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Real-space Green’s function calculations of Compton profiles
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We report the development of a first-principles, real-space Green’s function method for calculation of Compton
profiles in the impulse approximation. For crystalline Be, we find excellent agreement with prior theoretical
treatments requiring periodicity, with prior experimental measurements of the Compton profile, and with present
measurements of the dynamical structure factor via nonresonant inelastic x-ray scattering (often also called x-ray
Thomson scattering in the plasma physics community). We also find good agreement with prior experimental
results for the Compton profile of Cu. This approach can be extended to disordered and very high-temperature
systems, such as “warm dense matter,” where theories presently used for the interpretation of inelastic x-ray
scattering include condensed phase effects only at a perturbative level.
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I. INTRODUCTION

Nonresonant inelastic x-ray scattering1 (NIXS), often also
called x-ray Thomson scattering (XRTS) in the plasma physics
community, has long been used as a probe of material proper-
ties. For example, the Compton-scattering cross section, which
is the large energy- and momentum-transfer limit of NIXS, was
used in the earliest demonstrations of the particulate character
of photons2 and of Fermi-Dirac statistics.3 Recently NIXS has
seen a steady renaissance thanks to the development of third
generation x-ray light sources and associated specialized x-ray
spectrometers.4–7 Recent applications address many forefront
issues in condensed-matter physics,8,9 subtle questions of
bonding in chemical physics,10–13 solvation in mixtures,14

and long-standing problems in quantum scattering theory.15

Because NIXS makes possible studies of low-Z edges
without high-vacuum techniques, it provides an attractive
alternative to, and extension of, traditional x-ray absorption
spectroscopies.16–39 More recently, NIXS experiments have
yet another venue. High-power laser facilities have created
a different application of NIXS, wherein laser-pumped x-ray
backlighter sources allow snapshot determinations of the state
variables (density and temperature) of so-called “warm dense
matter” (WDM).40–49 Our goal in this paper is to develop a
quantitative treatment of the valence contribution to NIXS
that is applicable in these various cases.

The wide parameter space of kinematic variables and
initial states requires several different theoretical treatments
of NIXS. The treatment of semicore and core levels has
been solved at essentially the same level of detail as x-
ray absorption fine structure and with similar tools,23,29,30,35

whereas the theoretical treatment of NIXS involving valence
excitations is still evolving. The difficulties in the latter
case come from a significant sensitivity to the atomic and
molecular potentials.11,12,50–52 Hence they depend on an
underlying conceptual issue: whether the scattering for given
experimental conditions may be treated as nearly single-
particle-like, or collective, or requiring a more sophisticated
treatment of many-body effects including thermodynamic
considerations.43,45,53–57 Such issues are central to NIXS
studies of the state variables of WDM.43 The WDM sample
has solidlike or sometimes higher densities but exists at
temperatures that can be well in excess of the Fermi energy,

and sometimes in excess of semicore and eventually core-level
ionization energies. These conditions can be generated at
large-scale optical laser facilities such as the Laboratory for
Laser Energetics (LLE)40,42,44,45,47 or the National Ignition
Facility (NIF),58 in addition to being possible through direct,
ultrafast x-ray stimulation at x-ray free-electron laser (XFEL)
facilities such as the Free-Electron Laser in Hamburg (FLASH)
and the Linac Coherent Light Source (LCLS).59–63

A first-principles theoretical treatment of NIXS for WDM
must include a self-consistent determination of atomic poten-
tials and ionization levels for a given range of state variables,
while also being compatible with high densities and varying
degrees of disorder in atomic positions. Our purpose here
is to demonstrate an important step in the development of
such a theoretical treatment. More specifically, we aim to
calculate the valence-electron Compton profile in the impulse
approximation using an extension of the real-space electronic
structure and spectroscopy code FEFF.64 This technique is
quite appropriate for these studies since it does not require
or depend on periodicity, and is thus applicable to aperiodic
and disordered systems. However, we first present prototypical
calculations and experimental results for cold, crystalline Be
which serves as a well-characterized test case.48,65–67 This
application also serves as an anchoring reference system that
validates and quantifies both our theoretical approach and
implementation: Indeed, we demonstrate excellent agreement
with experiment and with prior momentum-space methods
designed for periodic structures. Similar agreement is found
with experimental results for fcc Cu.

