test the BOP
potential. The primary native defects observed in CdTe
compounds are Cd interstitials under the Cd-rich condition
and Cd vacancies, Te interstitials, and Te antisites under the
Te-rich conditions.80,81 Various types of defects can be easily
introduced in the computational crystal. The stoichiometry
of the system containing the defects, however, does not
necessarily equal the stoichiometry of the perfect crystal.
Following the methodology of Zhang and Northrup,27,82,83 the
defect energy � is calculated as a function of the chemical
potential difference �μ as

� = E′
D − 0.5(nCd − nTe) · �μ, (9)

where nCd and nTe are numbers of Cd and Te atoms in the
defective system, �μ is the chemical potential difference
characteristic of the environment, and E′

D is an intrinsic defect
energy at stoichiometric condition. �μ is expressed as

�μ = (
μCd − μbulk

Cd

) − (
μTe − μbulk

Te

)
, (10)

where μCd and μTe are the chemical potentials of Cd and Te
in the CdTe compound and μbulk

Cd and μbulk
Te are the chemical

potentials for the lowest-energy Cd and Te phases. In our
work, all chemical potentials are approximated as cohesive
energies per atom unit. Under this approximation, �μ satisfies
the condition −�Hf < �μ < �Hf , where �Hf is heat of
mixing.83 In general, �μ = 0, �μ > 0, and �μ < 0 mean
stoichiometric, Cd-rich, and Te-rich conditions.

The intrinsic defect energy can be calculated as

E′
D = ED − 0.5(nCd + nTe) · μbulk

CdTe − 0.5(nCd − nTe)

· (μbulk
Cd − μbulk

Te

)
, (11)

where ED is the total energy of the system containing the
defect, and μbulk

CdTe is the chemical potential of the lowest-energy
CdTe phase. Under the equilibrium condition �μ = 0 and
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FIG. 5. (Color online) Various defect energies of the CdTe-zb
phase.

� = E′
D . Under the Cd-rich or Te-rich condition, �μ �= 0 and

thus � �= E′
D .

The defects considered here include Cd vacancy (VCd),
Te vacancy (VTe), Cd at Te antisite (CdTe), Te at Cd antisite
(TeCd), Cd interstitial surrounded by the Te tetrahedron shell
(Cdi), and Te interstitial surrounded by the Cd tetrahedron
shell (Tei). In addition, 〈110〉 and 〈100〉 dumbbell interstitials84

are also considered. The dumbbell interstitials are formed by
splitting an onsite Cd or Te atom into two atoms and separating
them with their bond aligned along either the 〈100〉 or 〈110〉
direction.84,85

Energy minimization simulations are performed to calcu-
late the total energies of the CdTe-zb systems (with about 512
atoms) containing the corresponding defects, ED . The intrinsic
defect energies are then calculated using Eq. (11). The results
obtained from various models are numerically tabulated in
Table XV of Appendix F and are reproduced in Fig. 5 for a
more convenient examination.

Figure 5 indicates that the defect energy trends predicted by
the BOP are significantly closer to those by the DFT method
than the other potentials. Most importantly, the BOP captures
correctly the Te vacancy as the lowest energy defect with
a comparable defect energy with the DFT value. Contrarily,
the SW potential predicts the CdTe antisite defect to have the
lowest energy. Worse than that, the TR potential predicts at
least five other defects to have a lower energy than Te vacancy.
Remarkably, the BOP also captures well the energy trends
and magnitude of energies of Cdi,〈110〉, Cdi , and CdTe. These
three additional defects, along with VTe, are important as they
have the four lowest energies in the DFT calculations. BOP,
therefore, can be used to accurately study defect problems.

E. CdTe surfaces

Simulations of mechanical processes (such as fracture) and
growth processes (such as vapor deposition), sample surface
configurations. To evaluate the transferability of our BOP to
these scenarios, the (010) CdTe-zb surface is studied. The
(010) surface of the CdTe-zb crystal has exhibited a variety
of surface reconstructions depending on the environment.86–88

Some possible surface reconstructions, as reported by Gundel

FIG. 6. Possible (010) CdTe-zb surface reconstructions.

et al.89 are shown in Fig. 6. Using DFT simulations, Gundel
et al.89 predicted that for Te-rich environments, the Te (2 × 1)
reconstruction (Te coverage of ξ = 1.0) is favorable, whereas
for Cd-rich environments, the Cd c(2 × 2) (Te coverage
ξ = 0.5) is favorable. Gundel’s calculations reproduce the
experimental observation of Te (2 × 1) reconstructions in Te-
rich environments90 and Cd c(2 × 2) surface reconstructions
in Cd-rich environments.86

Based upon Eqs. (9) and (11), we calculate the energies
of all the 10 CdTe-zb (010) surface reconstructions shown
in Fig. 6 as a function of the chemical potential difference,
Eq. (10). In the MD simulations performed here, �μ is
left as an independent variable representing transition from
Te-rich to Cd-rich environments. The computational cell used
in each simulation contains a block of zb CdTe crystal with
∼2300–2500 atoms. Periodic boundary conditions are used
in the x and z directions and two parallel free surfaces (with
the same reconstructions) are created in the ±y directions.
The two surfaces are not perfectly symmetric as one of the
free surfaces is rotated 90◦ relative to the opposite surface. The
calculated surface energies are summarized in Figs. 7(a) and
7(b) for the BOP potential and DFT, respectively. Figure 7(a)
indicates that within the possible range of chemical potential
difference between −�Hf and �Hf , the preferred surface
for the BOP potential is Te (2 × 1) with coverage ξ = 1.0
in the Te-rich environments (�μ near the −�Hf end), in
good agreement with Gundel’s calculations.89 In addition,
Fig. 7(a) shows that in the Cd-rich environments (�μ near
the �Hf end), the preferred surface is Cd (1 × 1) with
coverage ξ = 1.0 (this surface can also be considered as bulk
terminated). Fig. Fig. 7(b) indicates the preferred surfaces
predicted by our DFT are the Cd (2 × 1) with coverage ξ

= 0.5 and the Cd c(2 × 2) with coverage ξ = 0.5 in the
Te-rich environments and Cd (1 × 2) with coverage ξ = 1.0 in
the Cd-rich environments. Interestingly, BOP does not predict
dimerization for the Cd-terminated surfaces with coverage
ξ = 1.0. This is supported by experiments86 but has not been
predicted by other potentials or DFT.35
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FIG. 7. (010) CdTe surface energy phase diagrams predicted by
(a) BOP and (b) DFT.

