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Coherent potential approximation (CPA) has widely been used for studying the residual resistivity of bulk alloys
and electrical conductivity in systems with structural disorder. Here, we revisit the single-site CPA within the
Landauer-Büttiker approach applied to the electronic transport in layered structures and show that this method can
be interpreted in terms of the Büttiker voltage-probe model that has been developed for treating phase-breaking
scattering in mesoscopic systems. We demonstrate that the on-site vertex function, which appears within the
single-site CPA formalism, plays the role of the local chemical potential within the voltage-probe approach. This
interpretation allows the determination of the chemical potential profile across a disordered conductor, which
is useful for analyzing results of transport calculations within the CPA. We illustrate this method by providing
several examples. In particular, for layered systems with translational periodicity in the plane of the layers, we
introduce the local resistivity and calculate the interface resistance between disordered layers.
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I. INTRODUCTION

Coherent potential approximation (CPA)1 is a powerful
method for studying materials where substitutional disor-
der determines their electronic properties. The CPA results
from the self-consistent solution of the quantum-mechanical
multiple-scattering problem, which allows treating disorder
in terms of the configuration-averaged scattering matrix.
Typically, such a solution is obtained within the single-site
approximation in which the properties of all sites, except one in
the system, are averaged over, and that one is treated exactly.2

This approach has been used broadly for the description of
short-ranged scattering in binary alloys.3,4 The CPA goes
beyond the limits of low concentration and weak scattering
in a physically realistic way, providing self-consistency of the
solution.

The CPA also has become a useful tool for studying
transport properties of alloys and disordered systems within
the linear-response theory.5 The configurational averaging in
this case requires averaging of the two one-electron Green’s
functions 〈GG〉 in contrast to equilibrium properties that
simply are determined by 〈G〉. Thus, the extension to the
linear response involves the determination of the so-called
“vertex corrections” 〈GG〉 − 〈G〉〈G〉. This calculation can
be performed consistently with the single-site CPA, resulting
in a closed set of equations for the conductance.5 Such an
approach has been used extensively for calculating the residual
resistivity of binary alloys6–9 and layered structures,10,11

including the extension to realistically treat band structures
of disordered systems.12–20

The configurational averaging within the CPA substitutes
an effective medium that possesses translational invariance
for the original system, which is characterized by a random
nonperiodic potential. The CPA replaces the latter by the
self-energy �, which is an energy-dependent non-Hermitian
operator. Its real part shifts the energy levels of the undisturbed
system, whereas, the imaginary part broadens the energy levels
due to the finite scattering lifetime. Thus, the original system,

which in the absence of inelastic scattering would describe
phase-coherent propagation of electronic waves, is replaced
by an artificial system that involves phase nonconserving
scattering.

This situation is analogous to that within the Büttiker
voltage-probe model introduced to treat dephasing in meso-
scopic physics.21 This model involves fictitious voltage probes
into an otherwise coherent system, which produces phase-
breaking processes. No net current flows in the fictitious
electrodes, and hence, all electrons scattered into the voltage
probes are emitted back into the sample. Such a scattering
process is incoherent, and phase memory of the scattered
electrons is completely lost. To realize this model in a practical
calculation, fictitious probes are attached to each site of
the sample, and their chemical potentials are adjusted such
that no net current flows in the fictitious electrodes. Due to
its appealing simplicity, the voltage-probe model has been
used extensively for studying quantum transport in quantum
dots,22,23 molecular junctions,24,25 nanowires,26,27 and other
mesoscopic and nanosystems.28–31 It has been shown that
there is an analogy between the voltage-probe method and
the imaginary-potential models for dephasing.32

In this paper, we revisit the CPA1,5 within the Landauer-
Büttiker approach33,34 applied to the electronic transport in
layered structures and show that this method can be interpreted
in terms of the voltage-probe model.21 We demonstrate that the
on-site vertex function, which appears within the single-site
CPA formalism, plays the role of a local chemical potential
within the voltage-probe approach. This interpretation allows
the determination of a chemical potential profile across a
disordered sample, which is useful for analyzing results of
transport calculations within the CPA. In particular, for layered
systems with translational periodicity in the plane of the
layers, we demonstrate the possibility for introducing the local
resistivity and calculating the interface resistance between
disordered layers.

