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Mean free path of a suddenly created fast electron moving in a degenerate electron gas

I. Nagy1,2 and P. M. Echenique2,3

1Department of Theoretical Physics, Institute of Physics, Technical University of Budapest, H-1521 Budapest, Hungary
2Donostia International Physics Center, P. Manuel de Lardizabal 4, E-20018 San Sebastián, Spain

3Departamento de Fı́sica de Materiales, Facultad de Quı́micas, Universidad del Pais Vasco, Apto. 1072, E-20018 San Sebastián, Spain
(Received 26 September 2011; revised manuscript received 30 January 2012; published 29 March 2012)

A lower bound on the mean free path (l) of a swift electron moving in a degenerate electron gas is calculated
by implementing a standard theoretical framework for the collision rate, 1/τ , with a scattering amplitude
characterized by the matrix element of a hole-screened interaction potential taken between plane-wave states.
The instantaneous hole around a system’s electron is considered at the Hartree-Fock level for the ground-state
wave function of the degenerate electron gas. The real transitions in the many-body system are considered by
following Galitskii’s treatment on an almost perfect Fermi gas of neutral atomic constituents. The analytical
results show minima both in τ and l, and they appear at (E/EF ) � 4.6 and (E/EF ) � 2.5, respectively, where
E is the kinetic energy of the fast electron and EF is the Fermi energy of the host. Comparison with mean free
path data obtained recently for Cu is made and a reasonable agreement is found.
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I. INTRODUCTION

The many-body problem is a topic in its own right, with its
own characteristic methods. Particularly, the model system of
identical fermion particles, not localized in space and subject
to Pauli’s exclusion principle, represents a genuinely important
problem and the dynamical probing of correlated motions of
constituents of such a many-body system is currently an active
subfield in physics. In order to put the present study on inelastic
scattering into a proper perspective, we follow below the well-
known1 historical path of developments whose result is named
in the literature as Landau’s Fermi liquid theory.

By considering the liquid state of the rare fermionic
isotope of neutral helium atoms, Landau concluded that the
low-lying excited states of such a system can be described
by quasiparticles. Implications for an electron gas were
immediately (see Sec. II) recognized; the essential difference
being the presence of charged free particles instead of neutral
atoms. It is this difference that requires different modeling of
an effective interaction in the mean free path calculation of an
electron in the electron gas, and is the subject of our study.

In his pioneering work on applying a field-theoretic2

Green’s function method to a nonrelativistic many-body sys-
tem of neutral atomic fermions, Galitskii derived3 the follow-
ing expression for the single-particle [E = (v2/2m) � EF ]
scattering rate
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where x ≡ E/EF in terms of the Fermi energy EF = k2
F /2,

and n0 = k3
F /(3π2) is the host particle density. V ≡ 4πasc,

where asc is a scattering length characterizing the two-body
collision. We employ Hartree atomic units, e2 = h̄ = me = 1,
throughout this work. For the low-energy (i.e., x → 1+ limit)
one gets a quadratic
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dependence due to mainly the Pauli’s exclusion principle. The
number of active particles is transparent in such a form. For a
fast particle moving with velocity v � vF , we get

1

τ
= n0

(
4πa2

sc

)
v. (3)

This asymptotic form shows a classically expected4 averaged
rate for an individual intruder particle that collides with
independent particles of the fermion system at high relative
velocity v in a cumulative manner with a constant area, 4πa2

sc,
for binary interactions. It is easy to show that a mean free path
(l) at fixed n0, defined by

l(v) = vτ (v),

tends to a constant value from above in a monotonously
decreasing way as a function of increasing v � vF . This is
due to the assumption (∝ asc) on the scattering amplitude.