With this foundation, we can then consider applying the
method to disordered and higher-temperature systems. Both
the traditional condensed matter and the WDM communities
have invested effort in understanding the thermal effects in
NIXS. In the former, comparison of empirical modeling of
thermal effects and experimental data up to ∼800 K (i.e.,
kBT ∼ 0.07 eV) shows that the dominant source of thermal
effects on the Compton profile is indirect, arising from the
thermally induced change of density of the simple metals
investigated.67,68 Thermally induced disorder is less important
and the most direct thermal effect, smearing of the Fermi
function or other reorganizations of the valence-electron wave
functions, is negligible because of the metallic nature of
the systems studied and the low temperatures relative to the
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structure in the unoccupied density of states. In the WDM
context, on the other hand, density and more direct thermal
effects play a more equal role. Existing methods for calculation
of NIXS spectra in WDM treat the valence electrons as
fully ionized and include only spherically averaged collisional
effects from the ionic cores.43,69–71 An improved theoretical
treatment will, at a minimum, shed light on the accuracy
of mean-field treatments, and may have a direct impact
on ongoing studies of WDM in relevant geophysical and
astrophysical conditions,58,72 in inertial confinement fusion
studies,58 or in the unique nearly ordered WDM states that can
be achieved with XFEL illumination.59,62

The remainder of this paper is organized as follows: In
Sec. II, we survey the theoretical description of inelastic x-ray
scattering. We then specialize to the high momentum-transfer
regime in which the impulse approximation (IA) applies. It is in
this regime that the NIXS spectrum is most clearly understood
in terms of the Compton profile, which is directly related
to the electronic momentum distribution. Here, we provide
experimental data that illustrates the crossover from low
momentum transfer, where collective excitations are visible,
to high momentum transfer, where the spectrum is dominated
by the Compton peak. Next, we detail how the electronic mo-
mentum density can be obtained from the real-space Green’s
function (RSGF) in the muffin-tin approximation. Section III
contains details on the implementation of this theoretical
framework. In Sec. IV, as a demonstration of the technique,
we present detailed results for ordered Be metal and give a
comparison with both experimental data and momentum-space
Koringa-Kohn-Rostocker73 (KKR) calculations. Although the
real-space calculation is limited in momentum resolution by
the size of the included cluster, we find very good agreement
between real-space calculation, experimental data taken at
a similar momentum resolution, and the broadened KKR
calculation. We next compare the RSGF calculation of the
valence Compton profile for Cu to experiment and prior
KKR calculations, finding similarly good agreement. Next, in
Sec. IV B, we compare theoretical RSGF calculations of NIXS
spectra with experimental data taken at lower momentum
transfer, where the IA no longer holds for the core electrons.
In Sec. IV C, we briefly discuss the benefits of this approach
compared to existing methods for treating NIXS from WDM.
We then outline the steps we feel would be necessary to extend
this work to these higher-temperature, disordered systems.
Finally, Sec. V contains a summary and conclusions.

II. THEORY

A. Nonresonant inelastic x-ray scattering

In this paper, we consider an experiment in which a
narrow-bandwidth beam of x rays is incident on a sample
and the intensity of scattered radiation is measured as a
function of energy and scattering angle. This two-photon
process is described by a double-differential scattering cross
section (DDSCS) d2σ/d�dω2(q,ω), where � is the detected
solid angle, ω2 is the detected photon energy, and q and
ω are the momentum and energy transferred to the sample
in the scattering process. We will furthermore focus on
the nonresonant inelastic x-ray scattering (NIXS) regime, in

which the incident photon energy ω1 is far from any electron
binding energies in the sample. In this regime the dominant
contribution to the DDSCS comes from the A2 term in the
interaction Hamiltonian at first order in perturbation theory.
For h̄ω well below the electron mass, where the nonrelativistic
limit applies, the DDSCS is given by74

d2σ

d�dω2
=

(
dσ

d�

)
Th

S(q,ω). (1)

This has been factored into the probe-specific Thomson
scattering cross section(

dσ

d�

)
Th

= ω2

ω1
r2

0 (ε̂1 · ε̂∗
2 )2 (2)

and the sample-specific dynamic structure factor

S(q,ω) =
∑
F

∣∣∣∣∣〈F |
∑

j

exp(iq · rj )|I 〉
∣∣∣∣∣
2

δ(EF − EI − h̄ω).