The paper is organized as follows. In Sec. II, we briefly
outline the Büttiker voltage-probe model. In Sec. III, we revisit
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the single-site CPA, and in Sec. IV, we derive expressions
for transmission within the Landauer-Büttiker approach. In
Sec. V, we show that the CPA results can be interpreted within
the voltage-probe model. In Sec. VI, we perform calculations
for particular layered systems. In Sec. VII, we summarize the
results.

II. VOLTAGE-PROBE MODEL

Following the Landauer-Büttiker approach,33,34 we con-
sider a “sample” attached to two semi-infinite electrodes. The
electrodes are connected to reservoirs that are characterized
by the equilibrium Fermi distribution functions fL(E) =
f (E − μL) and fR(E) = f (E − μR), where E is the energy
and μL and μR are the chemical potentials of the left and right
electrodes, respectively. The electric current is driven in the
sample by the applied voltage V such that μL − μR = eV.

Within the Büttiker voltage-probe model,21 each atomic
site of the sample is connected to a fictitious electrode n that
is characterized by the equilibrium Fermi function fn(E) =
f (E − μn) with chemical potential μn. The electrodes are
allowed to float to different μn to ensure zero current in the
electrodes and, thus, local current conservation in the system.

Within the linear response, the electric current at zero
temperature in electrode p (p = L, R, or n) is given by (see,
e.g., Ref. 35),

Ip = 2e

h

∑
q

Tpq(μp − μq), (1)

where the summation is performed over all electrodes q (q =
L, R, or n) and Tpq is the transmission between electrodes q

and p. The latter can be calculated as follows:

Tpq = −Tr[(�p − �†
p)Ḡ(�q − �†

q)Ḡ†], (2)

where �p and �q are the self-energies associated with p and
q electrodes, respectively, and Ḡ is the (retarded) Green’s
function36 of the sample coupled to the electrodes,

Ḡ(E) =
[
E − H − �L(E) − �R(E) −

∑
n

�n

]−1

. (3)

Here, �L(E), �R(E), and �n are the self-energies asso-
ciated with the left, right, and floating electrodes, and the
summation is performed over floating electrodes (scattering
sites of the sample). The electric current (1) is obtained from
transmission (2), calculated at the Fermi energy E = EF .

Chemical potentials of the floating electrodes are found by
assuming that the electric current flowing in each electrode is
zero. Using Eq. (1), we find

0 = TnL(μn − μL) + TnR(μn − μR) +
∑
m

Tnm(μn − μm).

(4)

This equation may be interpreted as a local current
conservation condition. The solution of this system of linear
equations determines chemical potentials at each site of the
sample. Once the chemical potentials are found, the net current
passing through the sample is given by the current in the left

(or right) electrode,

I = IL = 2e

h

{
TLR(μL − μR) +

∑
n

TLn(μL − μn)

}
. (5)

Thus, the voltage-probe model introduces phase-breaking
scattering in the system ensuring current conservation through-
out the sample.

Below, we apply this approach to layered structures, which
are infinite and translationally periodic in the plane of the
layers. In this case, it is convenient to introduce the transverse
wave vector k‖ = (kx,ky) that is conserved during transmission
across the sample. The Green’s function of the system Ḡ(k‖,E)
as well as the self-energies of the left and right electrodes,
�L(k‖,E) and �R(k‖,E), become functions of k‖. We use
index n to characterize the layer number, i.e. n = 1, . . . ,N ,
where N is the total number of layers and assume that the
self-energies of the floating electrodes are layer dependent but
constant within each layer. In this case, the summation over
in-plane sites can be replaced by the respective integrations so
that the transmission functions entering Eqs. (4) and (5) above
are given by

TLR =
∫

�I
L(k‖)Ḡ1N (k‖)�I

R(k‖)Ḡ†
N1(k‖)

dk‖
(2π )2

,

TLn =
∫

�I
L(k‖)Ḡ1n(k‖)�I

nḠ
†
n1(k‖)

dk‖
(2π )2

, n = 1,2, . . . ,N,

TnR =
∫

�I
nḠnN (k‖)�I

R(k‖)Ḡ†
Nn(k‖)

dk‖
(2π )2

, n= 1,2, . . . ,N,

Tmn =
∫

�I
mḠmn(k‖)�I

nḠ
†
nm(k‖)

dk‖
(2π )2

, m,n = 1,2, . . . ,N.

