
PHYSICAL REVIEW B 85, 115201 (2012)

Spin-orbit coupling and its effects in organic solids
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We present a detailed analysis of spin-orbit coupling (SOC) in π -conjugated organic materials and its effects on
spin characteristics including the spin-relaxation time, spin-diffusion length, and g factor. While π electrons are
responsible for low-energy electrical and optical processes in π -conjugated organic solids, σ electrons must be
explicitly included to properly describe the SOC. The SOC mixes up- and down-spin states and, in the context of
spintronics, can be quantified by an admixture parameter in the electron and hole polaron states in π -conjugated
organics. Molecular geometry fluctuations such as ring torsion, which are common in soft organic materials and
may depend on sample preparation, are found to have a strong effect on the spin mixing. The SOC-induced
spin mixing leads to spin flips as polarons hop from one molecule to another, giving rise to spin relaxation
and diffusion, which are examined by the time-dependent perturbation theory and density-matrix theory. The
spin-relaxation rate is found to be proportional to the carrier hopping rate, or equivalently, carrier mobility. The
spin-diffusion length depends on the spin mixing and hopping distance but is insensitive to the carrier mobility.
An applied electric field causes spin drift and gives rise to upstream and downstream spin-diffusion lengths in the
hopping-conduction regime. The SOC influences the g factor of the polaron state and makes it deviate from the
free-electron value. The deviation is due to the mixing of different orbitals in the polaron state, which does not
include the spin mixing within the same orbital, and therefore underestimates the SOC strength. In particular, the
g factor is not sensitive to the molecular geometry fluctuations, where the spin mixing within the same orbital
is dominant. The SOCs in tris-(8-hydroxyquinoline) aluminum (Alq3) and in copper phthalocyanine (CuPc) are
particularly strong, due to the orthogonal arrangement of the three ligands in the former and Cu 3d orbitals in
the latter. The theory quantitatively explains the recent measured spin-diffusion lengths in Alq3 from muon spin
rotation and in CuPc from spin-polarized two-photon photoemission.
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I. INTRODUCTION

Organic spintronics combines the advantages of
spintronics1 and low-cost fabrication of organic devices and
has advanced rapidly since the discovery of large magne-
toresistance in ferromagnet-organic-ferromagnet structures.2,3

Weak spin-orbit couplings (SOCs) and hyperfine interactions
(HFIs) are frequently invoked as one of major virtues of
organic spintronics.4 To date, however, there is little quan-
tification of these interactions in individual organic materials,
which prevents direct comparison among different organics
and quantitative understanding of spin relaxation and transport
in organic materials. While the HFI in an organic material in
principle can be directly measured by the nuclear magnetic
resonance and electron spin resonance (ESR) experiments, the
SOC is not directly measurable and its meaning in the context
of organic spintronics is often unclear. Although all organic
materials contain the C element, which has a relatively small
atomic SOC, many organic materials studied for spintronic
applications also contain heavier elements, such as O in poly[2-
methoxy-5-(2′-ethylhexyloxy)-p-phenylene vinylene] (MEH-
PPV), O, N, and Al in tris-(8-hydroxyquinoline) aluminum
(Alq3), S in sexithienyl (T6), and Cu in copper phthalocyanine
(CuPc), which have stronger atomic SOCs, as listed in Table I.5

There is no systematic way available to estimate different
elements’ contributions to the total SOC in a given organic.
Another complication is that in organic solids the organic
molecules or oligomers are usually packed differently because
organics are flexible and their geometry strongly fluctuates.6

To meaningfully compare experiments, one needs to know
to what extent the packing or the geometry variation can

influence the SOC. Thus a good SOC measure that is relevant
to spintronics and can be systematically evaluated in individual
organics is acutely needed.

Understanding spin relaxation can help harness the spin
degree of freedom effectively in device structures. While spin
relaxation in inorganic metals and semiconductors is well
understood, thanks largely to the classic and rigorous works by
Elliott and Yafet (EY)7 and D’yakonov and Perel’ (DP),8 very
few studies of spin relaxation in organics were carried out,
especially, relaxation caused by the SOC. Theories developed
so far are usually primitive, inadequate, and sometimes even
invalid. Because of the lack of systematic theoretical studies on
organics in literature, theories for crystalline inorganic semi-
conductors and for isolated molecules in the ESR literature9

have been frequently used to estimate important parameters
such as spin lifetimes and spin-diffusion lengths in highly
disordered organic solids with little justification. Such a
casual use of existing theories resulted in wildly inconsistent
estimates from different groups. For example, the spin lifetime
estimated for Alq3 ranges from 10−6 to 1 s.3,10–12 One must
keep in mind that EY and DP theories were developed for
crystalline semiconductors and the corresponding expressions
may not be applicable to the organic materials used in
organic spintronic devices, which are dense films of randomly
orientated conjugated oligomers or molecules. Nor can the spin
relaxation theories of immobile electrons on isolate organic
molecules9,13 be directly applicable to the organic solids, for
electrons (or, more precisely, polarons—electrons with local
lattice distortions) in the organic solids are mobile. Thus it
is imperative to establish systematic and rigorous theories
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TABLE I. Atomic SOC strengths of common elements in organics.

Element Orbital ξ (cm−1)

C 2p 11
N 2p 76
O 2p 151
Al 3p 112
S 3p 382
Cu 3d 829

that consistently describe spin relaxation in organic solids.
Experimentally, carrier spin-relaxation times (longitudinal T1

and transverse T2) in organics can be measured by electrically
detected spin resonance.14

The spin-diffusion length poses a constrain on the channel
length of a spintronic device and has recently been directly
measured by muon spin rotation in Alq3

15 and by spin-
polarized two-photon photoemission in CuPc.16 These mea-
surements provide an excellent opportunity to compare theory
with experiment. In literature, the formula Ls = √

DT1, with
Ls and D being the spin-diffusion length and carrier diffusion
constant, is often used to argue that the spin-diffusion length
can be greatly enhanced if the carrier mobility is improved.
This argument tacitly assumes that D and T1 are independent
of each other, which is questionable, for, fundamentally, the
carrier spin relaxation must be closely related to the transport
properties of the carriers, such as mobility.7,8

In organics devices, the carrier density is usually low and
the electric field can be large. The electric field is found
to significantly affect spin diffusion and spin injection in
inorganic semiconductors.17 The major difference between
inorganic and organic solids is that electrical transport is via
band conduction in the former and carrier hopping in the latter.
It is interesting to know how the electric field affects spin-
diffusion length in the hopping regime. This understanding is
crucial to describe the device characteristics and to manipulate
spin by using the electric field, or equivalently, bias voltage.

HFIs can cause spin relaxation and diffusion as well.18,19

The HFI implies isotope effects, which are found in PPV20

but not in Alq3,21 indicating that the relative importance of
SOC and HFI varies among individual organic materials.
Because of their different natures, the SOC and HFI will
lead to different temperature and magnetic-field dependencies
of spin relaxation and diffusion. Therefore it is valuable to
establish the corresponding temperature and magnetic-field
dependencies caused by the SOC and HFI, which can be
used to determine the dominant spin-relaxation mechanisms
experimentally in individual organics.

The g factors of electron and hole polarons in organic
materials are influenced by the SOC and can be measured by
ESR.9 The measured g factor in disordered organic solids is an
average over random orientations of oligomers or molecules.
Since the g-factor deviation depends on the SOC, it is natural
to ask whether the g-factor deviation can be used to adequately
characterize the SOC in organics.

Here, we present a comprehensive study of the SOC and
address all the issues enumerated above. We also compare
our theoretical results with relevant experiments in literature
whenever possible. Some preliminary results of this work have

been reported in a short paper.22 This article is organized as
follows. After the introduction, we study the SOC and evaluate
its strengths in various organics in Sec. II. Then we use the
perturbation and density-matrix theories and provide rigorous
results on spin relaxation in Sec. III and spin-diffusion length in
Sec. IV. We examine the electric-field effect on spin diffusion
in the hopping regime in Sec. V. In Sec. VI, we analyze the
g-factor deviation in disordered organic solids due to the SOC.
Finally, we summarize our results in Sec. VII.

II. SPIN-ORBIT COUPLING IN ORGANICS

In π -conjugated organics, the electronic structure is derived
from sp2 hybridization of the C atoms with the sp2 orbitals
forming σ bonds and pz orbitals forming π bonds. The
electrical transport and optical properties are essentially
controlled by the π electrons, for σ electrons are several eVs
away in energy from the valence electrons. Thus most models
for conjugated organics consider only π electrons explicitly,
such as the well-known Su-Schrieffer-Heeger model.23 These
π -electron models, however, become inadequate in studying
the SOC because, by definition, the SOC allows exchange
between orbital and spin angular momenta. By neglecting the
σ orbitals, i.e., the px and py orbitals, the orbital angular
momentum is completely quenched and so is the SOC.24,25

Hence one must explicitly take into account the σ orbitals
when studying the SOC in organics. In fact, the σ orbitals
are also needed to account for the HFI of the π electrons.26

Without the σ orbitals, the isotropic HFI of π electrons would
be zero.

Similar situation occurs in inorganic semiconductors like
GaAs,27 where the conduction band is formed primarily
from the s orbital, which does not have any orbital angular
momentum or SOC. The finite SOC of conduction-band
electrons comes from the valence band, which is comprised of
p orbitals. Just as one cannot confine oneself to the s orbitals
in studying the SOC in semiconductors, one cannot study the
SOC from the pure π -electron models in organics.

A. Fictitious atom

For clarity, we first consider a fictitious atom in a 2p

state, which is subjected to a potential field that lowers
the energy of the pz orbital relative to px and py by �,
mimicking the situation that the σ orbitals have a higher
energy than π orbitals. The atomic SOC is HSO = ξ l · s. The
spin quantization axis is assumed to be along the z axis and
coincide with the pz orbital. From the perturbation theory, the
doubly degenerate eigenstates with the lowest energy are

|+〉 = |pz↑〉 + ξ

2�
|(px + ipy)↓〉, (2.1)

|−〉 = |pz↓〉 − ξ

2�
|(px − ipy)↑〉. (2.2)

The energy correction due to the SOC, to the second order of
ξ , is

δE = −ξ 2

�
. (2.3)
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The two states remain degenerate as required by the time-
reversal symmetry. We see that the SOC mixes up- and down-
spin in an eigenstate and renders the spin not a good quantum
number. We can define the dimensionless measure of SOC as
the admixture of up- and down-spin in an eigenstate,

γ 2 = ξ 2

2�2
. (2.4)

This measure reflects not only the atomic SOC (ξ ) but also
the π -σ energy splitting �. It follows that the larger energy
difference between π and σ orbitals, the smaller the effective
SOC.

