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The asymptotic structure of the Kohn-Sham exchange potential vx(r) in the classically forbidden region
of a metal surface is investigated, together with that of the Slater exchange potential V S

x (r) and those of the
approximate Krieger-Li-Iafrate V KLI

x (r) and Harbola-Sahni Wx(r) exchange potentials. Particularly, the former is
shown to have the form of vx(z → ∞) = −αx/z with αx a constant dependent only of bulk electron density. The
same result in previous work is thus confirmed; in the meanwhile, a controversy raised recently gets resolved. The
structure of the exchange hole ρx(r,r′) is examined, and the delocalization of it in the metal bulk when the electron
is at large distance from the metal surface is demonstrated with analytical expressions. The asymptotic structures
of vx(r), V S

x (r), V KLI
x (r), and Wx(r) at a slab metal surface are also investigated. Particularly, vx(z → ∞) = −1/z

in the slab case. The distinction, in this respect, between the semi-infinite and the slab metal surfaces is elucidated.
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I. INTRODUCTION

The static (classical) charge potential vanishes exponen-
tially far outside a metal surface. The electronic structure in the
classically forbidden region as a consequence depends strongly
on exchange and correlation (xc) effects. Quantum-mechanical
many-body effects thus play a major role in this region. In
the seminal work of the application of the Kohn-Sham (KS)
density functional theory (DFT)1 to the metal surface problem,
Lang and Kohn2 assumed that the KS local xc potential vxc(z)
decays like the classical image potential Vim(z) = −1/4z,
with z being the distance from the metal surface. (Similar
assumption had been made earlier in Bardeen’s pioneering
study of the electronic properties of the metal surface.)3 The
KS local xc potential vxc(r) is equal to the functional derivative
of the KS xc energy functional Exc[ρ] with respect to the
electron density ρ(r): vxc(r) = δExc[ρ]/δρ(r). It was found
that vxc(z) calculated by Lang and Kohn in the local density
approximation (LDA) to Exc[ρ] had an exponential decay
at large distance from the metal surface, recognized hence
as one of shortcomings of the LDA.2 The subject of the
asymptote of vxc(z) at the metal surface has thereafter attracted
long-standing research interest.4 It was claimed in Refs. 5 and 6
that vxc(z) ∼ −1/(4z), which was attributed to the correlation
potential vc(z). The exchange potential vx(z) was claimed to
decay exponentially in the former and as ∼−1/z2 in the latter,
respectively.

The exponential and the ∼−1/z2 behavior of the ex-
change potential vx(z) was questioned in Ref. 7, and it
was numerically demonstrated that at least the component
of vx(z) arising purely from the exchange hole, [which is
in fact the Harbola-Sahni approximate exchange potential
Wx(z) discussed later in this paper] has an image-potential-
like behavior though possibly not the exact form of Vim(z).
The result in Ref. 7 was corroborated by Solomatin and
Sahni8 who, based on the integral equation for the optimized
effective potential (OEP)9 [also known as the OPM (optimized
potential method) in Ref. 8 and various literature], analytically
showed that

vx(z → ∞) = −αx

1

z
, (1)

with

αx = β2 − 1

2β2

[
1 − ln(β2 − 1)

π (β2 − 1)1/2

]
, (2)

where β = √
W/εF , W the surface-barrier height, and εF the

bulk Fermi energy. This result had been further confirmed in
Ref. 10. The issue of the asymptote of the full KS exchange-
correlation potential vxc(z) was also addressed in Ref. 10.