The low-energy limit [i.e., Eq. (2)] shows a quadratically
vanishing scattering rate. A quadratic form for the rate in
terms of the excess [�E ≡ (E − EF )] energy is, of course,
much smaller than the energy E � EF of the added particle.
Such a quadratic dependence is in harmony with one of the
well-known5 limiting forms

α

E − EF

� τ (E) � β

(E − EF )2
,

between which a quasiparticle concept is justified. The
problem of lifetime, mediated by quasiparticle-quasiparticle
interaction, was analyzed in detail6 in a perturbative manner by
Luttinger using skeleton diagrams to find a proper self-energy
of a particlelike excitation. It was pointed out that with well-
behaved local interaction one gets a quadratic dependence for
1/τ in the excess energy (i.e., a proportionality to (E − EF )2

even in infinite order of perturbation theory) but no general
(i.e., necessary and sufficient) conditions on the interaction
form was found for which this characteristic dependence is
valid.

The key point in the mentioned nontrivial analysis, with a
presumed well-behaved interaction, is that the conservation
laws could determine alone a quadratic dependence. With
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such an interaction one can (see Sec. II) consider separately
the double integration in transferred momenta and energies
at low enough excess energies, (E − EF ). However, in a
second-order description for the scattering rate the internal
frequencies should3,7 correspond to the energies of two real
colliding particles. Thus the conservation laws, together with
the more restrictive Pauli’s exclusion principle for allowed
real transitions, determine uniquely the connection between
transferred momentum q and energy ω � 0 in scattering.

After these fine details in a many-body problem, we turn
to our practical approximation on which the results and our
statements are based. These are given in the next section. The
last section, Sec. III, contains a brief summary and our remarks.

II. RESULTS AND DISCUSSION

Following closely our previous8 re-derivation of Galitskii’s
result in Eq. (1), we use a textbook9 expression for the net rate
of creating electron-hole pairs, and write

1
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16π
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in terms of dimensionless variables defined by y = ω/EF ,
u = q/kF , and x = E/EF . The above form shows that we
will use an instantaneous interaction V (q = ukF ). The system-
dependent kernel function F 0(u,y) for positive ω is given9 by
the following form
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where P1 = (1/2u)|y − u2| and P2 = (1/2u)(y + u2). As we
explained in Sec. I, the limits u− and u+ are determined by the
constraints encoded in F 0(u,y) at a fixed y. For instance, for
x ∈ [1,2] the second constraint prescribes a (1 − √

1 − y) �
u � (1 + √

1 − y) range for allowed momentum transfer. It
is easy to derive the limits, valid now for all x � 1, due to
the other constraint as well. One gets (

√
1 + y − 1) � u �

(
√

1 + y + 1) for this case.
A finite lifetime is due to real transitions in the system,

which are characterized via an ideal [∝ F 0(q,ω)] dynamical
structure function, where the variables ω and q are energy
and momentum transfers the source of which are the energy
and momentum of an added energetic electron. Now, if one
considers10–12 the many-body system as a charge-polarizable
medium, one may use a dielectric function ε(k,
) in which
the wave vector and frequency (i.e., the Fourier variables,
k and 
, in a space-time–dependent description of density
fluctuations) are fixed13 to the above kinematical variables.
In such a modeling of matrix elements one has |V (q,ω)| =
(4π/q2)/|ε(q,ω)|. Thus, at small excess energy (ω → 0), one
gets the conventional mean-field screening of a fixed classical
point charge.

Unfortunately, the proper incorporation of statistics-
dependent correlation effects into a quasiclassical charge-
polarization picture on effective electron-electron interaction
is a highly debated issue.14 In simple terms, one can not, with-
out an unphysical overcounting, superpose two normalized
holes around a system’s electron, which are due to, separately,
electrostatics and quantum mechanical exchange. Moreover,
there is an accumulating experimental evidence15–19 that a
dielectric modeling results in inelastic mean free paths l(E),

which are far from both the experimental minimum values and
their energetic positions. It is this theoretical and experimental
background on which we return to a basic quantum mechanical
model, without electrostatic polarization, in order to discuss
the inelastic mean free path of an energetic electron in an
electron gas.

Since the aim of this study is to derive a lower bound on
the mean free path (l) of an added free electron with v � vF ,
we will use a model that still respects a basic aspect of the
degenerate electron gas in a charge-compensating background.
The ground state is a Slater determinant of single-particle
plane-wave states. Thus, due to Pauli’s exclusion principle,
there is a unit-norm exchange hole9,20 around each moving
system electron. In other words, the total missing charge from
such a hole is one electron charge. This statistical distribution
of system electrons around a given electron is a distribution
of electrically charged particles, and therefore gives rise
to an electric potential. Since the quantum hole efficiently
quenches20,21 the quasiclassical polarization action of other
electrons around a given electron, this action is neglected (cf.,
the discussion of Fig. 2) in the present work.