In organic solids experimentally studied, the orientation of
individual oligomers or molecules (or, equivalently, orbitals)
are random. However, the spin orientation is well defined,
determined by either an applied magnetic field or the mag-
netization of the ferromagnetic electrode. Thus, in general,
the π orbital in an organic can be oriented along an arbitrary
direction (θ1, φ1) with respect to the spin quantization axis.
In this case, the local π orbital, p′

z, and the other two local
orbitals can be expressed as linear combinations of the three
p orbitals for (θ1,φ1) = (0,0):

p′
z = sin θ1 cos φ1px + sin θ1 sin φ1py + cos θ1pz, (2.5)

p′
x = cos θ1 cos φ1px + cos θ1 sin φ1py − sin θ1pz, (2.6)

p′
y = − sin φ1px + cos φ1py. (2.7)

The eigenstates with the lowest energy, after including the
SOC, are

|+′〉 = |p′
z↑〉 + ξ

2�
[−i sin θ1|p′

y↑〉 + eiφ1 |p′
x↓〉

+ i cos θ1e
iφ1 |p′

y↓〉], (2.8)

|−′〉 = |p′
z↓〉 + ξ

2�
[i sin θ1|p′

y↓〉e−iφ1 |p′
x↑〉

+ i cos θ1e
−iφ1 |p′

y↑〉]. (2.9)

It is readily to verify that |+′〉 and |−′〉 are orthogonal,
〈+′|−′〉 = 0. And 〈+′|+′〉 = 〈−′|−′〉 = 1 + ξ 2/2�2.

The expectation values of the spin operator σ̂z in these two
states are

p+ = 〈+′|σ̂z|+′〉 = 1 − ξ 2

2�2
cos2 θ1, (2.10)

p− = 〈−′|σ̂z|−′〉 = −
(

1 − ξ 2

2�2
cos2 θ1

)
. (2.11)

In Appendix A, |+′〉 (|−′〉) is shown to have the maximal
expectation value of σ̂z (−σ̂z) in any linear combination of
|+′〉 and |−′〉, and therefore is the quasi up-spin (down-spin)
state.

Again in Eqs. (2.8) and (2.9), the SOC mixes up-spin and
down-spin in an eigenstate, and its admixture is

γ 2
↑↓ =

(
ξ

2�

)2 1

2
(cos2 θ1 + 1). (2.12)

In addition, the SOC also mixes orbitals with the same spin,

γ 2
↑↑ =

(
ξ

2�

)2 1

2
sin2 θ1. (2.13)

Since the SOC is an intrinsic material property, which should
not depend on the molecular orientation, a more suitable SOC
measure can be constructed as

γ 2 = γ 2
↑↑ + γ 2

↑↓ = ξ 2

2�2
, (2.14)

which is the combination of the orbital mixing and spin mixing
and independent of the molecular orientation.

B. First-principles approach for real molecules

Now we consider real organic molecules. In the context of
spintronics, it is the carrier or polaron whose spin-dependent
properties really matter. Thus we focus on the highest occupied
molecular orbitals (HOMOs) of negatively charged and posi-
tively charged molecule or oligomer, which correspond to the
electron polaron and hole polaron states. Note the HOMO here
is half filled because of the presence of the carrier (polaron)
and should not be confused with the completely filled HOMO
in an intrinsic molecule. The total Hamiltonian of an organic
molecule can be written as

H = H0 + HSO = H0 +
∑

i

ξi l i · si , (2.15)

where H0 is the Hamiltonian without the SOC and HSO is
the summation of all atomic SOC contributions. Because
of the generally weak atomic SOC strengths compared to
bonding energies, in most first-principles calculations for
organic materials, the SOC is completely neglected and the
obtained eigenstates are for H = H0.

In general, an eigenstate of H0, which satisfies H0|ψk〉 =
Ek|ψk〉, can be expressed in terms of the atomic orbitals,

|ψk〉 =
∑
iα

c
(k)
iα

∣∣φ(α)
i

〉
, (2.16)

where k is the index of eigenlevels, i is the atom index and α

the orbital index, |φ(α)
i 〉 are atomic orbitals at the ith molecule,

and φ(α) = 2s,2px,2py,2pz for O, N, C, φ(α) = 1s for H, and
φ(α) = 3s,3px,3py,3pz for S and Al. These atomic orbitals
are not orthogonal with one another and the normalization
condition is ∑

iα

∑
jα′

c
(k)
iα c

(k)
jα′S

(αα′)
ij = δkk′, (2.17)

where

S
(αα′)
ij = 〈

φ
(α)
i

∣∣φ(α′)
j

〉
(2.18)

is the overlap integral between atomic orbitals.
Once the HSO is included, for the HOMO, denoted as

|ψ0〉, the eigenstate for the quasi up spin, according to the
perturbation theory, is

|ψ0+〉 = |ψ0↑〉 −
∑
k �=0σ

〈ψkσ | ∑i ξi l i · si |ψ0↑〉
Ek − E0

|ψkσ 〉

= |ψ0,↑〉 − 1

2

∑
k �=0

〈ψk|
∑

i ξi liz|ψ0〉
Ek − E0

|ψk↑〉

−1

2

∑
k �=0

〈ψk|
∑

i ξi(lix + iliy)|ψ0〉
Ek − E0

|ψk↓〉. (2.19)
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Similarly, the eigenstate for the quasi down spin is

|ψ0−〉 = |ψ0↓〉 + 1

2

∑
k �=0

〈ψk|
∑

i ξi liz|ψ0〉
Ek − E0

|ψk↓〉

−1

2

∑
k �=0

〈ψk|
∑

i ξi(lix − iliy)|ψ0〉
Ek − E0

|ψk↑〉. (2.20)

Using the relation l̂iqp
i
r = iεqrsp

i
s , where l̂iq is the q compo-

nent of the angular momentum operator for the ith atom and
εqrs is antisymmetric unit tensor of rank three, we can express
the HOMO level as

|ψ0+〉 = |ψ0↑〉 +
∑
iα

[
aiα

∣∣φ(α)
i ↑〉 + biα

∣∣φ(α)
i ↓〉]

, (2.21)

and the spin admixture can be computed via

γ 2 = γ 2
↑↑ + γ 2

↑↓ ≡
∑
ij

(a∗
iαajα′ + b∗

iαbjα′ )S(αα′)
ij . (2.22)

To verify the validity of the above approach, we consider a
benzene molecule and use SEISTA,28 which will be employed
to perform first-principles calculations throughout this paper,
to obtain all |ψk〉. We fix the spin-quantization axis along
the z axis and rotate the benzene molecule with respect to
the C3-C6 axis. Figure 1 plots γ 2

↑↑ and γ 2
↑↓ for the HOMO

in both negatively and positively charged benzene as a
function of the rotation angle θ . We see that γ 2

↑↓ and γ 2
↑↑

vary with θ approximately as ∼(cos2 θ + 1)/2 and ∼sin2 θ .
The summation, however, is a constant and independent of
θ . Thus spin admixture γ 2 can be reliably evaluated from
first-principles approaches.

0
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FIG. 1. (Color online) Spin admixture γ 2 as a function of θ

for the electron (upper panel) and hole (lower panel) polarons in
benzene. Circles and squares are the spin-mixing and orbital-mixing
contributions, γ 2

↑↓ and γ 2
↑↑, respectively. Triangles are the summation

of the two contributions. The dashed line in the upper panel plots the
function of γ 2(1 + cos2 θ )/2.
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FIG. 2. Molecular structure of CuPc and orbital pattern for a
single d electron in a field of tetragonal symmetry.

C. CuPc

Some π -conjugated organics studied for organic spintronics
contain transition-metal ions, whose d electrons can have
a very strong SOC. One representative example is copper
phthalocyanine (CuPc), where the valence of Cu is 2+ and the
electron configuration is 3d9. To account for strong electron
correlations in the 3d orbitals, sophisticated corrections must
be included in first-principles calculations, which inevitably
obscure the discussion of the spin mixing. Instead, we use the
ligand-field theory29 to evaluate spin admixture γ 2 in CuPc.

CuPc has a planar structure (shown in Fig. 2), which can
be regarded as a cubic structure with a very strong tetragonal
distortion. For a strong ligand such as phthalocyanine, in a
cubic structure, the fivefold degenerate 3d orbital splits into a
threefold degenerate t2g orbital and a twofold degenerate eg or-
bital. Under a tetragonal distortion, the eg orbitals further split,
with dx2−y2 having a higher energy than dz2 . This situation is
very similar to that of high-Tc superconducting copper oxides.

The 3d9 configuration means a hole in the dx2−y2 or E′′
orbital. Since the SOC couples 3d orbitals with different
magnetic quantum numbers, the polaron states at dx2−y2 , after
taking into account the SOC, become

|E′′+〉 = |dx2−y2↑〉 + iξCu

�1
|dxy↑〉+ ξCu√

2�2

|−1↓〉, (2.23)

|E′′−〉 = |dx2−y2↓〉 − iξCu

�1
|dxy↓〉+ ξCu√

2�2

|1↑〉. (2.24)
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Here, �1 and �2 are the energy differences between 3dx2−y2

and 3dxy and between 3dx2−y2 and 3dyz. As shown in Fig. 2,
3dxy and 3dyz have slightly different energies. |1〉 and |−1〉 are
3d orbitals with magnetic quantum number of 1 and −1,

|1〉 = − 1√
2

(dzx + idyz), |−1〉 = 1√
2

(dzx − idyz). (2.25)

The covalence bonding between the Cu2+ ion and four
central N atoms in phthalocyanine in CuPc delocalizes the
wave function of an eigenstate from the Cu ion over to the
ligand,

dx2−y2 → ηdx2−y2 + 1
2

√
1 − η2(σ1 − σ2 + σ3 − σ4), (2.26)

whereσi (i = 1,2,3,4) is the atomic orbital of ith N atom and
the linear combination of σi in the parenthesis has the same
symmetry as the dx2−y2 orbital. Here, parameter η measures
how much the electron wave function spreads into the N atoms
due to the covalence bonding: the closer η to 1, the more
confined the wave function to the Cu ion. Since the atomic SOC
of N is negligible compared to that of Cu, the bonding between
Cu2+ and the ligand leads to an effective SOC in CuPc,

ξ̃Cu = η2ξCu. (2.27)

The spin admixture in |E′′〉, with the covalence bonding
included, is

γ 2 =
(

ξ̃Cu

�1

)2

+ 1

2

(
ξ̃Cu

�2

)2

. (2.28)

According to literature,30 �1 = 31 700 cm−1, �2 =
29 000 cm−1, and η2 = 0.79. Using these values, we obtain
the spin admixture parameter in CuPc γ 2 = 6.8 × 10−4.