Both the calculations in Refs. 8 and 10 for vx(z) at
large z had been carried out exactly (with no approximation
employed). The one in Ref. 10 made the use of a different
method by solving the Dyson equation with the use of the
exact exchange part �x of the electron self-energy. The
agreement between Refs. 8 and 10 on the result shown in
Eq. (1) strongly indicates its correctness. Recently, Horowitz
et al., however, claimed11 that asymptotically vx(z) = −1/z,
but later12 that vx(z) has an asymptotic form of vx(z) ∼ ln z/z.
The result in Eq. (1) was hence challenged. The method
used in Refs. 11 and 12 was the same OEP method used
previously in Ref. 8. However, there was a subtle but distinct
difference in the technique between the approach in Ref. 8
and that in Refs. 11 and 12. The calculation in Ref. 8 made
the direct use of the integral equation for OEP, but those in
Refs. 11 and 12 used instead the OEP method formulated
in terms of differential equations for the so-called orbital
shifts [cf. Eq. (22) below].13–15 There are certain advantages
in this formulation in that the quantities of the orbital-shifts,
expressed as the solutions to the differential equations, are
comparatively amenable to analytical or numerical study. This
will also get illustrated in this work. Indeed, we attempt to
resolve the controversy by carrying out further investigation
based precisely on this formulation of the OEP method. To
this end, we have managed to establish, for limiting large z,
an identity between vx(z) and the planar-momentum averaged
orbital-dependent exchange potential uxk(z) at k = kF , where
k is the perpendicular component of the electron momentum
and kF the bulk Fermi momentum. The identity, reported in
Eq. (42) [for the case of the slab metal surface see instead that
in Eq. (41)], is one of the key results, with the aid of which
the following development can be made fairly smoothly. The
quantity uxkF

(z) is then shown to have the asymptotic form of
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uxkF
(z) = −αx/z. In this manner, we confirm once again the

result in Eq. (1). The controversy raised in Ref. 12 is hence
resolved. It is shown in Sec. V that one component [termed
V shift

x (z)] of vx(z), which was ignored in the study in Ref. 12
actually also makes a leading-order contribution to vx(z). In
addition, it is shown that vx(z = ∞) = 0 at the semi-infinite
metal surface, i.e., Eq. (1) is exact to the leading order. Since
vxc(z = ∞) = 0 (which can always be made true), it follows
that vc(z = ∞) = 0.

The Slater exchange potential V S
x (r) (see Ref. 16) has

been regarded also as an approximation to the KS exchange
potential. In Ref. 8, it was shown that V S

x (z) has the following
asymptotic form at large distance from the metal surface:

V S
x (z → ∞) = −2αx

1

z
. (3)

There exists no controversy in the literature over this result.
We give further verification of it.

The quite nontrivial asymptotic structure of vx(z) in Eq. (1)
was pointed out to arise from the delocalization of the
exchange hole (also known as the Fermi hole) ρx(r,r′).17

It was shown numerically that the exchange hole is spread
throughout the entire metal bulk when the electron is in the
classically forbidden region.17 Expressions for the exchange
hole with the planar-positions averaged, valid for arbitrary
electron positions, are reported. Especially, the delocalization
of the exchange hole at the semi-infinite metal surface for
limiting large electron positions is illustrated with analytical
expressions. This might be of help to shed further light on the
curious exchange effects in the classically forbidden region of
the metal surface.

Two of other approximate exchange potentials, the Krieger-
Li-Iafrate (KLI) V KLI

x (r) potential18,19 and the Harbola-Sahni
(HS) Wx(r) potential,20 are also surveyed. They will be
introduced in Sec. V. V KLI

x (r) is well known as an extensively
employed substitute for the OEP. It has the same bulk
limit as vx(z), a fact crucial for calculation practice for the
metal surface. V KLI

x (z) turns out to have an asymptotic form
of V KLI

x (z) ∼ ln z/z and hence deviate from vx(z) in the
classically forbidden region, indicating that an improvement
is required there. On the other side, the asymptotic behavior
of Wx(z) has been given a full-fledged study in Ref. 21, and
it was shown that Wx(z) deviates from vx(z) in both the metal
bulk and the classically forbidden region, though relatively
mildly in the latter in the form of Wx(z) ∼ −αW/z, where the
constant αW is given in Eq. (85).