F. Vapor deposition simulations

SW potentials do not capture well the property trends
of different phases35 but can be easily parameterized to
generate crystalline growth.91–93 Although Tersoff potentials
more accurately exhibit the property trends, they are difficult
to parameterize. As a result, Tersoff potentials in the literature
are often found to predict amorphous growth.32,35,45 BOP fun-
damentally improves on the prediction of property trends over
Tersoff potentials. Therefore, BOP can greatly improve the
way atomistic simulations are performed for semiconductor
systems if it is well parameterized to capture both property
trends and crystalline growth. To evaluate BOP behavior on
growth simulations, we perform MDs simulations of vapor
deposition of Cd-hcp, Te-A8, and CdTe-zb growth. Our
computational systems employ periodic boundary conditions
in the x and z directions and a free boundary condition in
the y direction. The growth occurs in the +y direction, and
a constant zero pressure is maintained during simulations to
relax the system dimensions.

For Cd growth, an initial substrate of an hcp crystal
containing 1536 Cd atoms with 24 (21̄1̄0) layers in the x

direction, 9 (0002) layers in the y direction, and 16 (01̄10)
layers in the z direction is used, where layers refer to
crystallographic planes so that n (000n) layer is equivalent to

FIG. 8. (Color online) Predicted growth of hcp Cd in the [0001]
direction.

one (0001) layers, etc. The substrate temperature is set at T =
300 K by assigning velocities to atoms according to the
Boltzmann distribution. During simulations, the bottom (-y)
two (0002) layers are held fixed to prevent crystal shift upon
adatom impact on the top surface. The next three (0002) layers
are isothermally controlled at the substrate temperature. This
leaves the top four layers free, where the motion of atoms is
solely determined by Newton’s law. Growth is simulated by
injecting Cd adatoms from random locations far above the
surface. All adatoms have an initial far-field incident kinetic
energy Ei = 1.0 eV and an incident angle θ = 0◦ (i.e., the
moving direction is perpendicular to the surface). The adatom
injection frequency is chosen to give a deposition rate of
R = 2.4 nm/ns. This deposition rate is much higher than
experimental values. However, by maintaining the substrate
at an elevated temperature, adatoms have a significant energy
to locate low energy wells on the surface even within the
short-time constraint imposed by the high deposition rate.
To approximately maintain a constant thickness of the free
surface region, the isothermal region expands upward during
simulations. Because surface roughness might develop, the
isothermal region expands at about 80% of the surface growth
rate so that the upper boundary of the isothermal region never
exceeds the surface even at the valley locations. The resulting
configuration obtained after 0.42-ns deposition is shown in
Fig. 8. Note that in the figure, the x dimension of the system
has been extended using periodic boundary conditions, and the
original substrate is shaded in pink. It can be seen that except
for the formation of stacking fault on the (0001) surface, our
BOP correctly captures the crystalline growth of the Cd.

For Te growth, an initial substrate of an A8 crystal
containing 1440 Te atoms with 20 (21̄1̄0) layers in the x

direction, 12 (0003) layers in the y direction, and 12 (01̄10)
layers in the z direction is used. The bottom three (0003)
layers are fixed, the next three (0003) layers are isothermally
controlled, and the top four (0003) layers are free. Growth is
simulated at a substrate temperature of T = 300 K, an adatom
incident energy Ei = 0.1 eV, an incident angle θ = 0◦, and a
deposition rate R = 3.5 nm/ns. Again, the isothermal region
expands at about 80% of the growth rate. The configuration
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FIG. 9. (Color online) Predicted growth of A8 Te in the [0001]
direction.

obtained after 0.42-ns deposition is shown in Fig. 9. Figure 9
further confirms that our BOP correctly captures the crystalline
growth of the Te-A8 phase.

For CdTe growth, an initial substrate of a zb crystal
containing 216 Cd atoms and 216 Te atoms with six (101)

FIG. 10. (Color online) Predicted growth of zb CdTe in the [010]
direction. (a) time = 0.12 ns; and (b) time = 1.20 ns.

layers in the x direction, 12 (040) layers in the y direction,
and six (1̄01) layers in the z direction is used. The top y

surface is terminated by Cd initially. During simulations, the
bottom three (040) layers are fixed. To mimic the molecular
beam epitaxy (MBE) growth condition commonly used for
semiconductor growth, the isothermal region is expanded to
include all atoms above the fixed region. To capture the adatom
incident energy effects, however, the newly added adatoms are
not isothermally controlled until they are fully incorporated
into the film and their initial kinetic and potential (latent heat
release) energies are fully dissipated. Growth is simulated at
a substrate temperature of T = 1000 K, an adatom incident
energy Ei = 1.0 eV, an incident angle θ = 0

◦
, and a deposition

rate R = 2.2 nm/ns. During simulation, Cd and Te adatoms
from random locations far above the surface are continuously
injected into the system. The injection of Cd and Te species
is random but over time gives an average 1:1 stoichiometric
ratio. The system configurations obtained at 0.12- and 1.2-ns
deposition times are shown, respectively, in Figs. 10(a) and
10(b). Figures 10(a) and 10(b) again confirm that our BOP
correctly captures the crystalline growth of the zb CdTe.
Interestingly, Fig. 10(b) shows that excess Te atoms on the
surface evaporated in the form of molecular Te2 dimer.