When the normal of the CuPc plane is tilted at (θ , φ) with
respect to the spin quantization axis, the quasi-up- and down-
spin states become

|E′′+〉 = |dx2−y2↑〉 + ξ̃Cu

�1
(i cos θ |dxy↑〉 + i sin θeiφ|dxy↓〉)

+ 1

2
√

2

ξCu

�2
[−sin θ |−1↑〉 − sin θ |1↑〉

+ (1 + cos θ )eiφ|−1↓〉 − (1 − cos θ )eiφ|1↓〉],
(2.29)

|E′′−〉 = |dx2−y2↓〉+ ξ̃Cu

�1
(−i cos θ |dxy↓〉+ i sin θe−iφ |dxy↑〉)

+ 1

2
√

2

ξCu

�2
[sin θ |−1↓〉 + sin θ |1↓〉

+ (1 + cos θ )e−iφ|1↑〉 − (1 − cos θ )e−iφ|−1↑〉].
(2.30)

It is readily verified that the spin admixture for |E′′±〉 in
Eqs. (2.29) and (2.30), after including both the spin and orbital
mixings, is identical to that given by Eq. (2.28). These wave
functions will be used to evaluate spin-conserving and spin-flip
hopping rates in Sec. IV.

D. Effect of molecular geometry

Simple π -conjugated organics tend to form planar struc-
tures, such as benzene and polyacetylene. In complex organic

molecules, however, geometry hindrance and bonding con-
strains can make the structure nonplanar. In addition, organic
materials are flexible and the relative orientation between
different parts in a molecule can fluctuate. To capture the
essence of this seemingly tedious effect, we consider two
simple cases. One is a molecule consisting of the two fictitious
atoms introduced in Sec. II A and the other is a twisted
biphenyl. In the former, the px orbitals of the two atoms
are assumed to be parallel and forming a σ bond, and the π

overlaps between py and pz orbitals in the two atoms depend
on the orientation around the σ bond. In the latter, there is a
torsion angle between the two phenyl rings in biphenyl.

For the molecule consisting of two fictitious atoms, the
Hamiltonian reads

H = H0 + HSO + Ht, (2.31)

where H0 includes orbital energies and the σ bonding the
coupling between p′

x and p′′
x of the two atoms, HSO is the SOC

in the two atoms,

HSO = ξ (l1 · s1 + l2 · s2), (2.32)

and Ht is the spin-independent π -π coupling:

Ht = [tπ cos(θ2 − θ1)(|p′
z↑〉〈p′′

z ↑|+|p′
y↑〉〈p′′

y↑|)
+ tπ sin(θ2 − θ1)(|p′

y↑〉〈p′′
z ↑| − |p′

z↑〉〈p′′
y↑|)

+ H.c. + (↓ → ↑)]. (2.33)

Here, we have used p′
q (p′′

q ) (q = x,y,z) to represent orbitals
in the first (second) atom. If we consider H0 + HSO as the
unperturbed Hamiltonian and Ht as a perturbation, the zeroth-
order wave functions are |±′〉 and |±′′〉 introduced in Eqs. (2.8)
and (2.9). Because of the spatial symmetry, we construct the
basis set based on the even or odd parity,

|E±〉 = 1√
2

(|±′〉 + |±′′〉), (2.34)

|O±〉 = 1√
2

(|±′〉 − |±′′〉). (2.35)

The nonzero matrix elements of Ht between these basis
functions are

〈E+|Ht |E+〉 = 〈E−|Ht |E−〉 = tπ cos(θ1 − θ2), (2.36)

〈O+|Ht |O+〉 = 〈O−|Ht |O−〉 = −tπ cos(θ1 − θ2), (2.37)

〈E+|Ht |O−〉 = −〈E−|H |O+〉 = ξ tπ

2�
sin(θ2 − θ1). (2.38)

The nonzero matrix element of 〈E+|Ht |O−〉 is due to the
SOC-induced spin mixing. The eigenstate of the system with
the quasi up spin is

|+̃〉 = |E+〉 − ξ

4�
tan(θ2 − θ1)|O−〉

= 1√
2

(|p′
z↑〉 + |p′′

z ↑〉) + ξ

2
√

2�

[
(−i sin θ1|p′

y↑〉

− i sin θ2|p′′
y↑〉) + (eiφ1 |p′

x↓〉 + eiφ2 |p′′
x↓〉)

+ (i cos θ1e
iφ1 |p′

y↓〉 + i cos θ2e
iφ2 |p′′

y↓〉)

− tan(θ2 − θ1)

2
(|p′

z↓〉 − |p′′
z ↓〉)

]
, (2.39)
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FIG. 3. (Color online) Admixture γ 2 as a function of torsion
angle θ between the two phenyl rings in biphenyl. Green (light gray)
and red (dark gray) circles are for the electron and hole polarons,
respectively. Filled circles describe the total spin admixture and open
circles describe the spin-mixing contribution. The smooth line is the
analytical result from Eq. (2.40).

and the spin admixture is

γ 2 = ξ 2

2�2

[
1 + 1

8
tan2(θ2 − θ1)

]
. (2.40)

This expression suggests that the SOC is greatly enhanced
when the two atoms have different orientations and π orbitals
are not aligned. We notice that the term proportional to
tan2(θ1 − θ2) originates from spin mixing within same orbitals,
p′

z and p′′
z .

We carry out a first-principles calculation as described in
Sec. II B on biphenyl and display γ 2 as a function of the torsion
angle θ ≡ θ2 − θ1 between the two phenyl rings in Fig. 3. We
see a strong enhancement of γ 2 as the torsion angle increases,
particularly when the angle is near π/2, where a “singularity”
in the SOC seems to occur as indicated by Eq. (2.39).

We calculate the spin admixture parameter γ 2 of electron
and hole polarons in representative organic materials and list
the obtained values in Table II.31 The molecular geometry of
the polaron states is optimized in the calculations. Among
these organics, benzene, rubrene, poly(p-phenylene) (PPP),
and C60 contain only C (and H). Others contain additional
elements: polyaniline (PANI) and polypyrrole (PPy) have N,
T6 has S, MEH-PPV has O, Alq3 has N, O, and Al, CuPc has
Cu and N, and N,N’-bis(n-hepta uorobutyl)-3,4:9,10-perylene
tetracarboxylic diimide (PTCDI-C4F7), a newly synthesized
organic with a high electron mobility,32 has N, O, and F. The
explicit wave functions of Eq. (2.21) for the polaron states
allow us to determine contributions from individual atoms to
the total SOC. The SOC in Alq3 is particularly strong, even
larger than T6 and CuPc, which is due mainly to the orthogonal
arrangement of three ligands, as in the case of biphenyl. This
geometry effect also results in a large SOC in C60, where
π orbitals in the 60 C atoms on a sphere cannot maintain
a parallel alignment with one another. The strong geometry
dependence of the SOC suggests that material morphology and
growth condition may lead to very different SOC strengths in
nominally identical organic solids.

TABLE II. Spin admixture γ 2 of the electron and hole polarons
in representative organics.

Material Electron polaron Hole polaron

benzene 1.32 × 10−7 5.46 × 10−8

Alq3 1.07 × 10−3 7.33 × 10−5

MEH-PPV 2.64 × 10−7 3.73 × 10−6

T6 4.54 × 10−5 2.53 × 10−6

rubrene 1.06 × 10−7 1.02 × 10−7

PANI 1.34 × 10−7 2.84 × 10−7

PPP 1.20 × 10−7 6.61 × 10−8

C60 1.12 × 10−6 1.31 × 10−6

CuPc 6.80 × 10−4 6.80 × 10−4

PTCDIC4F7 3.59 × 10−6 1.63 × 10−5

PPy 6.80 × 10−7 7.61 × 10−8

III. SPIN RELAXATION CAUSED BY SOC

Spin relaxation describes an irreversible decay of spin
polarization due to chaotic environmental fluctuations and
limits the operation speed of a spintronic device. Spin
relaxation usually is characterized by two lifetimes, T1 and
T2, or the longitudinal and transverse spin lifetimes, which are
introduced phenomenologically in the Bloch equation,9

dS
dt

= gμB S × H0 − Sxex + Syey

T2
− Sz − S0

T1
ez, (3.1)

where H0 is the applied magnetic field, S0 is the equilibrium
value of S, and eq (q = x,y,z) is the unit vectors along the q

axis. For carriers in organic solids, as we will show later, the
two spin-relaxation times generally are equal. In this paper, we
focus on carrier (mobile electron) spin relaxation caused by the
SOC in disordered organic systems where electrical transport
is due to polaron hopping, for the materials used for organic
spintronics are usually in the form of dense film. We emphasize
that the existing spin relaxation theories for crystalline solids7,8

and for isolated molecule9,13 are not directly applicable to this
situation.

A. Spin-flip and spin-conserving hoppings

The polaron hopping in organic solids in the presence of
the SOC can be symbolically expressed by the following
Hamiltonian:

H=H0 + HSO+V =
∑
is

Eia
†
isais +HSO+

∑
ijs

〈j |V |i〉a†
jsais .