(3)

Here, r0 = e2/mc2 is the classical electron radius and ε̂1,2

are incoming and outgoing photon polarizations. I and F are
initial and final states of the sample, with energies EI and
EF , respectively, and rj is the position operator for the j th
electron.

The physical information in the dynamic structure factor
depends on the regime of q and ω. For example, by expanding
the exponential transition operator, one sees that at low q,
this reduces to a dipole operator. In this limit, the NIXS
spectrum is very similar to an x-ray absorption spectrum,
and thus contains information about the unoccupied density
of states.22,37 Here, we will instead be primarily interested in
the regime of larger q and ω, in which the dynamic structure
factor provides information about the ground-state electronic
momentum density. This will be described in the following
section.

First, however, to provide illustrative context, we present
in Fig. 1 experimental NIXS data for polycrystalline Be taken
at several different momentum transfers. We defer details of
the experimental setup and data processing to Sec. IV B. Two
sharp features are visible: the plasmon excitation at 25 eV and
the Be K edge at 111.5 eV. Although very strong at low q,
the collective plasmon peak quickly dies off as q is increased,
indicating the onset of the single-particle excitation regime.
Our focus in this paper will be on the broad Compton peak,
which disperses and broadens as q is increased. This latter
behavior is most easily understood in terms of the impulse
approximation, to which we now turn.

B. Impulse approximation

For large energy transfer relative to the binding energy
of an electron, and for large momentum transfer relative to
the inverse electronic orbital size, Eisenberger and Platzman
showed that, to a very good approximation, the NIXS from
that electron can be described as Doppler-broadened Compton
scattering.75 In this approximation, known as the impulse
approximation (IA), the single-electron potential before and
after scattering cancels in the evaluation of the dynamic
structure factor S(q,ω). The potential plays the simple role
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FIG. 1. (Color online) Experimental S(q,ω) for polycrystalline
Be taken at 15 different fixed scattering angles. The average
momentum transfer q for lowest and highest scattering angles is
labeled. Features visible in the data are marked, including the
collective plasmon excitation at smaller energy transfers, the Be
K-absorption edge at 112 eV, and the Compton-scattering peak,
which disperses with q.

of determining the momentum distribution of the electronic
ground state, and consequently the shape of the Doppler
broadened peak. In other words, the IA assumes that the
photon-electron interaction occurs fast enough that the po-
tential felt by the electron is identical before and after the
interaction. Thus, energy conservation implies that

h̄ω = Ef − Ei = h̄2q2

2m
+ h̄p · q

m
, (4)

where p is the electron’s momentum. This result is identical
to that for classical Compton scattering of a photon from an
electron with momentum p. For fixed q, the energy transfer
is determined by the projection of the electron’s momentum
along the direction of the momentum transfer, pq ≡ p · q̂,
where q̂ = q/|q|. The dynamic structure factor S(q,ω) must
then be proportional to the number of electrons with a given
value of this momentum projection. Indeed, one can show that
in the IA,75

S(q,ω) = (m/h̄q)J (pq), (5)

J (pq) ≡
∫

d3pρ(p) δ(pq − (ωm/q − h̄q/2)), (6)

where ρ(p) is the one-particle electronic momentum den-
sity. J (pq), commonly referred to as the Compton profile
(CP), gives precisely the average number of electrons with
momentum-projection pq . From Eqs. (4)–(6), we see that
the resulting Compton peak in the NIXS spectrum will be
centered around ω = h̄q2/2m and have a width proportional
to both the width of the one-electron momentum distribution
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FIG. 2. (Color online) The same data as Fig. 1 after changing
variables to J (pq ). All momentum transfers q are in a.u. Above the
Be K-absorption edge, the spectra are nearly identical, showing the
applicability of the impulse approximation in that regime. The sharp
feature dispersing across the Compton peak for intermediate q is the
Be K edge. The plasmon excitation peak is visible in the four curves
with lowest q.

and the momentum transfer. This explains the dispersion and
broadening visible in Fig. 1.