V. CONCLUSIONS

We have developed a bond-order potential for the CdTe
binary system. This potential is a significant improvement
over previous formulations. Unlike other potentials currently
available, this BOP simultaneously meets three criteria: (a) it is
derived directly from quantum-mechanical theories and has
a one-on-one correspondence with the tight-binding model;
(b) it accurately captures property trends of many config-
urations; and (c) it results in crystalline growth in vapor
deposition simulations. High-quality parameterization was
achieved by considering a large number of target structures
with coordinations ranging from 2 to 12; applying the
two-step fitting approach; setting physically valid bounds
for all parameters; using different minimization schemes
and good initial guesses of parameters; and iterating the
parameterization with crystalline growth simulation as part of

FIG. 11. �s,ij (�(1/2)
σ,ij ,fσ,ij ) as a function of �

(1/2)
σ,ij at different fσ,ij

values calculated using the splined function27,42 (thick gray line) and
Eq. (14) (thin black line).
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the validation tests. This potential captures well the property
trends of clusters and lattices, melting, defects, and surfaces,
and reproduces crystalline growth during vapor deposition
simulations. We are confident that this potential will offer
new opportunities for studying atomic-scale defects in CdTe
components as well as the roles they play in the formation of
larger defects. In addition, we expect that the emergence of
such BOP potentials will enable empirical MD simulations of
semiconductors to achieve a new fidelity level comparable to
quantum-mechanical methods.
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APPENDIX A: ADDITIONAL FUNCTIONS FOR THE
BOND-ORDER POTENTIAL

The cutoff function used in Eqs. (2)–(4) is expressed as

fc,ij (rij ) =
⎧⎨
⎩

exp(−αij ·r
γij

ij )−exp(−αij ·r
γij

cut,ij )

exp(−αij ·r
γij

1,ij )−exp(−αij ·r
γij

cut,ij )
, rij < rcut,ij

0, rij � rcut,ij

(A1)

where r1,ij , rcut,ij , αij , and ij are pairwise parameters.
αij and γij are defined from exp(−αr

γ

cut,ij ) = 0.01 and

FIG. 12. (Color online) Dihedral angle �ψkk′ for the four-body
involving the k, i, j, k′ atoms around the ij bond.

TABLE I. Global BOP parameters for CdTe.

Symbol Term –

ς1 Small number in Eq. (6) 0.00001
ς2 Small number in Eq. (7) 0.00001
ς3 Small number in Eq. (8) 0.00100
ς4 Small number in Eq. (8) 0.00001

exp(−αr
γ

1,ij ) = 0.99, giving

γij = ln[ln(0.99)/ln(0.01)]

ln(r1,ij /rcut,ij )
(A2)

αij = − ln(0.99)

(r1,ij )γij
. (A3)

Hence Eq. (A1) uses only two parameters r1,ij and rcut,ij , with
the latter being the cutoff distance of the functions. It can
be seen that given Eqs. (A2) and (A3), the cutoff function in
Eq. (A1) approximately equals unity when rij is smaller than
r1,ij and equals zero when rij is larger than rcut,ij . Multiplying
the potential pair functions with Eq. (A1) therefore enables
a smooth cutoff of the functions. A smooth decay near the
cutoff is important under surfaces and liquid environments
where frequent sampling of this region of the potential occurs.
Additionally, smooth functions increase the stability of the
numerical integrals at discrete time steps.94,95 The importance
of the smooth cutoff has also been nicely illustrated when
the GaN Tersoff potential47 is used to calculate GaN thermal
conductivity.96 It is known that with the cutoff procedure used
in the Tersoff potentials,34 only values and first derivatives of
the pairwise energy functions are continuous, and the second
derivatives are discontinuous. It was demonstrated96 that this
can result in a significant underestimation of the thermal
conductivity, and can also cause a large energy drift during
constant energy MD simulations (unless the time step size
is substantially reduced). Removing the discontinuous second
derivatives using a cubic spline cutoff approach, which results
in almost zero changes in the characteristics of the potentials,
resolves this issue.96

The �i
2σ and �

j

2σ terms used in Eq. (6) have the same formu-
lation except that they are evaluated at the center of atom i and
atom j, respectively. Hence, we discuss only �i

2σ . Performing
calculations using Eq. (6) requires the knowledge of only
the product β2

σ,ij (rij ) · �i
2σ . Correspondingly, β2

σ,ij (rij ) · �i
2σ

is expressed as

β2
σ,ij (rij ) · �i

2σ =
iN∑

k=i1
k �=j

g2
σ,jik(θjik) · β2

σ,ik(rik), (A4)

where θjik is the bond angle at atom i spanning atoms j and
k and the function gσ,jik(θjik) introduces angular-dependent
contributions to the bonding resulting from the overlap of the

TABLE II. Point-dependent BOP parameters for CdTe.

Symbol Term Cd Te

pπ See Eq. (A11) 0.420000 0.460686
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TABLE III. Pair-dependent BOP parameters for CdTe.

Symbol Term Cd-Cd Te-Te Cd-Te

r0 GSP reference radius (Å) 3.1276 3.1626 3.1276
rc GSP characteristic radius (Å) 3.1276 3.1626 3.1276
r1 Cutoff start radius (Å) 3.7303 3.8046 4.0138
rcut Cutoff radius (Å) 4.3330 4.4465 4.9000
nc GSP decay exponent 2.800000 2.799998 2.811251
m GSP attractive exponent 3.263155 2.458846 2.587831
n GSP repulsive exponent 1.553883 1.223306 1.287478
φ0 Repulsive energy prefactor (eV) 0.186369 0.876912 0.631440
βσ,0 σ Bond integral prefactor (eV) 0.238318 0.782635 0.825290
βπ,0 π Bond integral prefactor (eV) 0.097599 0.531205 0.031743
cσ Empirical �σ parameter 0.561130 1.014809 1.286955
fσ Band-filling parameter 0.431863 0.331227 0.5
kσ Skewing prefactor 15.00000 −2.86019 0
cπ Empirical �π parameter 1 1 1
aπ Prefactor for �π 1 1 1

hybridized atomic orbital. The three-body angular function is
written as

gσ,jik(θjik)