A great deal of work on the electronic structure at the metal
surface has been carried out on a jellium metal slab instead.
The asymptotic behavior of vx(z) at large distance from the
slab surface is also examined in this work, and it is shown that

vx(z → ∞) = −1

z
. (4)

As mentioned previously, the same result was also reported in
Ref. 11. In this sense, it gets confirmed here. It is necessary
to remark that the study in Ref. 11 was performed on the slab
metal surface, but clearly also aimed at obtaining knowledge
equally valuable for the semi-infinite metal surface. We,
however, point out that Eq. (4) is valid only for the slab
surface and can not be naively extrapolated for the semi-infinite

surface. In fact, the slab surface can virtually be regarded
as a finite system and as a consequence, Eq. (4) can be
obtained by a direct multipole expansion of the Coulomb
interaction. Furthermore, it is shown that the result in Eq. (4)
is in fact subject to a possible difference of nonzero constant,
i.e., vx(z = ∞) �= 0 [see Eq. (103) and the discussion below
it], though it can be made to vanish in an exchange-only
calculation via a shift in vx(z).

In Sec. II, we present preliminaries and introduce the
OEP method to the metal surface problem. The properties
of vx(z), V S

x (z), and the exchange energy density εx(z) are
examined in Sec. III. The properties of ρx(r,r′) are examined
in Sec. IV, and those of V KLI

x (z) and Wx(z) in Sec. V. The
slab surface case is considered in Sec. VI. In Appendix A,
we prove a mathematical statement of Eq. (24) proposed in
Sec. II. Appendix B contains the calculation for the asymptotic
form of uxkF

(z), Appendix C that for V S
x (z), and Appendix D

that for the planar-position averages of ρx(r,r′). The paper is
concluded in Sec. VII.

II. PRELIMINARIES

In the jellium3 and structureless-pseudopotential22 models
of a metal surface with a uniform positive background of
charge

ρ+(z) = k3
F

3π2
θ (−z), (5)

the KS orbitals are of the form

φk(r) =
√

2

AL
eik‖·x‖φk(z). (6)

In Eq. (5), (k‖,x‖) are the planar components of the momentum
and position, and (k,z) the perpendicular components, i.e.,
k = k‖+ kez and r = x‖+ zez, where ez is the unit vector
perpendicular to the metal surface. The magnitude of k, on the
other hand, will be explicitly denoted with |k| (=

√
k2
‖ + k2).

A and L in Eq. (6) denote the planar normalization area and
the perpendicular normalization length, respectively.

A. Preparatory materials

The φk(z) obeys the differential equation[
−1

2

∂2

∂z2
+ W + V (z) + vxc(z)

]
φk(z) = 1

2
k2φk(z), (7)

where V (z) is the static (classical) charge potential that
vanishes exponentially at large distance from the metal surface.
φk(z) has the following asymptotic forms,

φk(z) ∼ sin[kz + δ(k)] for z → −∞, (8a)

∼ Pk(z)e−κz for z → ∞, (8b)

where δ(k) is the phase shift due to the metal surface, κ =√
2W − k2, and Pk(z) is a power function,10 and ∞ denotes

the positive infinity.
The Dirac density matrix is defined as γs(r,r′) =

2
∑

i φi(r)φ∗
i (r′). At the metal surface, it has the following
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form:

γs(r,r′) = 1

2π3

∫
dk θ (kF − |k|)φ∗

k (z)φk(z′)eik‖·(x′
‖−x‖). (9)

By the use of the identities∫
dq̂e−iq·(x‖−x′

‖) = 2πJ0(q|x‖ − x′
‖|), (10)∫ λ

0
dk‖k‖J0(k‖|x‖ − x′

‖|) = λ
J1(λ|x‖ − x′

‖|)
|x‖ − x′

‖|
, (11)

where λ =
√

k2
F − k2, and J0 and J1 are the zeroth-order and

the first-order Bessel functions, respectively, we can rewrite
Eq. (9) as

γs(r,r′) = 2

π2

∫ kF

0
dkλφk(z)φ∗

k (z′)
J1(λ|x‖ − x′

‖|)
|x‖ − x′

‖|
. (12)

The expression for the electron density is

ρ(z) = 1

π2

∫ kF

0
dkλ2|φk(z)|2. (13)

[The density is equal to the diagonal component of the density
matrix, and Eq. (13) follows directly from Eq. (12) with the
aid of the fact that J1(x) → 1/2x as x → 0.]