Thus, we model the pair interaction based on the above
first-order knowledge. Since a scattering rate (1/τ ) is a
second-order quantity, as Eq. (4) shows, our construction
is consistent. Such a physically motivated modeling was
employed successfully22 earlier to describe the change in the
pair-correlation function. We start, therefore, by taking
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)
, (6)

for q � 2kF with V (q) = 4π/q2 for q > 2kF . Next, in order
to derive a lower bound within this framework for l(E) we take
only the small-q limit of the above expression. This is not a
strong assumption since the scattering rate 1/τ is dominantly
sensitive to the q → 0 limit, the forward direction in scattering.
With V (u,kF ) = [3π/k2

F ]/u in Eq. (4), the somewhat lengthy
integrations are still analytic. We obtain for this case

1

τ
= n0

3vF

16π

[(
3π

k2
F

)2 4

3

g1(x) − g2(x)√
x

]
. (7)

The functions, g1(x) and g2(x), are given by the following
expressions

g1(x) = ln(x − 1) +
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As it is well known, a pure 1/q2 dependence for all q values in
V (q) would result in a strongly divergent expression for 1/τ ,
and thus in a vanishing mean free path. Our method shows a
quantum-mechanics–governed way to remove this unphysical
divergency.

Using the above result in Eq. (7) for the scattering rate, the
mean free path becomes

l(v) = vτ (v) = 4π

3
vF

x

g1(x) − g2(x)
. (8)
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FIG. 1. The Gτ (x) (solid curve) and the Gl(x) (dashed curve)
functions in atomic units, for the range x ∈ [1.1,10] of the dimen-
sionless variable x = E/EF . See the text for further details.

There are minimum (m) values in τ (x) and l(x) at a fixed pa-
rameter vF . These appear at the solutions of the algebraic equa-
tions (x − 1)[(8/3) − 2 ln 2 + ln(x − 1)] = 2x and (x − 1)
[(8/3) − 2 ln 2 + ln(x − 1)] = x, respectively. By a simple
calculation, we get xτ

m � 4.6 and xl
m � 2.5, respectively. Thus,

τ (xτ
m = 4.6) � 3.3 and l(xl

m = 2.5) � 6.2vF , both in atomic
units. For a typical metal (vF � 1) the corresponding values are
about l � 3 Å and τ � 8×10−17 seconds (i.e., 80 attoseconds).
For illustration, in Fig. 1 we exhibit, by considering the simple
structure of Eq. (8), the following functions

Gτ (x) =
√

x

g1(x) − g2(x)
, Gl(x) = x

g1(x) − g2(x)
,

as a function of the convenient, scaled variable x = (E/EF )
for x ∈ [1.1,10]. Notice at this point that incorporation of
band (b) effects17,18 on our free-electron velocity could result
in, presumably, a monotonous vb(E) �

√
2E function. Thus,

with such a vb(E) the minimum in our l(E) would appear
between the above xi

m values.
Contrary to the solution in Eq. (1), obtained by Galitskii

with a momentum-independent matrix element, our l(x) =
(4π/3)vF Gl(x) function is not monotonic in x = E/EF . This
is due to, partly, the nonmonotonic τ (E) = (4π/3)Gτ (x)
function for the lifetime. The above compact result in Eq. (7)
signals that even with a weakly (∼1/q) singular amplitude the
whole problem is still an integrable one. This is an important
observation of general interest in the light of Luttinger’s
statement on the allowed class of interactions. Furthermore,
by a simple Taylor expansion of Eq. (7) we get

1

τ
= 3

2π

(E − EF )

EF

,

for the case of (E − EF ) → 0. Therefore, a h̄/τ quantity is
still much smaller than the kinetic energy of the particle with
E � EF . The inverse of the above expression is an explicit
lower-limit form to Pines’s general5 bracketing (see Sec. I)
for τ (E).
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FIG. 2. The inelastic mean free path l(E) as function of the
photoelectron energy �E ≡ (E − EF ). The curve with error bars
shows the experimental19 quantity. The dashed curve is based on the
present theory. The dotted curve refers to a theoretical description
that rests on an optical dielectric function for copper. See the text for
further details.