= (bσ,jik − g0,j ik) · u2
σ,jik − (g0,j ik + bσ,jik) · uσ,jik

2 · (
1 − u2

σ,jik

)

+ g0,j ik + bσ,jik

2
· cos θjik

+ g0,j ik − bσ,jik + (g0,j ik + bσ,jik) · uσ,jik

2 · (
1 − u2

σ,jik

) · cos2 θjik

(A5)

where g0,j ik , bσ,jik , and uσ,jik are three-body-dependent
parameters. Equation (A5) is a parabolic function exactly
as previously derived27 except that the polynomial coeffi-
cients are reconstructed to satisfy gσ,jik(θjik = 0◦) = g0,j ik ,
gσ (θjik = 180◦) = −bσ,jik , and gσ,jik(cosθjik = uσ,jik) = 0.
Equation (A5) can represent different orbitals. For instance, s
orbitals have no angular dependence so that g0,j ik = 0, bσ,jik =
0, and uσ,jik = ±1 (to avoid the divide-by-zero scenario, we
can choose g0,j ik = 0.0001, bσ,jik = 0.0001, and uσ,jik =
1.00005 or −0.99995); p orbitals have a cosine form so that

g0,j ik = 1, bσ,jik = 1, and uσ,jik = 0; and dz2 orbital have a
cos2θ (or 1 + cos2θ ) dependence so that g0,j ik = 1, bσ,jik =
−1, and uσ,jik = 0. The three-body interactions overlap in the
hybridized atomic orbitals of CdTe to form a combination of
these basic angular dependences54 so that g0,j ik , bσ,jik , and
uσ,jik are fitting parameters. These parameters are treated as
three-body dependent to allow incorporation of asymmetry in
heteroatom bonding environments.38,44

To perform calculations using Eq. (7), the product
β2

σ,ij (rij ) · R3σ,ij is required. This is expressed as27,42

β2
σ,ij (rij ) · R3σ,ij

=
iN∑

k=i1
k,j=n

gσ (θjik) · gσ (θijk) · gσ (θikj ) · βσ,ik(rik) · βσ,jk(rjk),

(A6)

where k,j = n in the summation indicates that k and j

are neighbors. The symmetric band-filling function �s,ij was
expressed as a spline function.27,42 However, in order to have
continuous derivatives we have replaced the spline by the
following function:

�s,ij

(
�

(1/2)
σ,ij ,fσ,ij

) =
�0 + �1 + S · �

(1/2)
σ,ij −

√(
�0 + �1 + S · �

(1/2)
σ,ij

)2 − 4
(−ε

√
1 + S2 + �0 · �1 + S · �1 · �

(1/2)
σ,ij

)
2

, (A7)

TABLE IV. Three-body-dependent BOP parameters for CdTe.

jik

Symbol Term CdCdCd TeTeTe TeCdTe CdCdTe CdTeCd CdTeTe

g0 See Eq. (11) 1 1 1 1 1 1
bσ See Eq. (11) 0.762039 0.669623 0.200000 1.000000 0.2000000 0.999854
uσ See Eq. (11) −0.40000 −0.14152 −0.38336 0.099711 −0.400000 −0.00393
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TABLE V. Bounds on BOP parameters.

Elemental Cd Notes

1.0 < 2.1 · nCdCd < mCdCd < 2.2 · nCdCd < 4 First step
0.05 < 8 · βπ,0,CdCd < βσ,0,CdCd < 0.8 · φ0,CdCd < 0.8
nc,CdCd � 2.8
nCdCd > ln(ξ )

ln[exp(1−�
nc,CdCd )/�]

, ξ = 0.02, � = 1.5

0.42 � pπ,Cd � 1 Second step
β2

π,0,CdCd � pπ,Cd · β2
σ,0,CdCd

0 � βσ,CdCd � 8
0 � βπ,CdCd � 8
0 � cσ,CdCd � 3.65
0.2 � fσ,CdCd � 0.8
−15 � kσ,CdCd � 15
0 � bσ,CdCdCd � 1
−0.4 � uσ,CdCdCd � 0.2
(bσ,CdCdCd + pσ,CdCdCd)2(u2

σ,CdCdCd − 1)2 > 4[pσ,CdCdCd − bσ,CdCdCd + (pσ,CdCdCd + bσ,CdCdCd)uσ,CdCdCd]2

Elemental Te

0.8 < 1.9 · nTeTe < mTeTe < 2.01 · nTeTe < 4 First step
0.05 < 2 · βπ,0,TeTe < βσ,0,TeTe < 0.8 · φ0,TeTe < 3.2
nc,TeTe = 2.799998
nTeTe > ln(ξ )

ln[exp(1−�
nc,TeTe )/�]

, ξ = 0.05, � = 1.5

0.42 � pπ,Te � 1 Second step
β2

π,0,TeTe � pπ,Te · β2
σ,0,TeTe

0 � βσ,TeTe � 8
0 � βπ,TeTe � 8
0 � cσ,TeTe � 3.65
0.2 � fσ,TeTe � 0.8
−15 � kσ,TeTe � 15
0 � bσ,TeTeTe � 1
−0.4 � uσ,TeTeTe � 0.2
(bσ,TeTeTe + pσ,TeTeTe)2(u2

σ,TeTeTe − 1)2 > 4[pσ,TeTeTe − bσ,TeTeTe + (pσ,TeTeTe + bσ,TeTeTe)uσ,TeTeTe]2

Binary CdTe

0.1 < 1.99 · nCdTe < mCdTe < 2.01 · nCdTe < 4 First step
0.05 < 2 · βπ,0,CdTe < βσ,0,CdTe < 0.8 · φ0,CdTe < 5.0
nc,CdTe = 2.811251
nCdTe > ln(ξ )

ln[exp(1−�
nc,CdTe )/�]