Finally, we formulate for the metal surface problem the
exchange hole, which is defined as

ρx(r,r′) = −|γs(r,r′)|2
2ρ(r)

. (14)

It follows from the substitution of Eq. (9) into Eq. (14) that

ρx(r,r′) = − 1

8π6ρ(z)

∫
dk

∫
dk′θ (kF − |k|)

× θ (kF − |k′|)�k,k′(z,z′)ei(k‖−k′
‖)·(x′

‖−x‖), (15)

where

�k,k′(z,z′) = φ∗
k (z)φk(z′)φk′(z)φ∗

k′(z′). (16)

Alternatively, the substitution of Eq. (12) instead yields

ρx(r,r′) = − 2

π4ρ(z)

∫ kF

0
dk

∫ kF

0
dk′λλ′�k,k′(z,z′)

× J1(λ|x‖ − x′
‖|)J1(λ′|x‖ − x′

‖|)
|x‖ − x′

‖|2
, (17)

where λ′ =
√

k2
F − k′2.

B. The OEP method

The exchange-only OEP9 has been proved to be equal to the
KS exchange potential vx(r).23 We briefly outline the method
below, starting with an introduction to the orbital-dependent
exchange potentials13,14

uxi(r) = 1

φi(r)

δEx[{φj }]
δφ∗

i (r)
, (18)

and the orbital shifts

ψi(r) =
∑
j �=i

〈φj |vx − uxi |φi〉
εi − εj

φj (r). (19)

Here, φi(r) and εi are the KS orbitals and the corresponding
eigenenergies, respectively, and Ex[{φj }] is the exchange en-
ergy functional of the orbitals. The orbital-dependent exchange
potentials uxi(r) in Eq. (18) are of the same form as the
Hartree-Fock potentials but constructed from the KS orbitals
φi(r). Explicitly,

uxi(r) = − 1

2φi(r)

∫
dr′ γs(r,r′)φi(r′)

|r − r′| . (20)

The central equation in the OEP method is
occ.∑
i

ψ∗
i (r)φi(r) + c.c. = 0, (21)

where c.c. denotes the complex conjugate of the previous term.
Equations (19) and (21), together with the KS equations for
the orbitals [cf. Eq. (7)],1 build the self-consistent calculation
scheme for the exchange-only OEP.

In self-consistent calculation for the OEP, evaluating ψi(r)
from Eq. (19) is highly impractical. Equation (19) therefore is
usually rewritten in the form of a differential equation.13–15 In
our case, [− 1

2 �2 +W + V (z) + vxc(z) − 1
2 k2

]
ψk(r)

= [−vx(z) + uxk(r) + Dk]φk(r), (22)

where

Dk = 〈φk|vx − uxk|φk〉. (23)

It is demonstrated in Appendix A that uxk(r) is independent of
x‖, i.e., it is a function of z only:

uxk(r) = uxk(z). (24)

The variables x‖ and z accordingly can be separated in Eq. (22)
and ψk(r) hence has the form

ψk(r) =
√

2

AL
eik‖·x‖ψk(z). (25)

Correspondingly, with the aid of Eq. (6), it follows that[
−1

2

∂2

∂z2
+ W + V (z) + vxc(z) − 1

2
k2

]
ψk(z)

= [−vx(z) + uxk(z) + Dk]φk(z). (26)

We average over k‖ on both sides of the preceding equation
and obtain[

−1

2

∂2

∂z2
+ W + V (z) + vxc(z) − 1

2
k2

]
ψk(z)

= [−vx(z) + uxk(z) + Dk]φk(z). (27)

The planar-momentum averages uxk (z) of the orbital-
dependent exchange potentials uxk (r) [rewritten as uxk (z)
according to Eq. (24)],

uxk(z) = 1

πλ2

∫ λ

0
dk‖uxk(z), (28)

has been introduced into Eq. (27) together with the similar
planar-momentum averages ψk(z) of ψk(z), and Dk of Dk.