(3.2)

Here, Ei is the polaron energy at site i and 〈j |V |i〉 is the
hopping integral from site i to site j facilitated by the electron-
lattice interaction. Both Ei and 〈j |V |i〉 are independent of
spin, s = ↑,↓. To elucidate the effect of HSO on the hopping
process, we first consider hopping between the two molecules
with orientations (θ1,φ1) and (θ2,φ2). The polaron eigenstates
of H0 + HSO are |±′〉 at site 1 and |±′′〉 at site 2. Since the
“up”-spin polaron eigenstate |+′〉 contains a small down-spin
component, the hopping from the polaron eigenstate for
spin-up |+′〉 to the eigenstate for spin-down |−′′〉 is finite
even though the polaron hopping Hamiltonian V is spin
independent. We display all four hopping matrix elements
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between |±′〉 and |±′′〉:
V+′′+′ = 〈p′′

z |V |p′
z〉 − iξ

2�
(cos θ1〈p′′

z |V |p′
y〉

− sin θ2〈p′′
y |V |p′

z〉), (3.3)

V−′′−′ = 〈p′′
z |V |p′

z〉 + iξ

2�
(cos θ1〈p′′

z |V |p′
y〉

− sin θ2〈p′′
y |V |p′

z〉), (3.4)

V−′′+′ = ξ

2�
(ieiφ1 cos θ1〈p′′

z |V |p′
y〉 − ieiφ2 cos θ2〈p′′

y |V |p′
z〉

+ eiφ1〈p′′
z |V |p′

x〉 + eiφ2〈p′′
x |V |p′

z〉), (3.5)

V+′′−′ = ξ

2�
(−ie−iφ1 cos θ1〈p′′

z |V |p′
y〉 + ie−iφ2 cos θ2

×〈p′′
y |V |p′

z〉 + e−iφ1〈p′′
z |V |p′

x〉+e−iφ2〈p′′
x |V |p′

z〉).
(3.6)

Here, p′
q and p′′

q (q = x,y,z) are the local p orbitals in
the first and second atoms and their expressions are dis-
played in Eqs. (2.5)– (2.7) with corresponding (θi,φi) (i =
1,2). These four complex matrix elements can be described
by a spin-independent scalar V0 and a real vector V =
(Vx,Vy,Vz)T :(

V+′′+′ V+′′−′

V−′′+′ V−′′−′

)
= V01̂ +

∑
q

σ̂qVq, (3.7)

where σ̂q is the Pauli’s matrix. If we assume that when
the two molecules are aligned, (θ1,φ1) = (θ2,φ2) = (0,0),
hopping takes place only between same orbitals, 〈p′′

q |V |p′
q ′ 〉 =

v0δqq ′ , for randomly orientated molecules, the spin-conserving
hopping, after averaging over the molecular orientation, is

V 2
0 = 1

3v2
0 . (3.8)

And the averaged spin-dependent components are

V 2
x = V 2

y = V 2
z =

(
ξ

2�

)2 4

9
v2

0 . (3.9)

By defining χ2
q as

χ2
q = V 2

q

V 2
0

= 2

3
γ 2 ≡ χ2, (3.10)

the ratio between spin-flip hopping rate to spin-conserving
one is

w+−

w0
= |V−′′+′ |2

|V+′′+′ |2
= χ2

x + χ2
y = 4

3
γ 2, (3.11)

which, as shown in Appendix B, is invariant under any SU(2)
rotation. Thus each polaron hop involves a small probability
of spin flip, which is characterized by the spin admixture
parameter γ 2.

B. Two-site system: time-dependent perturbation theory

To demonstrate that the spin flip discussed above is indeed
related to spin relaxation, we consider hopping from site 1 to
site 2 using the time-dependent perturbation theory. In this two-
site system, the time-dependent wave function can be written
as a sum

|�(t)〉 =
4∑

k=1

ak(t)e−iωkt |k〉, (3.12)

where |1(2)〉 = |+′(−′)〉, |3(4)〉 = |+′′(−′′)〉 and h̄ωk is the
polaron energy of |k〉. The time-dependent coefficient ak(t)

satisfies the following equation:33

ih̄
dak

dt
=

∑
m

Vkm(t)am, (3.13)

where Vkm(t) = Vkmeiωkmt with Vkm being the hopping matrix
element, Vkm = 〈k|V |m〉, and ωkm = ωk − ωm. The nonzero
Vkm are V31 = V ∗

13 = V+′′+′ , V42 = V ∗
24 = V−′′−′ , V41 = V ∗

41 =
V−′′+′ , and V32 = V ∗

23 = V+′′−′ .
Suppose, at t = 0, the electron is at state |+′〉, i.e., a(0)

1 = 1
and a

(0)
k = 0 for k �= 1. Integrating the above equations, we

obtain

a1(t) = a
(0)
1 = 1, a2(t) = a

(0)
2 = 0, (3.14)

a3(t) = a
(1)
3 (t) = −V+′′+′

eiωt − 1

h̄ω
, (3.15)

a4(t) = a
(1)
4 (t) = −V−′′+′

eiωt − 1

h̄ω
, (3.16)

where h̄ω is the polaron-energy difference between sites 2
and 1.

The expectation values of spin at t = 0 and t are

sz(0) = 1

2

〈+′|σz|+′〉
〈+′|+′〉 = 1 − ξ 2

2�2 cos2 θ1

2
(
1 + ξ 2

2�2

) , (3.17)

sz(t) = 1

2

〈�(t)|σz|�(t)〉
〈�(t)|�(t)〉 = 1 − ξ 2

2�2 cos2 θ1 + [|a3(t)|2 − ∣∣a2
4(t)

∣∣2](
1 − ξ 2

2�2 cos2 θ2
) + C

2[1 + |a3(t)|2 + |a4(t)|2]
(
1 + ξ 2

2�2

) , (3.18)

where

C = − ξ 2

2�2
sin θ2 cos θ2[a∗

3 (t)a4(t)eiφ2 + a∗
4 (t)a3(t)e−iφ2 ]. (3.19)

The change in spin, �sz ≡ sz(t) − sz(0), due to the polaron hopping is

�sz(t) = |a3(t)|2 ξ 2

2�2 (cos2 θ1 − cos2 θ2) − |a4(t)|2[2 − ξ 2

2�2 (cos2 θ1 + cos2 θ2)
] + C

2[1 + |a3(t)|2 + |a4(t)|2]
(
1 + ξ 2

2�2

) . (3.20)
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Now we examine individual terms in Eq. (3.20). First, the
cross term C is negligible because (1) it is in third order
of ξ/�, (ii) 〈+′|V |+′〉 and 〈−′|V |+′〉 can have an arbitrary
phase difference and the time average over their product will
become zero, and (iii) it is averaged to be zero over the
molecular orientation (θ2,φ2). The term proportional to |a3(t)|2
in the numerator is also zero after averaging the relative angle
between sites 1 and 2. Hence, to the second order of ξ/�,

�sz(t) = − |a4(t)|2
1 + |a3(t)|2 + |a4(t)|2  −|a4(t)|2, (3.21)

where we have used |a3(t)| � 1 and |a4(t)| � 1, as required
by the validity of perturbation theory. Using the relation
limt→∞ sin2 ωt/πtω2 = δ(ω) together with Eq. (3.16), we
obtain the spin-relaxation rate in this two-site system as

−d�sz

dt
= d|a4(t)|2

dt
= 2π

h̄
|V−′′+′ |2δ(ω), (3.22)

which is identical to the spin-flip rate w+− introduced earlier.
This indicates that spin mixing indeed reduces the expectation
value of spin as a polaron hops. In the above example, the
initial state has a pure up spin and therefore only spin flip from
up to down, w+−, contributes to spin relaxation. Spin flip
from down to up, w−+, will also contribute to spin relaxation
if the initial state contains down-spin component, which will
be automatically included in a more general density-matrix
theory developed in Sec. III D.

C. Fluctuating-magnetic field approach

Spin relaxation in the ESR literature is often formulated by
regarding the environmental fluctuation as a time-dependent
magnetic field, under which the spin dynamics is described by
the following equation:

dS
dt

= gμB

h̄
S × [H0 + h(t)], (3.23)

where H0 is the applied external field and h(t) is a fluctuating
field. The fluctuating field has a temporal correlation time τc,
beyond which the fluctuations are considered unrelated,9

hp(t + τ )hq(t) = δpqh2
qe

−|τ |/τc . (3.24)

Based on the perturbation theory, the spin-relaxation lifetimes
T1 and T2 are

1

T1
=

(
gμB

h̄

)2(
h2

x + h2
y

) τc

1 + ω2
0τ

2
c

, (3.25)

1

T2
=

(
gμB

h̄

)2[
τch2

z + 1

2

(
h2

x + h2
x

) τc

1 + ω2
0τ

2
c

]
, (3.26)

where h̄ω0 = gμBH0 is the Zeeman energy.
Here, we show that this approach can also be used in the

situation of spin relaxation of polarons. If the reference system
is chosen such that the mobile polaron is at rest, the polaron
hopping between different sites can be regraded as a temporal
variation of the environment, or a local magnetic field hq ,

gμBhq = Vq, (3.27)

and for ω0τc � 1, which is usually satisfied in organics
because their small τc. According to Eqs. (3.25) and (3.26),

1

T1
= 1

T2
= 1

h̄2 (|Vx |2 + |Vy |2)τc. (3.28)

We emphasize that 1/τc is not the hopping rate, although they
are related. Since hopping can be considered as a tunneling
process between the two polaron states, which is large when
the two states are in phase, or correlated, over a long period
time. This can be seen from the Fermi golden rule,

w0 = 2π

h̄
|〈p′′

z |V |p′
z〉|2ρ(E), (3.29)

where ρ(E) represents the density of states in the final state,
which, after taking into account energy broadening due to the
finite correlation time, is

ρ(E) = h̄τ−1
c

π

1

E2 + (
h̄τ−1

c

)2 , (3.30)

where E is the energy difference between the initial and final
states. For E � h̄/τc,

w0 = 2

h̄2 |〈p′′
z |V |p′

z〉|2τc. (3.31)

By substituting τc in Eq. (3.28) with Eq. (3.31), the spin-
relaxation time is

1

T1
= 1

T2
= 8

3
γ 2w0 = w+− + w−+. (3.32)

Again the spin-relaxation rate is proportional to hopping rate
w0 and spin admixture parameter γ 2.