, ξ = 0.05, � = 1.5

β2
π,0,CdTe � pπ,Cd · β2

σ,0,CdTe Second step
β2

π,0,CdTe � pπ,Te · β2
σ,0,CdTe

0 � βσ,CdTe � 2
0 � βπ,CdTe � 1
0.8 � cσ,CdTe � 3.65
0.2 � bσ,CdCdTe � 1
−0.4 � uσ,CdCdTe � 0.1
(bσ,CdCdTe + pσ,CdCdTe)2(u2

σ,CdCdTe − 1)2 � 4[pσ,CdCdTe − bσ,CdCdTe + (pσ,CdCdTe + bσ,CdCdTe)uσ,CdCdTe]2

0.2 � bσ,TeCdTe � 1
−0.4 � uσ,TeCdTe � 0.1
(bσ,TeCdTe + pσ,TeCdTe)2(u2

σ,TeCdTe − 1)2 � 4[pσ,TeCdTe − bσ,TeCdTe + (pσ,TeCdTe + bσ,TeCdTe)uσ,TeCdTe]2

0.2 � bσ,CdTeCd � 1
−0.4 � uσ,CdTeCd � 0.1
(bσ,CdTeCd + pσ,CdTeCd)2(u2

σ,CdTeCd − 1)2 � 4[pσ,CdTeCd − bσ,CdTeCd + (pσ,CdTeCd + bσ,CdTeCd)uσ,CdTeCd]2

0.2 � bσ,CdTeTe � 1
−0.4 � uσ,CdTeTe � 0.1
(bσ,CdTeTe + pσ,CdTeTe)2(u2

σ,CdTeTe − 1)2 � 4[pσ,CdTeTe − bσ,CdTeTe + (pσ,CdTeTe + bσ,CdTeTe)uσ,CdTeTe]2
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TABLE VI. Binding energies (eV/atom) for selected Cd, Te, and
CdTe clusters.

Cluster type DFT BOP SW TR Exp.

Cd-di −0.089 −0.356 −0.29 −0.36 −0.04a

Cd-tetra −0.295 −0.633 −0.38 −0.33 –
Te-di −1.790 −1.415 −0.56 −0.6 −2.66b

Te-rhom −2.136 −1.462 −1.045 −1.0 –
CdTe-rhom −1.306 −1.057 −0.952 −0.993 –

aExperimental data from Barin et al. (Ref. 100).
bExperimental data from Viswanathan et al. (Ref. 101).

where

ε = 10−10

�0 = 15.737980 · (
1
2 − ∣∣fσ,ij − 1

2

∣∣)1.137622

·∣∣fσ,ij − 1
2

∣∣2.087779

S = 1.033201 · {
1 − exp

[ − 22.180680

·( 1
2 − ∣∣fσ,ij − 1

2

∣∣)2.689731]}
�1 = 2 · ( 1

2 − ∣∣fσ,ij − 1
2

∣∣). (A8)

Again, we point out that �
(1/2)
σ,ij is a function of the local

environment around atoms i and j as defined by Eq. (6). The
previous splined function27,42 and Eq. (A7) are compared in
Fig. 11 as a function of �

(1/2)
σ,ij at different fσ,ij values. It

can be seen that Eq. (A7) is essentially identical to the splined
function but does not suffer from the problem of discontinuous
high-order derivatives at the spline junctions.

The β2
π,ij (rij ) · �i

2π,ij and β4
π,ij (rij ) · �4π,ij terms used in

Eq. (8) can be written as

β2
π,ij (rij ) · �i

2π,ij =
iN∑

k=i1
k �=j

[
pπ,i · β2

σ,ik(rik) · sin2 θjik

+ (1 + cos2 θjik) · β2
π,ik(rik)

]
(A9)

β4
π,ij (rij ) · �4π,ij

= 1

4

iN∑
k=i1
k �=j

sin4 θjik · β̂4
ik(rik) + 1

4

jN∑
k=j1
k �=i

sin4 θijk · β̂4
jk(rjk)

+ 1

2

iN∑
k=i1
k �=j

iN∑
k′=k+1
k′ �=j

sin2 θjik · sin2 θjik′ · β̂2
ik(rik)

· β̂2
ik′(rik′) · cos(�ψkk′) + 1

2

jN∑
k=j1
k �=i

jN∑
k′=k+1
k′ �=i

sin2 θijk · sin2 θijk′

· β̂2
jk(rjk) · β̂2

jk′(rjk′) · cos(�ψkk′)

+ 1

2

iN∑
k′=i1
k′ �=j

jN∑
k=j1
k �=i

sin2 θjik′ · sin2 θijk · β̂2
ik′ (rik′)

· β̂2
jk(rjk) · cos(�ψkk′) (A10)

with

β̂2
ik(rik) = pπ,i · β2

σ,ik(rik) − β2
π,ik(rik), (A11)

where pπ,i is a species-dependent parameter of the central
atom i. The β4

π,ij (rij ) · �4π,ij term contains four-body dihedral
angles �ψkk′ important in π bonding. The dihedral angle is
defined in Fig. 12, and can be calculated as

cos(�ψkk′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
(
cos θkik′ − cos θjik′ · cos θjik

)2

sin2 θjik · sin2 θjik′
− 1 or

2
( 
ik′· 
jk

| 
ik′|·| 
jk| + cos θijk · cos θjik′
)2

sin2 θijk · sin2 θjik′
− 1

.

(A12)

APPENDIX B: BOP PARAMETERS

BOP parameters are listed in Tables I through IV for global,
point-dependent, pair-dependent, and three-body-dependent
parameters, respectively.