We write

Da
k = 〈φk|vx |φk〉, Db

k = 〈φk|uxk|φk〉. (29)
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Accordingly, it follows from Eq. (23) that

Dk = Da
k − Db

k , (30)

with

Da
k = 2〈φk|vx |φk〉/L, Db

k = 2〈φk|uxk|φk〉/L. (31)

For the semi-infinite metal surface, Da
k evidently takes the bulk

value vbulk
x = −kF /π of vx(z) (and is accordingly independent

of k.) On the other hand,

Db
k = − 1

2π2

∫
dk′ 1

|k − k′|2 θ (kF − |k′|). (32)

Explicitly,3,24

Db
k = −2kF

π
F

( |k|
kF

)
(33)

with

F (x) = 1

2
+ 1 − x2

4x
ln

∣∣∣∣1 + x

1 − x

∣∣∣∣. (34)

Solely for later reference, we also list

Dk = kF

π

[
2F

( |k|
kF

)
− 1

]
, (35)

and note that Dk||k|=kF
= 0. Expression for Db

k will also be
used in the later development:

Db
k = − 2kF

π2λ2

∫ λ

0
dk‖F

( |k|
kF

)
= − 4k3

F

πλ2

∫ 1

k/kF

dxxF (x),

(36)

explicitly,

Db
k = 1

3π

[
−2kF + (kF + k)(2kF − k)

kF − k
ln

kF + k

2kF

+ (kF − k)(2kF + k)

kF + k
ln

kF − k

2kF

]
. (37)

C. Identity vx(z) = uxkF (z) for z → ∞
We consider Eq. (27) for limiting large z. On the right-hand

side of it, the term uxk(z)φk(z), which is due to the orbital-
dependent exchange potential, has the asymptotic form of
fk(z)φkF

(z) with fk(z) a power function. Its existence implies
that ψk(z) must have the analogous asymptotic form:

ψk(z) = gk(z)φkF
(z), (38)

where gk(z) is also a power function obeying
1
2λ2gk(z) − φ−1

kF
(z)φ′

kF
(z)g′

k(z) − 1
2g′′

k (z)

= φ−1
kF

(z)[−vx(z) + uxk(z) + Dk]φk(z). (39)

The primes denote the derivatives with respect to z.
Equation (39) is valid for all k. It turns out that its special
case at k = kF solely is sufficient to determine the asymptotic
structure of vx(z). Indeed,

φ−1
kF

(z)φ′
kF

(z)g′
kF

(z) + 1
2g′′

kF
(z) = vx(z) − uxkF

(z) − DkF
.

(40)

By using the fact that gkF
(z) → 0, [with the understanding that

the homogeneous solution of ψk(z) in Eq. (27) is excluded,]
one has g′

kF
(z), g′′

kF
(z) ∼ o(1/z) for large z. On the other hand,

it will be shown later in Eq. (47) that uxkF
(z) ∼ O(1/z). One

hence obtains, from Eq. (40), for limiting large z,

vx(z) = uxkF
(z) + DkF

. (41)

Since Da
k = −kF /π and Db

kF
= −kF /π according to Eq. (37),

one has correspondingly, from Eq. (30), DkF
= 0 for the

semi-infinite metal surface. This leads to one of the central
identities:

vx(z) = uxkF
(z) for z → ∞. (42)

We remarked that DkF
�= 0 for the slab metal surface, and we

then have Eq. (41) only.
Equation (42) suggests that knowledge about the quantity

uxkF
(z) could be useful in carrying through the reminder of

our task. In this regard, we include here some expressions
for it. In general, for k → kF and any well behaved function
f (k) = f (k‖,k) [uxk(z) in the present case],∫ λ

0
dk‖f (k) = πλ2f (k‖ = 0,k = kF ). (43)