(6)

Here, subscripts in the Green’s function Ḡ denote its
matrix elements between different sites, and we implicitly
assume a single-band model. In Eq. (6), we have defined
�I

R = 2 Im �R , �I
L = 2 Im �L, and �I

n = 2 Im �n. We also
have assumed that the left and right electrodes are coupled
to the sample at sites 1 and N , respectively, so that the
respective matrix elements of the self-energy operators are
〈n|�L|m〉 = �Lδn1δm1 and〈n|�R|m〉 = �RδnNδmN .

III. SINGLE-SITE CPA

Now, we outline the single-site CPA. We assume that
there is a random potential U on each site in the sample
region. The CPA replaces the disordered system by an effective
medium that is described by complex coherent potential (self-
energy)� = ∑

n �n, the components �n being dependent on
layer n = 1 · · · N but independent of a site within the layer. The
self-consistency condition assumes that this Green’s function
of the effective medium Ḡ is equal to the Green’s function 〈G〉
averaged over disorder configurations, that is,

Ḡ = 〈G〉 , (7)

where 〈· · ·〉 denotes averaging over disorder configurations.
This provides a condition for finding the coherent potential �.
Considering (U − �) as a perturbation, G can be written in
terms of Ḡ,

G = Ḡ + Ḡ(U − �)G. (8)
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Averaging Eq. (8) and taking Eq. (7) into account, leads to

〈(U − �)G〉 = 0. (9)

Equivalently, this equation can be expressed in terms of the
T matrix,37 which is defined by

G = Ḡ + ḠT Ḡ, (10)

T = (U − �) + (U − �)ḠT , (11)

and implies that

〈T 〉 = 0. (12)

This equation can be solved within the single-site CPA,
which introduces a single site T matrix Ti according to

Ti = (Ui − �i) + (Ui − �i)ḠTi, (13)

where Ui and Vi are on-site random and coherent potentials. As
follows from the multiple-scattering theory (see, e.g., Ref. 38),
T may be written as a sum of single-site contributions,

T =
∑

i

Qi, (14)

Qi = Ti

⎛
⎝1 + Ḡ

∑
j �=i

Qj

⎞
⎠ . (15)

These equations have a simple physical interpretation. The
total scattered wave is a sum of contributions from each atom
given by the atomic T matrix applied on an effective wave.
The effective wave consists of the incident wave and of the
contribution to the scattered wave from all other sites.

The single-site approximation assumes that the statistical
correlation of Ti and of the corresponding effective wave are
negligible. Then, the averaging in Eq. (15) can be decoupled
so that Eqs. (14) and (15) average to

〈T 〉 =
∑

i

〈Qi〉, (16)

〈Qi〉 = 〈Ti〉
⎛
⎝1 + Ḡ

∑
j �=i

〈Qj 〉
⎞
⎠ . (17)

Thus, the self-consistency condition (12) becomes

〈Ti〉 = 0. (18)

In our case, we have N nonequivalent sites within the
sample, and hence, Eq. (18) represents a set of N coupled
nonlinear equations. For example, if we assume that disorder
is formed by a binary alloy characterized by on-site energy UA

with a probability qA and on-site energy UB with a probability
qB (qA + qB = 1), Eq. (18) reads

qA UA − �n

1 − (UA − �n)Ḡnn

+ qB UB − �n

1 − (UB − �n)Ḡnn

= 0,

n = 1,2, . . . ,N. (19)

Here, Ḡnnis the on-site Green’s function,

Ḡnn(E) =
∫

Ḡnn(k||,E)
dk||

(2π )2
, (20)

where

Ḡ(k||,E) =
[
E − H − �L(k||,E) − �R(k||,E) −

∑
n

�n

]−1

.