In the independent-particle approximation, S(q,ω) can be
written as a sum over independent, noninterfering contribu-
tions from valence, semicore, and core electrons. Thus, the
respective contributions to the CP can also be separated.
For the valence contribution, the conditions of the IA are
satisfied for all but the lowest q. On the other hand, for
the core contribution, only the high-energy-transfer tail is
correctly described by the IA. In Fig. 2, we show the Be
NIXS spectra after switching variables from S(q,ω) to J (pq).
The Compton peak is centered about pq = 0, consistent
with vanishing average electron momentum. The valence
contribution is sharper, extending between ≈±1 a.u. The core
contribution is broader, extending well above +3 a.u., with
a low-energy-transfer cutoff that is q dependent. This cutoff
occurs when the energy transfer is equal to the K-shell binding
energy, and thus disperses from −2 to +3 a.u. as q decreases
from 5.3 to 1.2 a.u. Additionally, the plasmon peak is seen at
small negative pq for the lowest values of momentum transfer.
It is clear that once well above the K-absorption edge, the
spectra are nearly identical, indicating the validity of the IA.

C. Real-space formalism for valence Compton profile

If the IA holds, then, as seen in Eq. (6), the dominant
ingredient required for calculation of the Compton profile is the
one-electron momentum density ρ(p). Several techniques exist
to calculate ρ(p). Existing methods for solids typically use
a band-structure approach, and thus impose a requirement of
periodic structure,74 complicating the application to disordered
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systems. Some classes of disorder, such as substitutionally
disordered alloys, have been treated in KKR calculations by
using the coherent potential approximation, in which the alloy
is replaced by an ordered system with a single averaged
effective site potential.76 An early attempt at describing
thermal effects in Li was based on calculating band structures
for frozen configurations in eight-atom supercells.77 These
calculations predicted a broadening of the CP with increased
temperature. In contrast, subsequent experiments on Al, Li,
and Be found instead that the CP became narrower as
temperature increased.67,68 By comparing to a pseudopotential
model that included thermal effects by scaling the plane-wave
components by Debye-Waller factors, these authors attributed
the dominant source of the effect to be from thermal expansion
of the lattice. We seek to relax the constraint of periodicity
by using a real-space analog of KKR, as implemented in the
FEFF code,64 to calculate the Green’s function in the muffin-tin
approximation for an arbitrary cluster of atomic sites. This
code builds in self-consistent potentials, quasiparticle effects,
relativistic effects, and disorder and has been widely used for
calculations of core-level x-ray spectroscopy. However, the
extension of FEFF to the valence regime as discussed here is
still developmental.78

Briefly the strategy of the code is as follows: Given the
locations and species of atoms in a cluster, FEFF calculates
atomic wave functions for each unique species using a Dirac-
Hartree-Fock solver. Next, the atomic densities and cluster
structure are used to form overlapped atomic potentials in
the spherical muffin-tin approximation. The real-space one-
particle Green’s function is then constructed, including the
full effects of multiple scattering from other atoms within a
specified radius. The density of states (DOS) is calculated
by integrating the imaginary part of the Green’s function
over all space (as approximated by a sum over Norman
spheres centered at each site79). The Fermi level is determined
by integrating the DOS to give the appropriate number of
electrons. The density is then recalculated from the Green’s
function, giving updated potentials. This process is iterated
until self-consistent.

The momentum-space density ρ(p) is related to the real-
space density matrix ρ(r,r′) via a Fourier transform:

ρ(p) =
∫

d3r d3r ′ eip·(r−r′)ρ(r,r′). (7)

Choosing the z axis to lie along q̂, combining Eqs. (6) and (7),
and integrating over px and py gives delta functions that set
x = x ′ and y = y ′. After performing the x ′ and y ′ integrals we
have

J (pq) =
∫

dx dy dz dz′ eipq (z−z′)ρ(r,r′), (8)

where r = (x,y,z) and r′ = (x,y,z′).
Now, the real-space density matrix is related to Green’s

function by

ρ(r,r′) = − 2

π
Im

∫ ∞

Ec

dE G(r,r′,E)fT (E), (9)

where fT (E) = 1/(e(E−μ)/kBT + 1) is the Fermi distribution
and μ is the chemical potential. For our purposes, we are
interested in the valence CP, so the lower-energy cutoff Ec is

set in the gap between core and valence states (typically around
−30 eV). In this paper, all calculations are at T = 0, so the
Fermi distribution is replaced by 	(EF − E), where EF is the
Fermi energy. The factor of 2 comes from spin degeneracy
(here we assume no spin dependence in G, although it is
straightforward to generalize).