Hence from Eq. (28), it follows that

uxkF
(z) = uxk(z)|k‖=0,k=kF

. (44)

Accordingly from Eqs. (20) and (24) one has

uxkF
(z) = − 1

2φkF
(z)

∫
dr′ γs(r,r′)φkF

(z′)
|r − r′| . (45)

III. ASYMPTOTIC STRUCTURES OF vx(z) AND V S
x (z)

Quantities similar to uxkF
(z) have been calculated in Refs. 7,

8, and 10. We apply a different approach to perform the
calculation, which can serve also as a kind of verification.
To this end, we substitute Eq. (12) into Eq. (45). It follows that

uxkF
(z) = − 2

πφkF
(z)

∫ kF

0
dkλφk(z)

∫ ∞

−∞
dz′φ∗

k (z′)φkF
(z′)

×
∫ ∞

0
dr ′

‖
1√

(z − z′)2 + r ′2
‖

J1(λr ′
‖). (46)

Alternatively, Eq. (46) can also be obtained from the substitu-
tion of Eq. (A3) into Eq. (44). The aid of the fact that J0(0) = 1
is needed then.

The asymptotic form of uxkF
(z) is examined in Appendix B

with the following result:

uxkF
(z → ∞) = −αx

1

z
, (47)

which, together with Eq. (42), leads to Eq. (1), fulfilling the
main object of this work. (The controversy raised in Ref. 12
will get further elucidated in Sec. V.) Equation (47), which
is exact at limiting large z, together with Eq. (42), leads also
to the conclusion that vx(∞) = 0 at the semi-infinite metal
surface. In other words, Eq. (1) is exact to the leading order.
We assume that vxc(∞) = 0 at the metal surface. Accordingly,
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we also have vc(∞) = 0. Further insight into these facts will be
provided in Sec. VI in connection with those for the slab case.

The Slater exchange potential V S
x (r)16 is defined as

V S
x (r) =

∫
dr′ρx(r,r′)

1

|r − r′| . (48)

For our metal surface problem, we substitute Eq. (17) for ρx

(r,r′) into Eq. (48). It follows that

V S
x (z) = − 4

π3ρ(z)

∫ kF

0
dkφk(z)

∫ kF

0
dk′φ∗

k′(z)λλ′

×
∫ ∞

−∞
dz′φ∗

k (z′)φk′(z′)
∫ ∞

0
dr ′

‖
1

r ′
‖
√

(z − z′)2 + r ′2
‖

× J1(λr ′
‖)J1(λ′r ′

‖). (49)

The asymptotic structure of V S
x (z) at large distance from

the metal surface is calculated in Appendix C and the final
result is shown in Eq. (3).8 Correspondingly, the exchange
energy density per unit volume εx(r) = 1

2ρ(r)V S
x (r) has the

asymptotic form:10

εx(z → ∞) = −αx

ρ(z)

z
. (50)

We note that

ρ(z → ∞) = kF

2π2c2

1

z2
|φkF

(z)|2, (51)

where c = 1/
√

β2 − 1.
It is well known that in a finite system vx(r) has a long-range

form of vx(r → ∞) = −1/r .5,6,25,26 (For simplicity, only a
spherically symmetric system is discussed here. For recent
progress made on this subject, see Refs. 14 and 15 and the
discussions later in Sec. VI.) The Slater exchange potential
has exactly the same long-range form of V S

x (r → ∞) = −1/r .
The identical long-range form of vx(r) and V S

x (r) results from
the fact that in the finite system the exchange hole is well
localized near the system. The asymptotic structure of vx(r)
is essentially determined by that of the orbital-dependent
exchange potential uxm(r) of the highest occupied orbital
(denoted by m).5,6,25,26 The asymptotic structure of both uxm(r)
and V S

x (r) in turn can be attributed to the (orbital-dependent)
exchange hole in terms of the leading order contribution of
the multipole expansion of the Coulomb interaction. For the
semi-infinite metal surface, this is no more true since the
exchange hole is delocalized and spread throughout the entire
bulk region,17 and, as a consequence, the multipole expansion
argument does not apply anymore. This explains the difference
in the asymptotic structures of vx(z) and V S

x (z) at large z from
the semi-infinite metal surface, as shown in Eqs. (1) and (3),
respectively. The delocalization of the exchange hole at large
electron positions will be examined in the next section.