(21)

Equation (19) can be used to find �n. Normally, this
equation is solved numerically using an iterative procedure.

IV. CPA TRANSMISSION

Transmission across a disordered sample requires averaging
over disorder. Using Eq. (2) for transmission between left and
right electrodes across the sample that is described by Green’s
function G, we obtain

T = 〈TLR〉 = Tr
[
�I

L

〈
G�I

RG†〉] , (22)

where we took into account the fact that operator �L is
configuration independent. The average 〈G�I

RG†〉 entering
Eq. (22) can be calculated within the single-site CPA using
the approach developed by Velický.5 Using Eq. (10) for the
Green’s function in terms of the T matrix and taking into
account that �R does not depend on a random configuration
and that, according to Eq. (12), 〈T 〉 = 0, we find〈

G�I
RG†〉 = Ḡ�I

RḠ† + Ḡ�Ḡ†. (23)

Here, operator �, known as the vertex correction, is defined
by

� = 〈
T Ḡ�I

RḠ†T †〉 . (24)

Next, using Eqs. (16) and (17), � can be represented as

� =
∑
nm

�nm, (25)

where

�nm = 〈
QmḠ�I

RḠ† Q†
n

〉
, (26)

or

�nm =
〈
Tm

(
1 + Ḡ

∑
l �=m

Ql

)
Ḡ�I

RḠ†

(
1 +

∑
s �=n

Q†
sḠ

†

)
T †

n

〉
.

(27)

Consistent with the single-site approximation of CPA, we
decouple Eq. (27) as follows:

�nm ≈
〈
Tm

〈(
1 + Ḡ

∑
l �=m

Ql

)
Ḡ�I

RḠ†

(
1 +

∑
s �=n

Q†
sḠ

†

)〉
T †

n

〉
.

(28)

Now, we can take Eq. (18) into account saying that 〈Ti〉 = 0
and the fact that variations in Tnon different sites are statis-
tically independent so that 〈Tm · · · T †

n 〉 = δmn〈Tn · · · T †
n 〉. In a

similar way, we can conclude that 〈Ql〉 = 0 and 〈Ql · · ·Q†
s〉 =

δls〈Ql · · · Q†
l 〉, which leads to

�mn = δmn�n

= δmn

〈
Tn

[
Ḡ�I

RḠ† +
∑
l �=n

Ḡ
〈
QlḠ�I

RḠ†Q†
l

〉
Ḡ†

]
T †

n

〉
.

(29)
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Using the same approximation in Eq. (26), from Eq. (29),
we obtain

�n =
〈
Tn

[∑
l,m

Ḡnl

(
�I

R

)
lm

Ḡ†
mn +

∑
l �=n

Ḡ�lḠ
†

]
T †

n

〉
. (30)

This is a system of equations, which can be solved using
an appropriate basis. For example, within a single-band tight-
binding model, we define

�n = |n〉 γn 〈n| , (31)

and

Tn = |n〉 tn 〈n| . (32)

Thus, Eq. (30) is reduced to

γn[1 + 〈tnt†n〉ḠnnḠ
†
nn]

= 〈tnt†n〉
[∑

l,m

Ḡnl

(
�I

R

)
lm

Ḡ†
mn +

∑
l

ḠnlγlḠ
†
ln

]
, (33)

where we included the diagonal term in the summation. We
note that, here, indices l, m, and n refer to sites and do not
take periodicity of our system in the plane into account. Once
the vertex function is found, the transmission can be obtained
using Eqs. (22) and (23).

V. CPA AS A VOLTAGE PROBE

Now, using the single-site CPA formalism, we prove the
following identity:

Im �n[1 + 〈tnt†n〉|Ḡnn|2] = 〈tnt†n〉Im Ḡnn. (34)

According to Eq. (13), we have

(Un − �n) = Tn

1

1 + TnḠnn

= Tn(1 + TnḠnn)†
1

|1 + TnḠnn|2 .