Finally, the Green’s function can be expressed in the muffin-
tin approximation as78

G(r,r′,E) = −2k

[
δn,n′

∑
L

HE
Ln(r>)R̄E

Ln′(r<)

+
∑
L,L′

RE
Ln(rn)eiδLn gE

Ln,L′n′ e
iδL′n′ R̄E

L′n′ (r′
n′)

]
.

(10)

The indices n and n′ label the atomic sites nearest r and
r′, and rn ≡ r − Rn, where rn is the center of the nth site.
RE

Ln(r) = ilRE
Ln(r)YL(r̂) is the regular solution at site n with

angular momentum L and energy E. HE = NE − iRE , where
NE is the irregular solution. The overbar denotes complex
conjugation of all parts except for the radial function, e.g.,
R̄E

Ln(r) = (−i)lRE
Ln(r)Y ∗

L(r̂). δLn gives the scattering phase
shift and gE

Ln,L′n′ is the full multiple-scattering (FMS) matrix.80

For a derivation of Eq. (10), we refer to the Appendix of Prange
et al.78 and references therein.

D. Core contribution

The IA does not hold for the core contribution to S(q,ω)
at the momentum transfers shown in Figs. 1 and 2 since the
energy transfer is comparable to the core binding energy. In
this case, it is possible to calculate the core NIXS contribution
directly using the RSGF approach described by Soininen
et al.23 We give results using this approach below, in Sec. IV B.

At higher momentum transfer (as would be accessible with
higher incident photon energy), or when only interested in the
high-energy-transfer portion of the spectrum, it is possible
to use the IA for the core contribution. Since solid-state
effects on the localized core wave function are typically
negligible, the core momentum density can be obtained
directly from Fourier-transformed atomic Hartree-Fock wave
functions using ρ(p) = ∑

i |φ(p)|2. The core CP in the IA can
then be obtained by combining this with Eq. (6).

III. COMPUTATIONAL DETAILS

We have extended FEFF to calculate the momentum density
ρ(p) in Eq. (7) and thence the Compton profile. Our procedure
makes use of a subroutine RHORRP in FEFF, which calculates
the density matrix ρ(r,r′) by combining Eqs. (9) and (10). To
calculate the CP from Eq. (8), we approximate the integral
over r as a sum over Norman spheres centered at each atomic
site. For a given term in this sum, r is constrained to lie within
the Norman radius while z′ is allowed to vary over all space (in
practice, limited by the size of the cluster). In a periodic system
with a monatomic unit cell each site is identical, so the integral
need only be performed for a single site. This normalizes the
integral of the resulting CP to the number of valence electrons
per atom. In general, r must be integrated over each unique site
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FIG. 3. (Color online) Dependence of Cu density matrix on
angular momentum cutoff lmax. A slice of ρ(r,r ′) with r fixed near
the origin and r ′ varying along the z axis is shown. The discontinuity
at ∼3.4 a.u. occurs as r ′ moves from one cell into another. As lmax is
increased, the discontinuity decreases.

in the system, e.g., every site in the cluster for a completely
disordered system.

The sum over angular momenta in Eq. (10) is truncated at
a configurable upper bound lmax. Since the size of the FMS
matrix gE

Ln,L′n′ scales as (lmax + 1)4, it is desirable to keep this
bound as low as possible. However, if the value used is too low,
the density matrix becomes inaccurate away from the center
of a site, leading to a discontinuity as z′ moves from one site to
another. In Fig. 3, we show a slice of the density matrix ρ(r,r′)
with r fixed near the origin and r′ varying along the ẑ axis.
The discontinuity at the point marked “Cell Boundary” is clear
for small lmax and decreases as lmax is increased. Typically the
discontinuity is negligible for lmax � lv, where lv is the atomic
valence orbital angular momentum (e.g., lmax = 4 for transition
metals).