D. Density-matrix theory

Spin relaxation can be more rigorously discussed by
using the density-matrix theory. The hopping among polaron
eigenstates at different sites can be written as V̂ = ∑

ij V̂ij ,
where

V̂ij ≡ 〈i±|V |j±〉 = V 0
ij 1̂ +

∑
q

σ̂qV
q

ij . (3.33)

The spin-polarized carrier density can be expressed in a
similar form, ρ̂ = ∑

i ρ̂i with ρ̂i = ρ0
i 1̂ + ∑

q σ̂qρ
q

i , ρ0
i the

equilibrium up- or down-spin carrier density in the absence of
spin polarization, and ρ

q

i magnetization at site i. The density
matrix obeys the following Redfield equation in the interaction
representation,9

dρ̂

dt
= − i

h̄
[V̂ (t),ρ̂(0)] − 1

h̄2

∫ ∞

0
dτ [V̂ (t),[V̂ (t − τ ),ρ̂(0)]],

(3.34)

where ρ̂(0) is the density matrix at t = 0.
To study spin relaxation of carriers, it is useful to introduce

the spin-dependent electrochemical potentials, which deviate
from the Fermi level in the presence of spin polarization of car-
riers. Spin-dependent electrochemical potentials suggest that
up- and down-spin carriers are distinguishable and can reach
their own quasiequilibrium states, which are justified when the
spin lifetime is long. While the (spin-polarized) carrier density
and the (spin-polarized) electrochemical potential are closely
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related, the electrochemical potential varies much slower in
space than the carrier density, which can fluctuate at the small
scale of the Debye length, and is therefore advantageous in
describing transport. For the Boltzmann distribution,34

ρ
q

i = ρ0
i μ

q

i /kBT , (3.35)

where kB is the Boltzmann constant and T the temperature, and
μ

q

i is the splitting in spin-polarized electrochemical potentials
along the q axis. As the spin-polarized chemical density,
the spin-polarized electrochemical potential can be written as
μ̂i = μ0

i 1̂ + ∑
q σ̂qμ

q

i . The matrix form is necessary when a
common spin quantization axis in a system cannot be defined,
e.g., when spin precession occurs. As a result, Eq. (3.34) can
be rewritten as∑

i

ρ0
i

dμ
q

i

dt
= 2

h̄2

∑
ijrqsαβ

(α|σ̂q |β)(β|[[σ̂r ,σ̂q],σ̂s]|α)

×Lij
qq(ω)ρ0

j μ
s
j , (3.36)

where α and β represent spin and α(β) = ↑(↓), h̄ω is the
energy difference between sites i and j , and

Lij
qq(ω) =

∫ +∞

0
V

q

ji(t)V
q

ij (t + τ )e−iωτ dτ. (3.37)

The spin-conserving hopping rate can be also expressed in
terms of the temporal correlation function,13

w0
ij = 1

h̄2

∫ +∞

0
V

ji

0 (t + τ )V ij

0 (t)ei(Ej −Ei )τ/h̄dτ, (3.38)

and L
ij
qq(ω) = χ2w0

ij according to Eq. (3.10). Equation (3.36)
is then reduced to

ρ0
i

dμ
q

i

dt
=

∑
j

[
(1 − χ2)ρ0

j w
0
jiμ

q

j − (1 + χ2)ρ0
i w

0
ijμ

q

i

]
.

(3.39)

In the absence of electric field, the detailed balance requires
ρ0

i w
0
ij = ρ0

j w
0
ji , and the above equation is further simplified,

ρ0
i

kBT

dμ
q

i

dt
=

∑
j

Z−1
ij

[
(1 − χ2)μq

j − (1 + χ2)μq

i

]
, (3.40)

where Z−1
ij = ρ0

i w
0
ij /kBT = ρ0

j w
0
ji/kBT .

To determine the carrier spin-relaxation time, we track the
time evolution of a spatially homogeneous spin polarization,
μq . In this case, Eq. (3.40) reads

dμq

dt
= −2χ2μqkBT

∑
ij Z−1

ij∑
i ρ

0
i

≡ −μq/T1, (3.41)

and the spin-relaxation rate is

1

T1
= 8γ 2

3

kBT
∑

ij Z−1
ij∑

i ρ
0
i

. (3.42)

Since, fundamentally, carrier spin relaxation should be
closely related to carrier’s motion, we establish the relation
between the spin lifetime and electrical transport properties
in organics. According to the Einstein relation, the diffusion
constant D and the mobility ν are related by ν = eD/kBT .

Using the Kubo formula for mobility, the diffusion constant of
the system is expressed as35

D=kBT

3

∑
q

∫ ∞

0
dte−δt

∫ 1/kBT

0
dλ〈vq(−iλ)vq(t)〉, (3.43)

where 〈〉 denotes the average with the weighting functional
exp[−(H0 + HSO)/kBT ], and δ = 0+ is introduced to ensure
the above expression is convergent as t → ∞. The velocity
operator v can be obtained from

v = i

h̄
[H,R] ≡ i

h̄
[H0 + HSO + V,R], (3.44)

where R = ∑
i Ria

†
i ai is the polaron position operator. For

localized polarons in the hopping regime, the velocity operator
has nonzero matrix elements only between different sites,

〈j |v|i〉 = i

h̄
〈j |V |i〉(Rj − Ri). (3.45)

Here, we neglect all spin-flip terms because they are pro-
portional to the small spin admixture parameter γ . The DC
diffusion constant, in the limit of |Ei − Ej | � h̄/τc,

D = 1

3

1

Z

∑
i

e−Ei/kBT
∑

j

∑
q

∣∣V 0
ij

∣∣2
R2

ij ρij (E), (3.46)

where Z = ∑
i e

−Ei/kBT . After averaging over the molecular
orientations, Eq. (3.46) reduces to

D = 1

6

∑
i ρ

0
i w

0
ij R̄

2∑
i ρ

0
i

, (3.47)

where R̄ is the average hopping distance. Comparing Eq. (3.47)
with Eq. (3.42), we obtain

T −1
1 = T −1

2 = 8

3
γ 2

∑
i ρ

0
i w

0
ij∑

i ρ
0
i

= 16γ 2D

R̄2
. (3.48)

According to Eq. (3.48) and the Einstein relation, T1 ∝
D−1 ∝ ν−1, i.e., the higher mobility, the shorter the spin-
relaxation time. It is interesting to compare the above theory
with the EY mechanism in crystalline semiconductors. While
the EY mechanism is also due to the SOC-induced spin mixing,
the disorientation of spin occurs in the process of momentum
scattering instead of carrier hopping. Consequently, the spin-
relaxation rate 1/T1 in the EY mechanism is proportional
to the momentum scattering rate 1/τp (τp is the carrier
mean free time). Since in a crystal, the carrier mobility
can be written as ν = eτp/m∗ (m∗ is the carrier’s effective
mass), the experimental signature of the EY mechanism in
crystalline semiconductors is T1 ∝ ν, i.e., the spin-relaxation
time is longer for a higher mobility.7 The opposite mobility
dependencies of the spin lifetime in crystalline semiconductors
and in disordered organic solids are due to the distinct carrier
transport mechanisms: band conduction in the former, where
phonon scattering reduces τp and carrier mobility, and hopping
conduction in the latter, where phonons facilitate electron
hopping and enhances carrier mobility.

Based on the above discussion, we expect that the spin
lifetime will decrease with temperature as the mobility
generally increases with temperature in the hopping regime.
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The magnetic field effect should be weak as it does not affect
the spin mixing due to the SOC.

IV. SPIN DIFFUSION LENGTH

The spin-diffusion length, which measures how far a spin
imbalance can traverse in the material, plays a central role in
spintronics because it limits the channel length of spintronic
devices. To determine the spin-diffusion length in organics,
we examine the spatial dependence of spin polarization in a
steady state (dμ

q

i /dt = 0) from Eq. (3.40). By expanding μ
q

i

over distance,

μq(rj ) = μq(r i) + Rji · ∇μq(r i) + 1
2 Rji Rji : ∇∇μq(r i),

(4.1)

where Rji = Rj − Ri , and summing over i, Eq. (3.40) is
reduced to∑

ij

Z−1
ij

[
−2χ2μq(rj ) + 1

6
R2

ij∇2μq(rj )

]
= 0. (4.2)

Comparing it with the definition of spin-diffusion length Ls ,(∇2 − L−2
s

)
μq(r) = 0, (4.3)

we find

Ls = 1

4γ

√√√√∑
ij Z−1

ij R2
ij∑

ij Z−1
ij

≡ 1

4γ
R̄. (4.4)

This remarkably simple expression suggests that the spin-
diffusion length in organic solids is essentially determined
by the spin admixture and average hopping distance and
does not depend on the carrier mobility. Hence in contrast
to the common assumption, the spin-diffusion length cannot
be significantly increased by improving the carrier mobility in
organics if the SOC is the main source of spin relaxation.

Recently, spin-diffusion lengths were directly measured by
muon spin rotation in Alq3 at low temperatures15 and by
spin-polarized two-photon photoemission in CuPc at room
temperature.16 These experiments provide valuable informa-
tion on spin transport and allow a direct comparison with
theory. Here, we analyze the two systems using the above
theory.

A. Spin diffusion in Alq3

According to the muon experiment, the spin-diffusion
length decreases as temperature increases and levels off when
the temperature is above 80 K, as shown in Fig. 4. Here, we
show that the experimental data can be consistently explained
by our theory after noticing that polarons can take advantage
of variable-range hopping (VRH) at low temperatures.

In disordered systems, VRH is frequently observed at low
temperatures.36 The origin of VRH is that the hopping proba-
bility depends on two factors: the electron wave-function over-
lap, which decays exponentially over the hopping distance, and
the energy difference between hopping sites, which tends to
be small when the hopping distance is large. The competition
between the two factors results in a temperature-dependent
average hopping distance. The signature of the VRH is that the
conductivity of the material has a temperature dependence of
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FIG. 4. (Color online) Spin-diffusion length as a function of
temperature in Alq3. Circles are experimental values and the squares
are theoretical values obtained by solving Eq. (3.40) in steady state
on a 32 × 32 × 32 lattice with the lattice constant a = 11.5Å. The
average hopping distances are represented by triangles.

exp[−(T/T0)1/4]. When the Coulomb interaction is important,
the temperature dependence becomes exp[−(T/T0)1/2].37 The
average hopping distance is R̄ ∼ T −1/4,36 or R̄ ∼ T −1/2 for
the strong Coulomb interaction case. The VRH has been
observed in organic solids38 and biological systems.40 Thus
the experimentally measured spin-diffusion length in Alq3 is
consistent with Eq. (4.4) in the VRH regime.