(35)

Taking an imaginary part and restructuring the terms, we
obtain

−Im �n[1 + TnḠnn + Ḡ†
nnT

†
n + TnḠnnḠ

†
nnT

†
n ]

= Im Tn + Im(TnḠ
†
nnT

†
n ). (36)

Averaging over random configurations and taking 〈Tn〉 = 0
into account, we find

Im �n[1 + 〈Tn|Ḡnn|2T †
n 〉] = −Im〈TnḠ

†
nnT

†
n 〉. (37)

Finally, using Eq. (32), we arrive at Eq. (34).
The identity (34) simplifies Eq. (33), which can now be

written as follows:

γn

Im Ḡnn

Im �n

=
∑
l,m

Ḡnl

(
�I

R

)
lm

Ḡ†
mn +

∑
l

ḠnlγlḠ
†
ln. (38)

Now, we explicitly exploit the periodicity of our system
in the plane of the layers, using a mixed representation
(k‖,n), where k‖ is the transverse wave vector and n is
the layer number. Taking into account that �n, �n, and Tn

are independent of a site in the plane and assuming that

〈n|�R(k‖)|m〉 = �R(k‖)δnNδmN , we rewrite Eq. (38) as
follows:

γn

Im Ḡnn

Im �n

=
∫

ḠnN (k||)�I
R(k||)Ḡ

†
Nn(k||)

dk||
(2π )2

+
∑
m

γm

∫
Ḡnm(k||)Ḡ†

mn(k||)
dk||

(2π )2
. (39)

Here, Ḡnn is the on-site matrix element of the Green’s
function within layer n given by Eq. (20).

The transmission is given by

T =
∫

�I
R(k||)Ḡ1N (k||)�I

R(k||)Ḡ
†
N1(k||)

dk||
(2π )2

+
∑
m

γm

∫
�I

R(k||)Ḡ1m(k||)Ḡ
†
m1(k||)

dk||
(2π )2

. (40)

Using definitions (6), expressions (39) and (40) can be
rewritten as follows:

2γ̃n�
I
nIm Ḡnn = TnR +

∑
m

γ̃mTnm, (41)

T = TLR +
∑
m

γ̃mTLm, (42)

where

γn = �I
nγ̃n. (43)

Finally, we rewrite Eq. (41) for the vertex functions γ̃n en-
tirely in terms of transmission functions (6). For this purpose,
we introduce the self-energy �, whose matrix elements are∑

mn

(k||) =
∑

n

(k||)δmn

= �nδmn + �L(k||)δm1δn1 + �R(k||)δmNδnN . (44)

It is easy to see that

TnR + TnL +
∑
m

Tnm = �I
n[Ḡ(2 Im �)Ḡ†]nn = 2�I

nIm Ḡnn,

(45)

where the integration over k|| implicitly is assumed in the
operator product in the square brackets, and the latter equality
follows from the identity: Im Ḡ = Ḡ(Im �)Ḡ†. Using Eq. (45),
we can rewrite Eq. (41) as follows:

0 = γ̃nTnL + (γ̃n − 1)TnR +
∑
m

(γ̃n − γ̃m)Tnm,

n = 1,2, . . . ,N. (46)

We note that the seeming asymmetry with respect to L and
R indices is a consequence of the way of averaging in Eq. (22).

These equations are identical to those given by formula (4)
within the Büttiker voltage-probe model. γ̃n can be associated
with a relative chemical potential of a floating electrode n

measured with respect to the chemical potential of the left
electrode set equal to zero, the chemical potential of the right
electrode being set equal to unity. This simply implies that γ̃n is
the reduced chemical potential given by γ̃n = (μn − μL)/eV.
The physical meaning of Eq. (42) is then the transmission to
the left electrode from the right electrode and all the floating
electrodes. The local current conservation condition requires
that the local currents in all the floating electrodes are zero.
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This is exactly what Eq. (46) infers. Thus, the CPA vertex
constants for electric conductivity may be interpreted as local
chemical potentials that provide zero current in the floating
electrodes.

VI. EXAMPLES AND DISCUSSION

Whereas, within the voltage-probe model, the self-energies
of the floating electrodes are phenomenological parameters,
the single-site CPA provides a clear recipe to determine the
self-energies. Once the type of disorder is known, the self-
energies can be found according to a self-consistent procedure
that provides a zero on site T matrix on average. In that sense,
the proven equivalence between the CPA and the voltage-
probe model may be considered as a concrete physical example
where the voltage-probe model is justified.