Numerical integration of Eq. (6) is performed in cylindrical
coordinates. At each z,z′ point, the integral over the x-y plane
is calculated. This reduced ρ(z,z′) is then Fourier transformed
to obtain the CP. In some cases, the CP calculated in this
fashion displays oscillatory aliasing effects from the finite
range of the Fourier transform. A Hann apodization function
can be included to remove these. The finite range of z′ has
two further consequences. First, some momentum density is
missed, resulting in the integral of the CP being less than the
number of valence electrons per atom. This �5% effect is
corrected for by rescaling the CP. Second, the CP is broadened
due to the convolution theorem, reducing the momentum
resolution to ∼π/z′

max. This latter factor is one key limitation
of this technique: The number of atoms in a cluster scales as the
cube of the radius, placing a practical bound on the attainable
momentum resolution.

IV. RESULTS AND DISCUSSION

A. Valence Compton profile

In order to validate our framework, we have calculated the
valence Compton profile (CP) for Be at ambient conditions
with lattice constants a = 4.3289 a.u. and c = 6.7675 a.u.
These calculations are compared to experimental data and
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FIG. 4. (Color online) Be Compton profile. Experimental data
from Huotari et al. (Ref. 65) is compared to a momentum-space
(KKR) calculation from the same reference and our real-space
(FEFF) calculation. The experimental data were taken at 56 keV
and have had the theoretical core contribution and a small linear
background subtracted. For each direction, the same experimental
data is presented twice (once for each theory). The experimental
statistical uncertainty is smaller than the symbol size. The Fermi
surface is located at the inflection point of the CP, just below 1 a.u.

momentum-space (KKR) theoretical calculations from Huo-
tari et al.65 Comparisons are made for the three main crystal-
lographic directions of the hexagonal-close-packed structure
([100], [110], and [001], where the â and b̂ basis vectors have
been chosen to be 60◦ apart). In Fig. 4 we present the primary
result of this paper, showing very good agreement between the
present real-space theory and momentum-space theory, and
good agreement between both theories and experiment. We
now give contextual details for the comparison.

The experimental data in Fig. 4 (reproduced from Huotari
et al.65) were taken at 56 keV with a momentum resolution of
0.16 a.u. The momentum-space theoretical calculations (also
from Huotari et al.65) were performed using the KKR (Ref. 73)
methodology. Crystal potentials were calculated in the local
density approximation (LDA), and exchange and correlation
effects were approximated via the isotropic Lam-Platzman
(LP) correction.81

Our real-space calculations were performed using a cluster
of 522 atoms within a sphere of 10-Å radius with lmax = 2.
Increasing lmax beyond this value had no effect for this
low-z material. The density matrix was evaluated with r on
a 32 × 32 × 32 point cylindrical grid and z′ at 144 points
between ±30 a.u. The range over which z′ is integrated
is limited by the cluster size. This limits the momentum
resolution of the real-space theoretical CP to δq = π/30 �
0.1 a.u. Lattice motion, which can be approximately treated
by FEFF, has been neglected. The LP correction has not been
applied to the real-space calculations.

As described by Huotari et al.,65 a linear background has
been subtracted from the experimental data. Additionally,
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FIG. 5. (Color online) Be Compton profile differences. The solid
curves show the difference between experiment and theory. The
dashed curve is the difference between theories. These are super-
imposed on the ±2σ range of experimental statistical uncertainty.

since it is our purpose to compare valence profile calculations,
we have subtracted the theoretical core profile presented in the
original reference.65 The theoretical curves in Fig. 4 are offset
for clarity, and for each direction the same experimental data
is presented twice (once for each theory). Absolute differences
between these curves are shown in Fig. 5. The two theories
are in similarly good agreement with experiment. Significant
systematic errors are introduced by the subtraction of the
core CP, which most likely is the cause of the linear trend
in the differences with experiment. The FEFF calculations
slightly overestimate the momentum density in the range
1 < |pq | < 2. It is unclear whether this is a numerical artifact
or a consequence of the muffin-tin approximation. The largest
discrepancy between the two theories is at |pq | ∼ 0.9 in the
[001] direction, and is below the 5% level. Given the analogous
nature of the KKR and RSGF methods, one would expect the
two theoretical results to differ by the LP correction, which
was only applied to the KKR theory. This discrepancy may be
due to differing muffin-tin radii. The KKR calculation assumes
nonoverlapping muffin tins, while the RSGF calculation uses
overlapping muffin tins.64 As pointed out in Huotari et al.,65