APPENDIX C: DERIVATION OF THE TWO-STEP FITTING
METHOD FOR BOP

For the first step, consider some simple phases where
only the nearest-neighbor atomic interactions contribute to the
properties (e.g., dimer, trimer, tetra, dc, sc, fcc, gra, A8, zb,
wz, NaCl, etc.). It is important to note that all bonds within
each phase are equivalent. Based upon Eqs. (1)–(4), the bond

TABLE VII. Geometries of selected Cd clusters.

DFT BOP SW TR

Structure r (Å) θ (◦) r (Å) θ (◦) r (Å) θ (◦) r (Å) θ (◦)

di 3.46 − 2.75 − 2.98 − 2.92 −
4.07a

tri 3.39 60.0 2.86 60 3.28 60.0 3.18 60.0
sq 3.44 90.0 2.85 90 3.04 90.0 3.01 90.0
tetra 3.34 60.0 2.93 60.0 3.44 60.0 3.33 60.0
ch 3.43,3.40 180.0 2.82,2.93 180.0 3.07,3.25 180.0 2.94,2.96 180.0

aExperimental data from Lukeš et al. (Ref. 102).
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TABLE VIII. Geometries of selected Te clusters.

DFT BOP SW TR

Structure r (Å) θ (◦) r (Å) θ (◦) r (Å) θ (◦) r (Å) θ (◦)

di 2.60 − 2.74 − 2.86 − 2.78 −
2.56a

tri 2.77 60.0 3.01 60.0 3.11 60.0 3.01 60.0
sq 2.81 90.0 2.99 90.0 2.90 90.0 2.86 90.0
ch 2.60,3.15 180.0 2.74,4.07 180.0 3.07,3.24 180.0 2.94,2.97 180.0

aExperimental data from Huber et al. (Ref. 103).

energy Eb,ij between atoms i and j as a function of interatomic
spacing rij can be written as

Eb,ij = φij (rij ) − βσ,ij (rij )

· 2 · βσ,0,ij · �σ,ij + 2 · βπ,0,ij · �π,ij

βσ,0,ij

. (C1)

Note that we do not drop the subscript ij even though the bonds
are equivalent in a given structure because ij can indicate
atom types. During application of a hydrostatic strain, the bond
angles do not change. For structures that have only the nearest-
neighbor interactions, the bond integrals only correspond to
nearest neighbors and therefore are equal. It can then be seen
from Eqs. (6)–(8) and (A4)–(A11) that the bond orders �σ,ij

and �π,ij remain constant. Using the equilibrium condition
E′

b,ij = 0, we have

2 · βσ,0,ij · �σ,ij + 2 · βπ,0,ij · �π,ij = βσ,0,ij · φ′
ij (rij )

β ′
σ,ij (rij )

.

(C2)

Substituting Eq. (C2) in Eq. (C1), we have an expression of
equilibrium bond energy as a function of equilibrium bond
length for different phases:

Eb,ij (rij ) = φij (rij ) − βσ,ij (rij ) · φ′
ij (rij )

β ′
σ,ij (rij )

. (C3)

Similarly, we can write the second derivative of the bond
energy with respect to the bond length at the equilibrium bond
length using Eqs. (C1) and (C2) as

E′′
b,ij = φ′′

ij (rij ) − β ′′
σ,ij (rij ) · φ′

ij (rij )

β ′
σ,ij (rij )

. (C4)

For the nearest-neighbor structures (with neighbor species
ij ), the target properties such as atomic volume Vij , cohesive
energy Ec,ij , and bulk modulus (or equivalent properties for
clusters) Bij , can be expressed using bond length rij , bond
energy Eb,ij , and second derivatives of bond energy with
respect to bond length E′′

b,ij respectively:

Vij = F · r3
ij , Ec,ij = Z · Eb,ij

2
, (C5)

Bij (rij ) = Z · E′′
b,ij

18F · rij

,

where Z is the atomic coordination and F is a structural volume
factor. Note that Eq. (C5) is applicable for both lattices and
clusters without losing generality. The coordinations Z for
dimer, trimer, tetrahedron, dc, sc, bcc, and fcc structures are,
for example, 1, 2, 3, 4, 6, 8, and 12 respectively, and F takes a
value of 1 for sc, 8

√
3/9 for dc,

√
2/2 for fcc, and 4

√
3/9 for

bcc structures, etc. The volume for clusters is not well defined,
so we simply define F = 1 for dimer, trimer, and tetramer
clusters, which means that we take V = r3

ij for clusters.
In general, when the target bond lengths, bond energies

(cohesive energies), and second derivatives of the bond
energy (bulk moduli) of the nearest-neighbor structures sat-
isfy Eqs. (C2)–(C4), BOP will exactly capture these target
properties. A necessary condition for this to happen is that
the nearest-neighbor structures satisfy Eqs. (C3) and (C4),
which involve only pairwise GSP functions. Hence, the target
values of bond energies and bulk moduli of a wide range of
nearest-neighbor structures with different equilibrium bond
lengths can be used to fit Eqs. (C3) and (C4) to determine
the pairwise GSP parameters φ0, m, n, and nc. This first-
step parameterization is similar to that used for the Tersoff
potentials,48 although in the latter case all pairwise energy
functions are fully determined, whereas here the parameters

TABLE IX. Geometries of selected CdTe clusters.

DFT BOP SW TR

Structure r (Å) θ (◦) r (Å) θ (◦) r (Å) θ (◦) r (Å) θ (o)

di 2.61 – 2.92 – 2.82 – 2.77 –
Cd2Te-tri 2.81,3.47 76.4,51.8 2.94,4.94 114.0,33.0 2.82,4.60 109.5,35.3 2.77,4.96 126.7,26.6
Te2Cd-tri 4.07,2.59 37.1,71.0 4.63,2.74 34.4,72.8 3.12,3.10 59.6,60.4 2.91,3.01 62.4,58.8
rhoma 2.77,2.77 63.6,116.4 3.11,3.11 56.8,123.2 2.88,2.88 88.8,91.2 2.85,2.85 79.2,100.8

aFor rhom, the first angle θ centers at Cd, and the second one centers at Te.
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TABLE X. Cd bulk structure properties.