The variation in the local chemical potential across the
sample implies the presence of the internal electric field.
It is known that such a field may be used instead of
the vertex corrections for conductivity to provide the local
current conservation.39 For example, such an approach was
used to calculate the conductance and magnetoresistance of
segmented nanowires in the presence of diffuse scattering.40

Within the CPA, we have shown how to calculate the local
chemical potential and, thus, the internal electric field.

The local chemical potential allows obtaining a useful
insight into the transport behavior within the CPA. The
variation in the chemical potential across the conductor
may be used to determine the local resistivity and, thus, to
identify regions in an inhomogeneous sample contributing
differently to the resistance. This approach also allows finding
the interface resistance between the regions separating two
disordered conductors. Below, we consider a few examples.

We calculate the conductance by considering a sample
of disordered material, which consists of N layers and is
connected to two perfect semi-infinite electrodes. We assume
that the sample is a binary alloy characterized by on-site
energy UA with a probability qA and on-site energy UB

with a probability qB . The coherent potential of the system
can be found by self-consistently solving Eq. (19). The
Green’s function of the sample, connected to the electrodes
within the CPA, is given by Eq. (21). We assume a single-
band tight-binding model and a simple cubic lattice. In this
case, the eigenvalues of the Hamiltonian H are given by
ε(k||) = −2t(cos kxa + cos kya), where t > 0 is the hopping
integral between neighboring sites and a is the lattice constant.
The self-energies of the electrodes are expressed through
the surface Green’s functions of the leads and are given
by41�L,R(E,k||) = {E ± √

[E − ε(k||)]2 − 4t2}/4.
Figure 1 shows results of the calculation for a binary-alloy

layer embedded between two semi-infinite electrodes. Here,
we set E = EF = −2t , UA = −0.6t , UB = 1.4t , qA = 0.7,
and qB = 0.3, which provides a relatively weak disorder in
the alloy. From Figs. 1(a) and 1(b) (red curves), it is seen
that ignoring the vertex correction in the transport calculation
leads to an exponential increase in the areal resistance R

[Fig. 1(a)] and a decrease in the conductance G per unit
area [Fig. 1(b)] with disordered layer thickness. It has been
shown that the CPA conductance without vertex corrections
is similar to the ballistic contribution, which conserves k|| in

the process of transmission across a disordered region.42 This
contribution decreases exponentially on a scale determined
by the mean-free path as determined by the imaginary part
of the CPA self-energy [the blue curve in Fig. 1(c)]. The
vertex corrections restore Ohm’s law making the resistance
to increase linear with layer thickness [the blue curve in
Fig. 1(a)]. As seen from Fig. 1(b), the vertex contribution
first increases with layer thickness, reaches a maximum, and
then decreases inversely proportional to layer thickness. This
behavior reflects a diffusive contribution to the conductance
where elastic scattering involves scattering events between
different k||’s resulting in the increase in the diffusive part
on the scale of the mean-free part. Further increasing in the
layer thickness enhances the diffusive contribution to the
resistance proportional to the number of scattering events
(layer thickness).

Since the alloy is assumed to be homogeneous, the only
inhomogeneity in the system occurs near the interfaces
between the disordered layer and the perfect electrodes.
This is reflected in the coherent potential, which is nearly
constant across the layer, small variations being seen only
near the interfaces [Fig. 1(c)]. The homogeneity of the bulk
alloy is mirrored in the chemical potential variation, which
drops linearly across the disordered region [Fig. 1(d)]. The
only sizable deviation from the linear behavior occurs at the
interfaces with electrodes where steps in the chemical potential
reflect the interface resistance [layers 0 and 1 and 50 and 51 in
Fig. 1(d)].