the residuals with experiment are similar in shape to the LP
correction, suggesting that were it included in the RSGF
calculation, the agreement would be even better. Finally, in
order to more clearly see the fine structure, we show the
derivative of the CP in Fig. 6. Here, the experimental data
were numerically differentiated using a three-point derivative,
with no additional smoothing. The overall similarity between
the two theoretical curves further validates our implementation
of the RSGF technique.
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FIG. 6. (Color online) Be Compton profile derivative. The same
experimental data and theoretical calculations as Fig. 4 are shown,
but this time as first derivatives. The fine structure of the profile is
more clearly seen here. Experimental statistical uncertainty is smaller
than the symbol size. The Fermi surface is located at the extrema of
the derivative.

Given the good agreement with Be, it is natural to ask if
the RSGF method extends to other simple metals that are well
described in the muffin-tin approximation. We have included
a calculation of the valence CP for crystalline Cu with q̂

along the [110] direction. In Fig. 7, we compare the FEFF

calculation with KKR and with two different experiments.
The KKR calculation and experiment labeled Sakurai are
reproduced from Sakurai et al.82 The experimental data was
taken using 59.38-keV x rays with a momentum resolution
of 0.12 a.u. Additionally, we include a γ -ray measurement
(412 keV incident, 0.41 a.u. momentum resolution) from
Pattison et al.83 The FEFF calculations were performed using
a cluster of 176 atoms within a sphere of 8-Å radius with
lmax = 4. The density matrix was evaluated with r on a
48 × 48 × 48 point cylindrical grid and z′ at 256 points
between ±20 a.u. Again, the FEFF and KKR calculations
are similar. Even after accounting for momentum resolution,
the two experiments are not in agreement with each other.
This disagreement has been attributed to systematic errors
introduced while correcting for multiple Compton-scattering
events.82 These errors are expected to be smaller in the Sakurai
dataset, but the agreement between theory and the supposedly
erroneous Pattison dataset is impressive, and suggest that a
reinterpretation of the experimental data may be appropriate.

B. Comparison of FEFF with NIXS data

In the prior section, we have focused on experimental data
taken for the explicit purpose of studying the CP, and thus
taken well into the regime of applicability of the IA. Often, as
in NIXS studies of WDM, the energy- and momentum-transfer
regimes accessible are more intermediate. The IA typically

115135-6



REAL-SPACE GREEN’s FUNCTION CALCULATIONS OF . . . PHYSICAL REVIEW B 85, 115135 (2012)

0 1 2 3 4 5

pq (a.u.)

0

1

2

3

4

J
(p

q
)

(a
.u

.)

Cu [110]

FEFF
KKR
Sakurai
Pattison

FIG. 7. (Color online) Cu [110] valence Compton profile. Curves
have been offset by 0.5 a.u. for clarity. The KKR calculation and x-ray
scattering data (59.38 keV incident, 0.12 a.u. momentum resolution)
from Sakurai et al. (Ref. 82). For comparison we have included a
γ -ray dataset (412 keV incident, 0.41 a.u. momentum resolution)
from Pattison et al. (Ref. 83).

does not apply to scattering from the core electrons, and at
lower momentum transfer breaks down even for the valence
electrons. Our purpose in this section is to find the limits
of applicability of the RSGF technique in this intermediate
regime.

Experimental data in this section (also presented in Figs. 1
and 2) were collected using the recently upgraded LERIX in-
strument at beamline 20-ID at the Advanced Photon Source.6,84

The instrument consists of 19 spherically bent Si crystal
analyzers on a 1-m radius semicircle. The incident beam
is polarized normal to the plane of the semicircle, so the
polarization factor from Eq. (2) is unity for all analyzers. Each
analyzer selects a narrow band of radiation around 9890 eV at
a fixed scattering angle. The incident beam energy is varied to
cover the energy-loss region of interest. The energy-loss scale
is independently calibrated to within 0.1 eV for each analyzer
using the center of the elastic scattering peak and points within
each spectrum are normalized to the incident flux measured
by an ion chamber upstream of the sample.