To provide a detailed understanding of spin diffusion in
Alq3, we solve transport equations Eq. (3.40) in a 32 × 32 ×
32 cubic lattice, where each lattice site represents an Alq3

molecule. A spin imbalance is injected into the lattice at the
edge plane of x = 0, and at the other edge plane x = 31a

(a is the lattice constant), the spin imbalance is set zero. To
avoid possible boundary effects, we artificially increase γ 2

from 0.00107 listed in Table II to 0.0375 and multiply the
numerically obtained diffusion length by (0.0375/0.0107)1/2

to compare with experiment. The lattice constant is chosen
to be 11.6 Å, similar to the size of the Alq3 molecule. We
assume the hopping rate between sites i and j has the following
Efros-Shklovskii form,37

w0
ij = ν0 exp[−2Rij/�−(Ei − Ej−EC/Rij )/2kBT ], (4.5)

where EC is the Coulomb gap and � is the polaron delo-
calization length and their values are set EC = 0.3 eV and
� = 0.64 Å−1 in the calculations. We assume that the polaron
energy fluctuations are negligible compared to the Coulomb
gap, |Ei − Ej | � EC , and are set zero. In the numerical
calculations, we allow polarons to hop between any two
sites, and therefore VRH is automatically included in the
model. The spin imbalance is found to exponentially decay
over distance, μq (x) ∼ e−x/Ls , and the extracted spin-diffusion
length is plotted in Fig. 4. We also show in Fig. 4 the
averaged hopping distance R̄ defined in Eq. (4.4). We see
an excellent agreement between the experiment and theory
as well as a close correlation between the hopping distance
and spin-diffusion length. The leveled spin-diffusion length
occurs when the hopping distance reaches the lattice constant
a, the minimal hopping distance possible, as the temperature
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increases. Thus we expect that the spin-diffusion length in
organics should decrease with temperature relatively slowly,
following Ls ∼ T −1/2 or Ls ∼ T −1/4.

B. Spin diffusion in CuPc

The spin-diffusion length in CuPc at room temperature has
been measured by the spin-polarized two-photon photoemis-
sion. It is found that the polaron mean free path is about 1 nm
and the spin-diffusion length, or the spin-flip length, is about 10
nm. To explain the experiment, we must examine the hopping
among 3d orbitals.

CuPc has an electronic configuration of 3d9, which is
equivalent of one hole in a completely filled 3d shell. In the
hole representation, the electron or hole polaron occupies |E′′〉

in each molecule and hopping takes place between these states
at different sites.

If we denote the hopping matrix element between aligned
3d orbitals as V0, the spin-conserving hopping averaged over
random orientations of the molecules is

|〈E′′ +′′ |V |E′′+′〉|2 = |〈d ′′
x2−y2 |V |d ′

x2−y2〉|2

= 1
4

(∣∣D(2)
22

∣∣2 + ∣∣D(2)
2−2

∣∣2 + ∣∣D(2)
−22

∣∣2 + ∣∣D(2)
−2−2

∣∣2
)V 2

0

= 1
5V 2

0 . (4.6)

Here, D
(2)
mm′ is the Wigner D matrix33 for j = 2 required to

transform dm in one rotation frame to dm′ in another and
its average over molecular orientations is explained in Ap-
pendix C. The spin-flip hopping matrix element can be written
as

〈E′′ −′′ |V |E′′+′〉 = ξ̃Cu

�1
(−i sin θ ′′eiφ′′ 〈d ′′

x2−y2 |V |d ′
xy〉 + i sin θ ′eiφ′ 〈d ′′

xy |V |d ′′
x2−y2〉) +

√
2

2

ξCu

�2

(
cos2 θ ′′

2
eiφ′′ 〈d ′′

x2−y2 |V |d ′′
xy〉

+ cos2 θ ′

2
eiφ′ 〈1′′|V |d ′

x2−y2〉 − sin2 θ ′′

2
eiφ′′ 〈d ′

x2−y2 |V |1′′〉 − sin2 θ ′

2
eiφ′ 〈−1′′|V |d ′′

x2−y2〉
)

,

and the hopping rate, after averaging over molecular orienta-
tions, is

|〈E′′ −′′ |V |E′′+′〉|2 = 2

5

[(
ξ̃Cu

�1

)2

+ 1

2

(
ξ̃Cu

�2

)2]
V 2

0 . (4.7)

Thus the ratio of the spin-flip hopping to the spin-conserving
one is

|〈E′′ −′′ |V |E′′+′〉|2
|〈E′′ +′′ |V |E′′+′〉|2

= 4

3
γ 2. (4.8)

Since the mean free path, beyond which the carrier transport
is incoherent, in CuPc films is about l = 1 nm, which is
comparable to the size of the molecule (1.4 nm), we can regard
l as the hopping distance and obtain the spin-diffusion length,

Ls = R̄

4γ
= l

4γ
= 9.6 nm, (4.9)

which is in excellent agreement with experimental value, Ls =
10 nm.

Table III summarizes our calculated spin-diffusion lengths
for different materials, where DO-PPV refers to poly(2,5-
dioctyloxy-1,4-phenylenevinylene). We assume that the hop-
ping takes place between nearest neighbors and thus the
spin-diffusion lengths correspond to their high-temperature
values. The average hopping distance is estimated from R̄ =
�1/3, where � is the molecular volume in the corresponding
molecular crystal based on the x-ray data in literature.
Experimentally, the spin-diffusion length is directly measured
only in Alq3 and in CuPc. More frequently, the spin-diffusion
length in organics is extracted from the magnetoresistance
(MR) in organic spin-valve (OSV) structures and involves
some uncertainties, depending on the fitting expressions used.
These indirect measurements yield Ls = 70 nm in T6 at
room temperature,2 45 nm in Alq3 at 11 K,3 and 13 nm in

rubrene at 0.45 K.38 The values for T6 and Alq3 are in good
agreement with the theoretical estimates but the rubrene value
is much smaller than what the theory predicts. Apart from the
experimental uncertainties, it is possible that the HFI, which
is not included in these calculations, is important in rubrene.

We emphasize that a longer spin diffusion does not
necessarily translate to a larger MR in an OSV. Experimentally,
the measured MR values in OSVs with Alq3 scatter over
a broad range for different electrodes and temperatures.3,15

Although a consistent picture of the MR in OSVs is not yet
available, it is fair to say that the MR may be more sensitive
to the spin injection efficiency than the spin-diffusion length.
In fact, in inorganic systems, spin injection into a metal is
generally more efficient than into a semiconductor, although
the spin-diffusion length in a semiconductor is much longer
than in a metal.1 In general, spin injection depend on many
material properties in a device, including magnetizations of the
ferromagnets and electrical transport properties of the organic.
Since electrical transport in an organic may strongly depend

TABLE III. Spin diffusion lengths of the electron and hole
polarons in various organics at room temperature.

Material hopping distance (Å) electron (nm) hole (nm)

benzene 4.9 337 524
Alq3 14.8 11.2 60
DO-PPV 10.1 491 131
T6 12.8 47 201
rubrene 14.1 1083 1103
CuPc 10 10 10
PPP 5.9 426 574
C60 20.0 472 437
PTCDIC4F7 11.3 149 70
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on the material thickness (for example, its resistance increases
nonlinearly with the thickness), it is possible that a pronounced
MR only appears in an OSV with the channel length much
shorter than the spin-diffusion length. This may explain the
much longer estimated spin-diffusion length of C60 in Table III
than the channel length of C60-based OSVs that show sizable
MR.39

V. ELECTRICAL-FIELD EFFECTS ON SPIN DIFFUSION

Most organic materials in spintronic devices are undoped
and do not have carriers on their own. All carriers in an organic
device are therefore injected from the electrodes. Thus the
electric field in organic devices is in general significant. In
addition, the MR in OSVs is found to be very sensitive to
the bias voltage, suggesting a strong electric-field effect on
spin transport. Since the MR in OSVs is pronounced only at
relatively low voltages (�1 V),2,3,15,38,39 we focus on how spin
diffusion is affected by a small to moderate electric field.

While the distribution of the carrier density in an organic
device structure can be very inhomogeneous, the electrochem-
ical potential varies slowly in space. In fact, in equilibrium,
the electrochemical potential (Fermi level) is a constant
throughout the device. Similarly, the splitting in the spin-
polarized electrochemical potentials, which describes spin
imbalance of carriers, does not change as significantly as the
spin-polarized carrier density in device structures and is largely
independent of charge transport, which is controlled by the
spin-independent electrochemical potential μ0 introduced in
Sec. III D. Thus the effect of electric field can be conveniently
studied by Eq. (3.39) without explicitly considering the charge
transport. An electric field tilts the polaron energy difference
between two sites, and for electron polarons, the hopping
probability from site i to site j in the presence of an electric
field E can be written as

w̃0
ij = w0

ij e
eE·(Ri−Rj )/2kBT ≡ w0

ij e
eE·Rij /2kBT , (5.1)

where e is the absolute value of the electron charge. The
presence of an electric field renders ρ0

i w̃
0
ij �= ρ0

j w̃
0
ji , and in

the steady state, Eq. (3.39) becomes

0 =
∑

j

[
(1 − χ2)ρ0

j w̃
0
jiμ

q

j − (1 + χ2)ρ0
i w̃

0
ijμ

q

i

]
. (5.2)

By expanding the exponential in Eq. (5.1) for the field
with eER̄/kBT < 1 and using Eq. (4.1), the spin imbalance
satisfies the following equation:

0 =
∑

j

[
− 2χ2μ

q

i −
qR2

ij

6kBT
E · ∇μ

q

i + 1

6
R2

ij∇2μ
q

i

]
, (5.3)

or, equivalently,

∇2μq − q

kBT
E · ∇μq − 16γ 2 μq

R̄2
= 0, (5.4)

which resembles the spin-drift-diffusion equation obtained in
inorganic semiconductors. The electric field gives rise to a
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FIG. 5. (Color online) Averaged spin imbalance in the y-z plane
as a function of x in a 32 × 32 × 32 cubic lattice for different electric
fields. The spin imbalance is injected at x = 0 and the electric field
is along the x axis. Solid lines, from top to bottom, correspond to
Ea = −0.006, −0.003, 0, −0.003, and 0.006 V. T = 110 K and
γ 2 = 0.0375. Other parameters are the same as in Fig. 4.

spin-drift term in Eq. (5.4), which leads to the down- and
upstream spin-diffusion lengths,

Ld

a
=

[
− q|E|a

2kBT
+

√(
q|E|a
2kBT

)2

+ 16γ 2a2

R̄2

]−1

, (5.5)

Lu

a
=

[
q|E|a
2kBT

+
√(

q|E|a
2kBT

)2

+ 16γ 2a2

R̄2

]−1

. (5.6)

For a more detailed understanding, we numerically solve
Eq. (5.2) using the hopping probability of Eq. (5.1) in the
32 × 32 × 32 cubic lattice. The spin imbalance also decays
exponentially over the distance with the decay rate strongly
depending on the magnitude and direction of the electric field,
as shown in Fig. 5. The extracted spin-diffusion lengths, shown
in Fig. 6, confirm that the presence of electric field results in
the upstream and downstream diffusion lengths. The numerical
results are similar to the analytical results of Eqs. (5.5) and
(5.6), and their quantitative difference is due mainly to the
small field approximation used in deriving Eq. (5.3).