DFT BOP SW TR

Structure a,c (Å) Ec (eV) a,c (Å) Ec (eV) a,c (Å) Ec (eV) a,c (Å) Ec (eV)

dc 6.59 −0.679 6.87 −0.725 6.89 −1.160 6.88 −1.159
sc 2.96 −1.086 3.12 −0.618 3.34 −0.952 3.24 −0.870
bcc 3.61 −1.351 3.54 −1.019 4.04 −0.916 3.96 −0.801
fcc 4.60 −1.402 4.45 −1.128 5.16 −0.893 4.96 −0.871
hcp 3.12,5.58 −1.398 3.16,5.11 −1.135 3.12,5.95 −0.893 3.01,5.73 −0.871

(2.97,5.61)a −1.133b

gra 4.89,5.31 −0.946 5.01,5.76 −0.671 5.27,6.75 −0.934 5.07,7.60 −1.064
grap 5.31 −0.340 5.10 −0.599 5.21 −0.829 5.07 −1.053

aExperimental data (Ref. 72).
bExperimental data (Ref. 71).

βσ,0 and βπ,0 cannot be determined because they cancel out
and do not appear in Eqs. (C3) and (C4).

As Eqs. (C3) and (C4) are necessary conditions for fitting
the target properties, Eq. (C2) must also be satisfied for
the predicted properties to match the targets. The parame-
ters determined in the first step enable evaluations of the
right-hand side of Eq. (C2) at the target equilibrium bond
lengths for different nearest-neighbor structures. This creates
a new set of target values for the combined bond-order term
2 · βσ,0,ij · �σ,ij + 2 · βπ,0,ij · �π,ij . These target values, along
with target properties (cohesive energies, lattice constants,
etc.) of non-nearest-neighbor structures, can then be fitted in a
second step to determine the remaining parameters, pπ , βσ,0,
βπ,0, cσ , fσ , kσ , bσ , and uσ .

APPENDIX D: PARAMETER BOUNDS

The parameters were bounded with physical ranges during
parameterizations, and these constraints are listed in Table V
in six groups representing first- and second-step parameteri-
zations of Cd, Te, and CdTe, respectively.

APPENDIX E: DFT METHOD

Our DFT results for the various CdTe small clusters,
bulk lattices, point defects, and surfaces were based on spin-

polarized, generalized gradient approximation (GGA) meth-
ods using projector-augmented-wave (PAW) pseudopotentials
with a dispersion-corrected Perdew-Burke-Ernzerhof (PBE-
D2) functional.97 During our study, we found that the inclusion
of dispersion effects in the CdTe systems was essential
for obtaining accurate cohesive energies and bulk moduli
(especially for the more weakly bound Cd clusters). Within
the DFT-D2 approach,98,99 an atomic pairwise dispersion
correction is added to the Kohn-Sham part of the total energy
(EKS-DFT) as

EDFT-D = EKS-DFT + Edisp, (E1)

where Edisp is given by

Edisp = −s6

Nat−1∑
i=1

Nat∑
j=i+1

∑
g

fdamp(Rij,g)
C

ij

6

R6
ij,g

. (E2)

Here, the summation is over all atom pairs i and j , and
over all g lattice vectors with the exclusion of the i = j

contribution when g = 0 (this restriction prevents atomic
self-interaction in the reference cell). The parameter C

ij

6 is
the dispersion coefficient for atom pairs i and j , calculated
as the geometric mean of the atomic dispersion coefficients:

C
ij

6 =
√

Ci
6C

j

6 .

The s6 parameter is a global scaling factor, which is specific
to the adopted DFT method (s6 = 0.75 for PBE), and Rij ,g is

TABLE XI. Te bulk structure properties.

DFT BOP SW TR

Structure a,c (Å) Ec (eV) a,c (Å) Ec (eV) a,c (Å) Ec (eV) a,c (Å) Ec (eV)

dc 7.12 −2.272 7.23 −1.943 6.89 −2.230 6.88 −2.120
sc 3.17 −2.765 3.23 −2.163 3.34 −2.097 3.24 −2.091
bcc 3.87 −2.551 3.93 −1.941 4.04 −2.108 3.96 −2.669
fcc 4.84 −2.399 4.95 −1.846 5.16 −2.054 4.96 −2.624
A8 4.34,6.05 −2.798 4.53,5.51 −2.167 3.50,8.69 −2.064 3.61,7.91 −2.599

(4.45,5.91)a −2.168b

gra 5.21,6.06 −2.468 5.38,6.63 −1.873 5.04,6.33 −1.889 5.13,5.21 −1.958
grap 5.31 −2.122 5.343 −1.697 4.99 −1.617 4.83 −1.770

aExperimental data (Ref. 72).
bExperimental data (Ref. 71).
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TABLE XII. CdTe bulk structure properties (—: not calculated).