For fixed scattering angle θ , the magnitude of q is given by

q2 = ω2
1 + ω2

2 − 2ω1ω2 cos(θ ). (11)

Combining this with Eq. (6), it is straightforward to convert
from the valence CP to S(θ,ω). Since the IA does not apply
for the core, we use the FEFFQ package23 to calculate the
directionally averaged core contribution to S(q,ω). This is
done for a fine mesh of q values, which are interpolated
between using Eq. (11) to obtain the fixed-angle S(θ,ω).

We have subtracted a small linear background from the
data. Although it is possible to apply f -sum normalization to
S(q,ω), the same is not true for S(θ,ω). For this reason, the
overall normalization of the data was left as a free parameter.
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FIG. 8. (Color online) Comparison with NIXS data for poly-
crystalline Be at five different values of momentum transfer q. The
core contribution to the spectrum is calculated using FEFFQ package
(Ref. 23). The valence is calculated using the techniques described
in this paper and averaged over the three main crystallographic
directions. At the lowest two values of momentum transfer, a plasmon
excitation is visible at ∼25 eV. This signals the onset of the collective
regime and the breakdown of the IA for the valence electrons.

The results for several different scattering angles are shown in
Fig. 8. Close to backscatter (θ � 110◦), the agreement is very
good. In our calculations of the core contribution, this detailed
near-edge structure (XANES) was not included, leading to the
noticeable differences at the Be K edge. As q is decreased,
the IA becomes less valid and some discrepancies emerge.
Additionally, the collective plasmon excitation is present in the
experimental data for the lowest q value shown (at ω ∼ 20),
which is not modeled in the RSGF theory.

C. Application to WDM

Before concluding, we recall that a long-term goal of
this paper is to extend its application to high temperature
and/or disordered systems, as in the case of WDM. Present
methods for treating NIXS from WDM calculate the valence-
electron contribution to the dynamic structure factor within
the random phase approximation (RPA) from the dielectric
function using the fluctuation-dissipation theorem.43,69–71 The
valence electrons are treated as free, with effects of collisions
with ionic cores included perturbatively in the Born-Mermin
approximation (BMA).71 At lower densities, collisions are
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infrequent and the BMA approach is unlikely to omit quantita-
tively important aspects of the behavior of unbound electrons.
However, at solidlike and higher densities, any perturbative
treatment of the dominant physical presence in the system, the
ionic cores, will clearly benefit from independent validation
against more complete theoretical treatments. By contrast,
the approach present in this paper includes all orders of
valence-electron scattering caused by such condensed phase
effects.

The most complete extension of the RSGF approach to cal-
culations of WDM phases will require several steps beyond the
present paper. First, thermal and static structural disorder can
be treated approximately by including Debye-Waller factors
in the FMS calculation.80 More general structural disorder
can be treated by averaging over configurations taken from
finite-temperature, molecular dynamics simulations. These
disorder effects tend to dampen the fine structure in the density
function. Second, the smearing of the Fermi distribution can
be handled as in Eq. (9); the Fermi function should be
included self-consistently in the calculation of the Green’s
function and density matrix. Finally, for the WDM case with
temperatures comparable to or larger than the Fermi energy,
a more appropriate, finite-temperature exchange-correlation
potential is called for, which will likely affect the width of the
Compton profile.

V. CONCLUSIONS

We have demonstrated a real-space Green’s function tech-
nique for calculating valence Compton profiles for Be and
Cu. We find close agreement with high momentum-transfer

experimental measurements and prior theoretical calculations
for these systems, validating the implementation. Furthermore,
we have shown that the technique can be used at moderate
momentum transfer as long as the core contribution to the
dynamic structure factor is properly treated. Although periodic
systems were chosen for the comparison, the technique does
not require periodicity and thus should be readily applicable
to disordered systems. This lays the groundwork for first-
principles calculations of high momentum-transfer NIXS from
WDM, where disorder in potentials, ionization, and atomic
structure is expected to be relevant.
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W. Schülke, Phys. Rev. B 63, 094301 (2001).

69J. Chihara, J. Phys. F 17, 295 (1987).
70J. Chihara, J. Phys.: Condens. Matter 12, 231 (2000).
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