The field-dependent spin diffusion is not caused by the
change in hopping distance, which is negligible and depends
slightly on the absolute value of electric field, as shown in
Fig. 6. Rather, it is due to the electric field induced drift.
The electric-field effect on spin diffusion suggests that a bias
voltage can strongly modify the spin transport behavior and
must be included to understand the MR in OSVs.

VI. g FACTOR IN ORGANIC MATERIALS

The SOC also affects the spin resonance frequency of the
polaron state and makes the g factor deviate from the free-
electron value of ge = 2.0023. Since the g-factor deviation
can be measured by ESR, the SOC in individual organics in
principle can be characterized by the g-factor deviation. Thus
it is also useful to understand the relation between the g-factor
deviation and spin admixture γ 2.
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FIG. 6. (Color online) Spin-diffusion length as a function of elec-
tric field. Black and red (gray) circles are upstream and downstream
spin-diffusion lengths extracted from numerical solutions of Eq. (5.2).
Black and red (gray) dashed lines plot Eqs. (5.5) and (5.6). Blue
triangles are the average hopping distance as a function of electric
field. Other parameters are the same as in Fig. 5.

The g factor is defined via the Zeeman energy splitting
between up-spin and down-spin states under a given magnetic
field, B,

HZ = μB B · g · S, (6.1)

where the effective g factor g is a tensor. The Zeeman energy
contains contribution from both the orbital and spin angular
momenta,

HZ = μB B · (L + ge S). (6.2)

By comparing the two Hamiltonians in the eigenstate basis set,
the g-factor tensor gpq and its deviation from the free-electron
value, δgpq ≡ gpq − geδpq , can be obtained.

A. The fictitious atom and molecule

First, we evaluate the g factor change due to the SOC in
the fictitious atom introduced in Sec. II A with its π orbital
oriented along (θ,φ). The eigenstates of π -electrons, after
including the SOC, are |+′〉 and |−′〉 in Eqs. (2.8) and (2.9).
Note that orbitals p′

q there are defined in the local coordinates
of the atom (p′

z is the π orbital), which differ by a rotation
from the laboratory coordinates in which Hamiltonian (6.2) is
defined. While one can use Eqs. (2.5)–(2.7) to express p′

q in
terms of pq in the laboratory coordinates, a more efficient and
elegant way is to use equalities of rotation operators on the
angular momentum operators. For example,

e−iφLzLxe
iφLz = Lx cos φ + Ly sin φ, (6.3)

e−iφLzLye
iφLz = −Lx sin φ + Ly cos φ. (6.4)

This approach becomes particularly useful when dealing with
orbitals with a high angular momentum like 3d orbitals. The

calculated matrix elements of Hamiltonian (6.2) between |±′〉
are

μ−1
B 〈+′|HZ|+′〉 = −μ−1

B 〈−′|HZ|−′〉
= ge

2
Bz + ξ

�
(− sin2 θBz

+ sin θ cos θ cos φBx + sin θ cos θ sin φ),

(6.5)

μ−1
B 〈+′|HZ|−′〉 = μ−1

B 〈−′|HZ|+′〉∗

= ge

2
(Bx − iBy) + ξ

�
e−iφ[sin θ cos θBz

− (i sin φ + cos2 θ cos φ)Bx

+ (i cos φ − cos2 θ sin φ)By]. (6.6)

Comparing the above matrix with Hamiltonian (6.1) in the
2 × 2 spin space,

HZ = μB

2

∑
pq

Bpgpqσ̂q, (6.7)

we obtain all components of the g-factor tensor,

gxx = ge − 2ξ

�
(cos2 θ cos2 φ + sin2 φ), (6.8)

gyy = ge − 2ξ

�
(cos2 θ sin2 φ + cos2 φ), (6.9)

gzz = ge − 2ξ

�
sin2 θ, (6.10)

gxy = gyx = 2ξ

�
(1 − cos2 θ ) sin φ cos φ, (6.11)

gxz = gzx = 2ξ

�
sin θ cos θ cos φ, (6.12)

gyz = gzy = 2ξ

�
sin θ cos θ sin φ. (6.13)

In disordered organic solids, the molecules are oriented
randomly, and therefore the experimentally measured g factor
from ESR should be an ensemble average over different
molecular orientations. Since the direction of an applied
magnetic field in ESR is well defined, say along the z

axis, the measured g-factor deviation would be δgzz. From
Eqs. (6.7)–(6.9), the g-factor deviations, after the orientation
average, are

δgzz = δgxx = δgyy = − 4ξ

3�
. (6.14)

It is desirable to obtain the averaged g-factor deviation from
an invariant quantity of the g-factor tensor, which would allow
a theoretical determination of the averaged g-factor deviation
by studying a molecule with a single orientation. We find two
invariances from Eqs. (6.7)–(6.12),

δg ≡ 1

3
(δgxx + δgyy + δgzz) = − 4ξ

3�
, (6.15)

|δg| ≡
√∑

pq

g2
pq = 2

√
2ξ

�
, (6.16)

which are independent to the molecular orientation with the
ratio of their magnitudes being

√
2/3. In particular, δg is

identical to the ensemble averaged δgqq .
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We see that both δg and |δg| are proportional to the spin
admixture γ introduced earlier. Thus in principle they can be
used to measure the SOC. However, by inspecting Hamiltonian
(6.2), it is clear that the g-factor deviation comes from mixing
between different orbitals. It does not include contribution
from the spin mixing within the same orbital and therefore
may underestimate the spin-mixing effect. This is readily seen
in the molecule consisting of two fictitious atoms studied in
Sec. II D. For the eigenstates of the two-atom molecule, |±̃〉 in
Eq. (2.39), the matrix elements of the Zeeman energy, to the
first order of ξ/�, is

〈±̃|L+ge S|±̃〉 = 1
2 (〈±′|l1 + ges1|±′〉+〈±′′|l2 + ges2|±′′〉).

(6.17)

Equation (6.16) suggests that the g-factor deviation δg in this
molecule would be the same as that in an isolated atom. The
large spin mixing of the eigenstate Eq. (2.39) will not be
reflected in the g-factor deviation, because it occurs mainly
within the same orbital. Therefore the g-factor deviation is not
well suited to characterize the spin mixing in organics.

B. CuPc

The polaron in CuPc occupies the dx2−y2 (E′′) state, which
mixes with dxy and dzx and dyz via the SOC, as expressed in
Eqs. (2.29) and (2.30). The matrix elements of Hamiltonian
(6.2) in the space spanned by the eigenstates |E′′±〉 are

μ−1
B 〈E′′ + |HZ|E′′+〉
= −μ−1

B 〈E′′ − |HZ|E′′−〉

= ge

2
Bz +

(
4ξ̃Cu

�1
cos2 θ + ξ̃Cu

�2
sin2 θ

)
Bz

+
(

4ξ̃Cu

�1
− ξ̃Cu

�2

)
sin θ cos θ cos φBx

+
(

4ξ̃Cu

�1
− ξ̃Cu

�2

)
sin θ cos θ sin φBy, (6.18)

μ−1
B 〈E′′+|HZ|E′′−〉
= μ−1

B 〈E′′−|HZ|E′′+〉∗

= ge

2
(Bx − iBy) + e−iφ

(
4ξ̃Cu

�1
− ξ̃Cu

�2

)
sin θ cos θBz

+ e−iφ

[
4ξ̃Cu

�1
sin2 θ cos φ + ξ̃Cu

�2
(cos2 θ cos φ

+ i sin φ)

]
Bx + e−iφ

[
4ξ̃Cu

�1
sin2 θ sin φ

+ ξ̃Cu

�2
(cos2 θ sin φ − i cos φ)

]
By. (6.19)

We obtain the g-factor deviation due to the SOC,

δgzz = 8ξ̃Cu

�1
cos2 θ + 2ξ̃Cu

�2
sin2 θ, (6.20)

δgxx = 8ξ̃Cu

�1
sin2 θ cos2 φ + 2ξ̃Cu

�2
(sin2 φ + cos2 θ cos2 φ),

(6.21)

δgyy = 8ξ̃Cu

�1
sin2 θ sin2 φ + 2ξ̃Cu

�2
(cos2 φ + cos2 θ sin2 φ),

(6.22)

δgxy = δgyx =
(

8ξ̃Cu

�1
− 2ξ̃Cu

�2

)
sin2 θ sin φ cos φ,

(6.23)

δgxz = δgzx =
(

8ξ̃Cu

�1
− 2ξ̃Cu

�2

)
sin θ cos θ cos φ,

(6.24)

δgyz = δgzy =
(

8ξ̃Cu

�1
− 2ξ̃Cu

�2

)
sin θ cos θ sin φ.

(6.25)

Again δg and |δg| defined earlier are invariant with respect of
any orientation change,

δg = 8ξ̃Cu

3�1
+ 4ξ̃Cu

3�2
, (6.26)

|δg| =
√(

8ξ̃Cu

�1

)2

+ 2

(
2ξ̃Cu

�2

)2

. (6.27)

In crystalline CuPc, when the magnetic field is along the
normal of the molecular plane, the g-factor change is

δgzz = 8ξCu

�1
. (6.28)

When the magnetic field is in the molecular plane, the g-factor
change is

δgxx = δgyy = 2ξCu

�2
. (6.29)

The experimental values are δgzz = 0.164 and δgxx = 0.05.30
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FIG. 7. (Color online) g-factor deviation as a function of θ for the
electron (upper panel) and hole (lower panel) polarons in benzene. θ

is defined as in Fig. 1. Diamonds, up triangles, and down triangles
correspond to δgzz, δgxx , and δgyy , respectively. Circles and squares
represent δg and |δg|, respectively.
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FIG. 8. (Color online) g-factor as a function of the torsion angle in
twisted biphenyl for the electron (upper panel) and hole (lower panel)
polarons. Diamonds, up triangles, and down triangles correspond to
δgzz, δgxx , and δgyy , respectively. Circles and squares represent δg

and |δg|, respectively.

For disordered CuPc films, the averaged g-factor deviations
are

δgzz = δgxx = δgyy = δg  0.088, (6.30)

and |δg|  0.174.