Now we turn to the practical application of our theoretical
results, by making a quantitative comparison with recent
experimental data19 on inelastic mean free path in copper.
We take rs = 2.7 for the Wigner-Seitz density parameter of
the model system (i.e., we use the conduction band electron
density). Thus one has EF � 6.9 eV. In Fig. 2 our result is
plotted by a dashed curve for the inelastic mean free path l(E),
while the other curve with error bars refers to the experiment.
The dotted curve is based on a conventional23 theoretical
modeling, which rests on an all-electron optical dielectric loss
function.

It was emphasized in Ref. 19 that within such a conventional
framework the position of the minimum in the mean free path is
at too high photoelectron energies. Our present result (dashed
curve) is in a reasonable agreement with data, considering the
experimental error bar at the low-energy limit. In the most
important range (i.e., around the experimental minimum) our
curve follows the shape of the data. There is, however, a
crossing between curves at around E � 33 eV. We speculate
that this might be due to, at least partly, the growing importance
of valence electrons. Furthermore, since the bosonic quantum
(h̄ωp) should have some impact on the energy loss and mean
free path, the proper inclusion of the collective polarization
channel (neglected in this work) needs future considerations
as well.

We finish our study by a qualitative analysis related
to a recent hot topic. Streaked photoemission metrology24

allows the observation of a relative time delay between the
detection of photoelectrons from different initial electronic
states. Theoretical attempts in this field are based25,26 on a
time-dependent one-particle Schrödinger equation to explain
the observed27 subfemtosecond time delay of energetic pho-
toelectrons escaping from a metal, tungsten. Crucial in such
studies, as an input parameter of many-body origin, is the
inelastic mean free path to model the damping in a propagating
wave.
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For instance, a small adjusted value of about 2.5 Å was
used25 to reproduce the experimentally observed delay value
for W. However, when a photoelectron releases from an
atomic state, or from a solid environment, the combined fields
of the targets and the streaking infrared (IR) pulse could
influence28,29 the elastic propagation in a highly nontrivial
manner. Still, in our opinion, the above-discussed many-body
inelasticity can be vital in quantitative interpretations of the
delay data obtained for metals.

The analytical lower bound results on τ (E) and l(E)
could be useful, for instance, in computer-based simulation
methods30 on the streaking phenomenon as well. The inverse of
the total mean free path in a metal is taken usually as the sum of
the elastic and inelastic inverses. The elastic component is, for
a 50–100 eV photoelectron energy range, in the 1–2 Å interval
according to a microscopic simulation work30 on tungsten. An
only moderately higher magnitude for the inelastic component
could have impact on the simulation of electron transport by
using such a definition of the total mean free path.

III. CONCLUSION

Motivated by the importance of the inelastic mean free
path l(E) of suddenly generated energetic electrons in metals,
a lower bound on l(E) is derived in the present theoretical
study. The study rests on the physical relevance20 of an
exchange hole in the fermionic many-body system in order

to characterize a scattering amplitude in momentum space.
This input interaction was used in a second-order perturbation
theory on many-body excitations. Our study extends the
mathematical class of allowed pair interactions for which the
lifetime and inelastic mean free path are still reasonable from
physical5 point of view.

We stress that both Eqs. (1) and (7) encode the effect
of the fundamental exclusion principle of Pauli. But the
details of encoding are different, since in our study on a
charged fermionic system the principle is built into particle
shielding as well, beyond the statistics-made restriction for
allowed transitions. In other words, an interesting twofold role
of quantum statistics is manifested in the present work for
observable averages. As a final remark we note that further,
consistent attempts are needed to incorporate a quasiclassical
plasma screening (and, in particular, to understand the precise
role of a plasmon-related collective inelastic channel) besides
our quantum mechanical modeling of a dressed interaction.
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