In general, the chemical potential profile across a disor-
dered inhomogeneous conductor may be used to evaluate
the local resistivity of the conductor, which may be useful
for analyzing the transport behavior. Since our system is
quasi-one-dimensional and the current is conserved, we can
define the local resistivity as follows:

ρ(z) = dγ̃

dz
R, (47)

where R is the areal resistance of the whole system and it is
assumed that the reduced chemical potential is the continuous
function of position z across the conductor. In our case of
a discrete lattice, we can define the local resistivity, e.g.,
as follows:ρn = (γ̃n − γ̃n−1)R

/
a. Figure 1(e) shows, as an

example, the result of the calculation of the resistivity for the
system discussed above. We see that the resistivity is nearly
constant through the disordered layer but has sharp features
near interfaces reflecting the interface resistance. There are
weak oscillations in the resistivity near the interfaces reflecting
the quantum interference caused by interface perturbation.

In another example, we consider a diffusive bilayer conduc-
tor representing two disordered alloy layers (25 unit cells each)
placed between two semi-infinite electrodes. Here, we assume
that EF = −2t and disorder in the left (L) layer is fixed so that
UA

L = −3t , UB
L = t , qA

L = 0.35, and qB
L = 0.65. The on-site

atomic energies in the right (R) disordered layer also are fixed,
UA

R = 3t and UB
R = −t , whereas, the relative concentration of

the two alloy components qA
R and qB

R is varied. The results
for the reduced chemical potential are displayed in Fig. 2(a)
for different values of qA

R . It is seen that, with increasing
disorder, the voltage drop in the right segment becomes more
pronounced reflecting the increasing resistivity of this layer.
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Without vertex correction

p
p

Without vertex correction

With vertex correction

Vertex correction

FIG. 1. (Color online) Results of transport calculations for a binary-alloy layer placed between two semi-infinite electrodes. (a) Areal
resistance as a function of layer thickness with and without vertex corrections, (b) areal conductance as a function of layer thickness separately
showing the conductance without vertex corrections and the vertex correction contribution, (c) real and imaginary parts of the coherent potential
across the sample, (d) reduced chemical potential, and (e) local resistivity across the sample. Parameters used in the calculations: EF = −2t ,
UA = −0.6t , UB = 1.4t , qA = 0.7, and qB = 0.3. In (c)–(e), the layer thickness is 50a. G0 = 2e2/h is the conductance quantum, and a is the
lattice constant.

This is evident from Fig. 2(b) showing the site-dependent
resistivity across the conductor. The resistivity of the left layer
ρL is constant, whereas, the resistivity of the right layer ρR

increases with alloying. Similar to Fig. 1(e), the sharp features
for layers 0 and 1 and 50 and 51 reflect the interface resistance
between the disordered conductor and the perfect electrodes.

These results allow us to evaluate the interface resistance
between two disordered layers. Previously, the interface resis-
tance had been derived in terms of transmission probabilities
between two ballistic electrodes assuming completely diffuse
scattering in the bulk of the layers.43 In our approach, the
diffuse scattering in the two adjacent layers is provided by the
CPA. In order to calculate the interface resistance, we fix two
points in the conductor lying at distance tL from the interface
in the left layer and at distance tR from the interface in the
right layer. The areal resistance of the sample between the two
points can be written as follows:

R 	γ̃ = ρLtL + Ri + ρRtR, (48)

where R is the areal resistance of the whole system and Ri

is the interface resistance. By fixing tL and tR so that the
two points lie sufficiently far away from the interface and,
hence, the local resistivities of the left (ρL) and right (ρR)

layers are nearly the same as in the bulk of these layers,
we can calculate the interface resistance from Eq. (48) given
the known value of 	γ̃ between the two points. The result
is displayed in the inset of Fig. 2(b), which shows Ri as a
function of the degree of alloying in the right layer. It is known
that depending on reflection coefficients, diffuse scattering
can assist or can suppress conduction across interfaces.44

In our case, the interface resistance slightly decreases with
disorder, which is due to opening new transmission channels
across the interface.45 This approach to calculate the interface
resistance in the presence of disorder may be considered as an
alternative to that based on the supercell calculation46,47 and
the Boltzmann equation.48

Finally, we consider a disordered trilayer system where
the left (L) and right (R) conducting layers of thickness 16a

are separated by a conducting middle (M) layer of thickness
18a. The parameters characterizing the left and right layers
are assumed to be identical, i.e., UA