DFT BOP SW TR

Structure a,c (Å) Ec (eV) a-c (Å) Ec (eV) a-c (Å) Ec (eV) a-c (Å) Ec (eV)

B1 6.04 −2.287 6.19 −2.140 6.35 −1.796 5.85 −2.177
B2 3.81 −2.006 3.83 −1.656 3.94 −1.719 3.63 −2.339
wz 4.52,7.32 −2.279 4.84,7.88 −2.173 3.98,7.51 −2.060 3.97,7.49 −2.060
zb 6.52 −2.331 6.83 −2.173 6.51 −2.060 6.49 −2.060

6.48a −2.178b

fcs 4.10 −1.807 4.28 −1.684 4.39 −1.343 4.06 −1.696
grap 4.75 −1.916 5.11 −1.643 4.92 −1.485 4.81 −1.690
NiAs – – 4.30,7.54 −2.009 4.37,7.91,7.57 −1.766 3.72,8.33,6.45 −2.310
L11 – – 4.37,10.74 −2.140 4.49,11.0,7.78 −1.796 3.72,14.50,6.45 −2.310
L10 – – 5.39,7.64 −1.656 5.57,7.88 −1.719 5.13,7.24 −2.339
sc16 – – 8.38 −1.974 8.03 −1.871 not stable not stable
Cd2Te-Ag2O – – 6.86 −1.384 6.74 −1.175 6.48 −1.387
Te2Cd-Ag2O – – 6.86 −1.387 6.74 −1.175 6.48 −1.387
Cd2Te-ZrO2 – – 7.39 −1.693 7.46 −1.775 7.00 −2.395
Te2Cd-ZrO2 – – 7.29 −1.632 7.58 −1.565 7.00 −1.828

aExperimental data (Ref. 72).
bExperimental data (Ref. 71).

the interatomic distance between atom i in the reference cell
and j in the neighboring cell at distance |g|. A cutoff distance
of 30.0 Å was used to truncate the lattice summation. In order
to avoid near-singularities for small interatomic distances, the
damping function has the form

fdamp(Rij,g) = 1

1 + exp[−d(Rij,g/RvdW − 1)]
, (E3)

where RvdW is the sum of atomic van der Waals radii
(RvdW = Ri

vdW + R
j

vdW) and d controls the steepness of the
damping function.

For all the small-cluster and bulk-lattice calculations, we
used a very high cutoff energy of 500 eV for the plane-wave
basis set, and the Brillouin zone was sampled using a dense
10 × 10 × 10 gamma-centered Monkhorst-Pack grid. In
addition to spin-polarization and dispersion effects, we also
included a relativistic spin-orbit coupling treatment for all the
valence electrons in both the small-cluster and bulk-lattice
calculations. Unconstrained geometry optimizations of both
the ions and the unit cell were carried out. To prevent spurious
interactions between adjacent clusters for the small-cluster

TABLE XIII. Elastic constants of zinc-blende CdTe (GPa).

cij Expt. (300 K) DFT BOP SW TR

c11 53.3b 53.2c 50.7 44.3 50.7
c12 36.5b 36.0c 37.5 19.6 37.5
c44 20.4b – 16.5 18.0 15.2
c44

a – 31.8c 30.6 30.7 46.8

aUnrelaxed.
bData from Rowe et al. (Ref. 74).
cData from Agrawal et al. (Ref. 75).

calculations, the vacuum along all three axes was set to 25 Å
during the geometry optimization.

Because the point-defect and surface calculations require
the use of larger supercells and significantly more atoms
(>200 atoms), a smaller 300-eV cutoff energy was used for
both calculations. For this same reason, we did not include
spin-orbit effects in these large supercell systems, although
we still carried out these calculations with unconstrained
spin-polarized conditions. In the point-defect calculations,
a large 3 × 3 × 3 supercell was used, and therefore, a
smaller 2 × 2 × 2 gamma-centered Monkhorst-Pack grid
was used. For the surface calculations, a slab geometry was
chosen, which consisted of seven layers of CdTe and 35
Å of vacuum between adjacent slabs. In these calculations,
a 4 × 4 × 1 gamma-centered Monkhorst-Pack grid was
used. Unconstrained geometry optimizations of both the
ions and the unit cell were carried out. We should also
note that for a few selected configurations of our surface
calculations, we observed a significant reconstruction of the
surface compared to a previous DFT study,89 which used
a (simpler) local-density approximation (LDA) functional.
While the PBE-D2 method has been extensively tested for
several bulk lattices and clusters, it is possible that the PBE-D2
dispersion parameters for Cd and Te may need further tuning

TABLE XIV. CdTe-zb melting temperature (K).

Exp.a 1365
BOP 1550–1600
SW 1360–1390
TR 700–800

aExperimental data (Ref. 79).

115206-17



WARD, ZHOU, WONG, DOTY, AND ZIMMERMAN PHYSICAL REVIEW B 85, 115206 (2012)

TABLE XV. Intrinsic defect energies E′
D of various defects in

CdTe-zb calculated using different models.

Defect DFT BOP SW TR

VCd 2.37 3.17 2.60 2.42
VTe 0.95 1.12 1.53 0.93
CdTe 2.12 2.21 0.8 0.18
TeCd 3.71 3.06 0.74 1.19
Cdi(tetrahedral) 1.40 1.60 3.76 0.61
Tei(tetrahedral) 2.47 4.16 2.6 0.55
Cdi(〈110〉dumbbell) 1.38 2.08 3.88 0.43
Tei(〈110〉dumbbell) 2.56 3.58 3.67 1.10
Cdi(〈100〉dumbbell) 2.20 2.81 2.34 0.48
Tei(〈100〉dumbbell) 2.84 3.44 2.69 2.02

to describe the complex electronic interactions (i.e., dangling
bonds) at a free surface, which we save for future work.

APPENDIX F: COMPLETE LIST OF PREDICTED
PROPERTIES

The binding energies for some selected Cd, Te, and CdTe
clusters obtained from various models and experiments in
the literature100,101 are shown in Table VI. The geome-
tries obtained from various models and experiments in the
literature102,103 are shown in Tables VII–IX, respectively, for
selected Cd, Te, and CdTe clusters.

The lattice constants and cohesive energies obtained from
various models and experiments in the literature71,72 are shown
in Tables X–XII, respectively, for numerous Cd, Te, and
(stoichiometric/nonstoichiometric) CdTe lattices.

The single crystal elastic constants of CdTe-zb obtained
from various models and experiments in the literature74/DFT
calculations75 are shown in Table XIII.

Melting temperature of CdTe-zb obtained from differ-
ent methods and literature experiments79 is compared in
Table XIV.

The various defect energies of the CdTe-zb phase calculated
using different models are compared in Table XV.
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