C. Real organic materials

Using the polaron eigenstates from first principles,
Eqs. (2.19) and (2.20), we can calculate the g-factor deviation
in representative organics via

δgpq = −2
∑
k �=0

〈ψ0|
∑

i ξi lip|ψk〉〈ψk|
∑

j ljp|ψ0〉
Ek − E0

, (6.31)

and determine δg and |δg|.
To test this approach, we first examine δgpq for the electron

and hole polaron states in benzene as a function of the
molecular orientation θ and display the results in Fig. 7. It is

shown that while δgqq depends on the molecular orientation,
both δg and |δg| are independent of θ and the ratio of their
magnitudes is close to

√
2/3 as predicted from Eqs. (6.15)

and (6.16). Thus one can reliably estimate the g-factor
deviation in a disordered organic material from first-principles
calculations.

We also study the g-factor deviation as a function of torsion
angle in a twisted biphenyl. We see from Fig. 8 that the
averaged δg is virtually independent of the torsion angle θ

except at the angle where the singularity in SOC takes place.
The overall change in δgqq over the entire range of θ is very
small compared to the change in γ 2, as suggested in Eq. (6.17).

We then carry out first-principles calculations on real
organic molecules. The theoretical values of the disordered or-
ganics and the corresponding experimental values in literature
are listed in Table IV. For Alq3, the obtained g-factor deviation
is an average over the HOMO and HOMO ± 1 levels for the
electron (hole) polaron because the two levels are almost
degenerate in energy. The agreement between theory and
experiment is overall good with a relatively large discrepancy
in rubrene than in other materials. The agreement for Alq3

is particularly encouraging, for the experimental data of Alq3

are measured in device structures under working conditions.43

The g-factor changes due to the SOC in organics are gener-
ally small, and similar in amplitude except those involving
transition-metal ions like Cu, where the g-factor deviation
is large. It is worth pointing out that the g-factor deviation
in Alq3 is minute compared to its large spin admixture γ 2.
This contrast confirms that g-factor underestimates the SOC
and therefore is not a good measure of the spin mixing in
π -conjugated organics.

VII. SUMMARY

We present a comprehensive study of the SOC in π -
conjugated organic materials and its effects on the spin-
relaxation time, spin-diffusion length, and g factor. To ade-
quately describe the SOC in π -conjugated organics, one must
explicitly include σ orbitals in addition to π orbitals. The major
effect of the SOC in π -conjugated organics is that it mixes up-
and down-spin states, and in the context of spintronics, can be
characterized by an admixture parameter in the electron and

TABLE IV. g-factors deviation δg and |δg| for the electron and hole polarons in various organics. The experimental values are for organics
in the form of disordered films.

Material electron δg (|δg|) exp (g − ge) hole δg (|δg|) exp (g − ge)

benzene 0.00035 (0.00078) 0.000541 0.0005 (0.0012) 0.000242

Alq3 0.00075 (0.00347) 0.000943 0.0017 (0.0032) 0.001943

MEH-PPV 0.00046 (0.00100) 0.000544 0.0013 (0.0036) ...
T6 0.0026 (0.0057) 0.00645 0.00078 (0.00174) 0.000846

PANI 0.00039 (0.00086) ... 0.00065 (0.0014) ...
PPP 0.00044 (0.00098) ... 0.00045 (0.0011) ...
C60 0.00041 (0.00074) −0.0009847 0.00043 (0.00099) 0.000348

rubrene 0.00045 (0.00093) ... 0.00048 (0.00096) 0.003449

CuPc 0.088 (0.174) ... 0.088 (0.174) ...
PTCDIC4F7 0.0013 (0.0025) ... 0.00015 (0.0010) ...
PPy 0.00036 (0.00077) ... 0.00043 (0.0010) ...
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hole polaron states. The admixture parameters in individual
organics can be systematically evaluated from first-principles
calculations. Among commonly used π -conjugated organics
for spintronic application, the spin admixture parameters can
differ by orders of magnitude just like in inorganic materials,
indicating that caution must be taken when making general
statements on the SOC in organics. Molecular geometry
fluctuations, which depend on sample preparation, are found
to have a strong effect on the spin mixing. This may explain
that many spin-dependent experiments in organic materials are
not always reproducible by different groups.

The spin mixing due to the SOC effects spin flips as
polarons hop from one molecule to another, giving rise to spin
relaxation and diffusion. Thus, in disordered organic solids,
the spin lifetime would become longer if the carrier mobility
is reduced, which is opposite to the EY spin-relaxation
mechanism in crystalline semiconductors and metals, where
the spin lifetime is proportional to the materials mobility,
although the EY mechanism also originates from the SOC-
induced spin mixing. Another interesting finding is that the
spin-diffusion length in organics is largely independent of
the carrier mobility and essentially controlled by the spin
admixture parameter, suggesting that the spin-diffusion length
cannot be greatly enhanced by improving the carrier mobility.

An electric field can significantly affect spin transport in
the hopping regime, leading to upstream and downstream
spin-diffusion lengths. This effect can be used to control spin
transport in organic spintronic devices and may be responsible
for the ubiquitous strong bias dependence of MR observed in
OSVs.

The presence of SOC modifies the g factor of the polaron
states from its free-electron value. The g-factor deviation in
organics, however, includes only the spin mixing at different
orbitals and therefore tends to underestimate the SOC in
organics. In particular, the g-factor deviation is not sensitive to
the molecular geometry fluctuations, which mainly affect the
spin mixing within the same orbital.

The SOCs in Alq3 and in CuPc are particularly strong, due
to the orthogonal arrangement of the three ligands in the former
and Cu 3d orbitals in the latter. The spin-diffusion lengths in
these systems are directly measured by muon spin rotations for
Alq3 and spin-polarized two-photon photoemission for CuPc.
Both experiments are quantitatively explained by the SOC-
induced spin diffusion.

The other important interaction that influences electron
spins in organics is the HFI. The relative importance of the
SOC and HFI in organics may vary from material to material,
as indicated by the presence and absence of the isotope
effect in various organics. A quantitative study of the HFI
and its effect on spin-dependent properties in organics would
help understand the relative importance of SOC and HFI in
individual organic materials and design organic spintronic
structures exploiting these interactions.
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APPENDIX A: QUASI-UP- AND DOWN-SPIN STATES

Here, we show that |+′〉 in Eq. (2.8) has the maximal
expectation value of the spin operator σ̂z. An arbitrary linear
combination of |+′〉 and |−′〉 can be generally written as

|θ〉 = cos
θ

2
|+′〉 + sin

θ

2
e−iφ|−′〉, (A1)

and the spin expectation value is

pθ ≡ 〈θ |σ̂z|θ〉 = cos θ

(
1 − ξ 2

2�2
cos2 θ1

)

+ sin θ cos(φ1 − φ)

(
− ξ 2

2�2
sin θ1 cos θ1

)
,

(A2)

where we have used the matrix elements

〈+′|σ̂z|−′〉 = 〈−′|σ̂z|+′〉∗ = − ξ 2

2�2
sin θ1 cos θ1e

iφ1 . (A3)

To find the maximum of pθ , we determine θ and φ by solving
∂pθ/∂φ = ∂pθ/∂θ = 0. We obtain

φ = φ1, tan θ = − ξ 2

2�2 sin θ1 cos θ1

1 − ξ 2

2�2 cos2 θ1

 − ξ 2

2�2
sin θ1 cos θ1,

(A4)

and the corresponding maximum of pθ is

pθ = cos θ

(
1 − ξ 2

2�2
cos2 θ1

)
+ sin θ

(
− ξ 2

2�2
sin θ1 cos θ1

)
,

(A5)

which, to the second order of ξ/�, is

pθ = 1 − ξ 2

2�2
cos2 θ1 ≡ p+. (A6)

Similarly, p− is the largest spin expectation value along the
−z direction. Thus one can regard |+′〉 (|−′〉) as the quasi-up-
(down-)spin state.

APPENDIX B: SU(2) INVARIANCE OF SPIN-FLIP
HOPPING RATE

The spin-flip hopping rate is independent of any linear com-
bination, or equivalently, an SU(2) rotation of the eigenstate
|±〉. We denote the four eigenstates, |±′〉 and |±′′〉, after a
rotation, become (1′,2′) in the first molecule and (1′′,2′′) in the
other. The new hopping matrix becomes(

V1′′1′ V1′′2′

V2′′1′ V2′′2′

)
=

(
cos θ

2 sin θ
2 eiφ

− sin θ
2 e−iφ cos θ

2

) (
V+′′+′ V+′′−′

V−′′+′ V−′′−′

)

×
(

cos θ
2 − sin θ

2 eiφ

sin θ
2 e−iφ cos θ

2 .

)
(B1)

The new splin-flip hopping probability is

|V1′′2′ |2 = cos4 θ

2
|V+′′−′ |2 + sin4 θ

2
|V−′′+′ |2

+ sin2 θ

2
cos2 θ

2
|V+′′+′ − V−′′−′ |2 = |V+′′−′ |2, (B2)

where we have used |V+′′+′ − V−′′−′ |2 = 2|V+′′−′ |2 = 4V 2
z .
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APPENDIX C: AVERAGE OVER MOLECULAR ORIENTATIONS FOR 3d ORBITALS

The spin-flip hopping matrix element between 3d orbitals of two different sites can be expressed in terms of the rotational matrix
D

(2)
mm′(α̃,β̃,γ̃ ), where α̃,β̃,γ̃ are three Euler angles. For example, the hopping matrix element between dz2 at two different site is

〈d ′′
z2 |V |d ′

z2〉 = D
(2)
00 (α̃,β̃,γ̃ )V0. (C1)

Using the properties of D
(2)
mm′ ,33

D
(2)∗
m1m2 (α̃,β̃,γ̃ )D(2)

n1n2 (α̃,β̃,γ̃ ) = δm1n1δm2n2

∣∣D(2)
m1m2 (α̃,β̃,γ̃ )

∣∣2 = δm1n1δm2n2
1
5 , (C2)

we obtain

|〈d ′
x2−y2 |V |d ′′

xy〉|2 = V 2
0

4

(∣∣D(2)
22

∣∣2 + ∣∣D(2)
2−2

∣∣2 + ∣∣D(2)
−22

∣∣2 + ∣∣D(2)
−2−2

∣∣2) = 1

5
V 2

0 , (C3)

|〈−1′|V |d ′′
x2−y2〉|2 = V 2

0

2

(∣∣D(2)
−12

∣∣2 + ∣∣D(2)
−1−2

∣∣2) = 1

5
V 2

0 , (C4)

|〈d ′
xy |V |1′′〉|2 = V 2

0

2

(∣∣D(2)
21

∣∣2 + ∣∣D(2)
−21

∣∣2) = 1

5
V 2

0 . (C5)
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