L,R = −3t , UB
L,R = t ,

qA
L,R = 0.4, and qB

L,R = 0.6. We study transport properties of
the system as a function of alloying qA

M in the middle layer for
which the on-site atomic energies of the alloy components
are assumed to be UA

M = −4t and UB
M = 2t . Figure 3(a)

shows the resulting variation in the reduced chemical potential
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p

FIG. 2. (Color online) Results of transport calculations for a
disordered bilayer system. (a) Reduced chemical potential across the
bilayer conductor for different concentrations qA

R in the right segment.
(b) Local resistivity across the bilayer. The inset shows the interface
resistance between two disordered layers as a function of alloying in
the right segment. Parameters used in the calculations: EF = −2t ,
UA

L = −3t , UB
L = t , qA

L = 0.35, qB
L = 0.65, UA

R = 3t , and UB
R = −t .

G0 = 2e2/h is the conductance quantum, and a is the lattice constant.

across the trilayer. With increasing qA
M , the voltage drop

across the middle layer is increasing, reflecting the increasing
resistivity of this layer. The latter fact also is evident from
the site-dependent resistivity plots shown in Fig. 3(b). Steps
are seen at the interfaces between the middle and the adjacent
layers as the result of the interface resistance. By performing a
calculation similar to that for the bilayer system, we find that,
in this case, the interface resistance increases significantly
with concentration qA

M in the middle layer alloy [see the inset
in Fig. 3(a)]. This is due to a large mismatch between the
on-site energy UA

M and the respective on-site energies in the
left (right) layer alloys, which leads to the large potential step
at the interface with increasing qA

M .

VII. SUMMARY

This paper links the coherent potential approximation that
has been used widely to describe the residual resistivity of bi-
nary alloys to the Büttiker’s voltage-probe model that has been
developed to treat phase-breaking scattering in mesoscopic
systems. The CPA typically is applied to treat the resistivity due
to elastic scattering originating from substitutional disorder.
For a given configuration, the electronic transport remains

p

FIG. 3. (Color online) Results of transport calculations for a
disordered trilayer system. (a) Reduced chemical potential across
the trilayer conductor system for different concentrations qA

M in the
middle segment. (b) Local resistivity across the trilayer. The inset
shows the interface resistance between the left (right) and middle
disordered layers as a function of alloying in the middle layer.
The parameters used in the calculation are as follows: UA

L,R = −3t ,
UB

L,R = t , qA
L,R = 0.6, qB

L,R = 0.6, UA
M = −4t , and UB

M = 2t . G0 =
2e2/h is the conductance quantum, and a is the lattice constant.

coherent. Configurational averaging replaces the original
phase-coherent system by the one involving energy-level
broadening similar to that occurring as a result of the coupling
to reservoirs that breaks coherence in electron transmission
and produces inelastic scattering. In that sense, the CPA has
an analogy to the Büttiker’s voltage-probe model, although
the latter was introduced for a different purpose, namely, to
take, in a simple way, phase-breaking scattering in mesoscopic
conductors that is essential in experimental conditions into
account.

Within both methods, just adding on-site self-energies
within the Landauer-Büttiker approach for conductance would
lead to current dissipation. To provide the local current
conservation, the chemical potentials of the voltage probes
need to be adjusted to guarantee no current in the floating
electrodes. We have shown that, within the single-site CPA
approach, this procedure is equivalent to taking the vertex
corrections into account, and the spatial dependence of the
vertex exactly follows the local chemical potential. This inter-
pretation allows the determination of the chemical potential
profile across a disordered conductor, which is useful for
analyzing results of transport calculations within the CPA. In
particular, for layered systems with translational periodicity in
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the plane of the layers, one can introduce the local resistivity,
which reflects the distribution of the resistance across the
conductor. The method also allows calculating the interface
resistance between disordered layers. This approach has been
illustrated by considering examples of single-layer, bilayer,
and trilayer conductors consisting of different disordered
binary alloys within a tight-binding model. The extension of
the proposed method to a multiband case17 to be applied to
real geometries of disorder multilayers49 requires a separate
consideration.
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