IV. DELOCALIZATION OF ρx(r,r′)

We take planar-position average of ρx(r,r′):

ρx(z,z′) = 1

A

∫
dx‖

∫
dx′

‖ρx(r,r′). (52)

The information about ρx(z,z′) clearly is sufficient to serve the
present purpose. By the substitution of Eq. (15) into Eq. (52),

ρx(z,z′) can be shown as

ρx(z,z′) = − 2

π3ρ(z)

∫ kF

0
dkλ2

∫ k

0
dk′[�k,k′(z,z′)

+�k,k′ (z′,z)]. (53)

Equation (53) is valid for all electron positions z. This
expression was first reported in Ref. 17, and the reader is
referred to that work for detailed derivations. It is not difficult to
see that the two terms in Eq. (53) make the same contribution,
and hence

ρx(z,z′) = − 4

π3ρ(z)

∫ kF

0
dkλ2φ∗

k (z)φk(z′)
∫ k

0
dk′φk′(z)φ∗

k′(z′).

(54)

We are interested especially in the asymptotic structure of
ρx(z,z′). It is demonstrated in Appendix D that

ρx(z → ∞,z′) = − 4

πc

1

z
|φkF

(z′)|2. (55)

Equation (55) displays remarkably the delocalization of the
exchange hole in the metal bulk. [The reader is referred to
Eq. (8a) for the behavior of φkF

(z′) in the deep bulk region.] In
the meanwhile, the amplitude of ρx(z,z′) decays as ∼1/z with
the electron position z.

Both planar positions x‖ and x′
‖ of the electron and the hole

have been averaged, respectively, in Eq. (52). But, evidently,
ρx(r,r′) is a function of x‖−x′

‖ only, rather than of x‖ and x′
‖

separately. Another type of average over the planar positions
therefore might be equally capable of featuring the exchange
hole at the metal surface, which is defined in the following
manner:27

bx(z,z′) =
∫ ∞

0
d|x‖ − x′

‖|ρx(r,r′). (56)

We substitute Eq. (15) into Eq. (56) and write bx(z,z′) as

bx(z,z′) = − 1

8π6ρ(z)

∫ ∞

0
d|x‖ − x′

‖|

×
∫

dk
∫

dk′θ (kF − |k|)θ (kF − |k′|)

×�k,k′(z,z′)e−i(k‖−k′
‖)·(x‖−x′

‖), (57)

By introducing the transforms q = k‖ − k′
‖ and K = (k‖ +

k′
‖)/2, one may rewrite bx(z,z′) as

bx(z,z′) = − 1

8π6ρ(z)

∫ kF

−kF

dk

∫ kF

−kF

dk′�k,k′(z,z′)

×
∫

dqF (q)
∫ ∞

0
d|x‖ − x′

‖|e−iq·(x‖−x′
‖), (58)

where the function F (q) is defined as

F (q) =
∫

dKθ (λ − |K + q/2|)θ (λ′ − |K − q/2|). (59)

By using Eq. (10) and further the following identity:∫ ∞

0
d|x‖ − x′

‖|J0(q|x‖ − x′
‖|) = 1

q
, (60)
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Eq. (58) may be further rewritten as

bx(z,z′) = − 1

π5ρ(z)

∫ kF

0
dk

∫ kF

0
dk′�k,k′(z,z′)

×
∫ ∞

0
dqF (q). (61)

Derivation based on Eq. (61), detailed in Appendix D, yields
the following result for bx(z,z′):

bx(z,z′) = − 16

3π5ρ(z)
[G(z,z′) + G(z′,z)], (62)

where

G(z,z′) =
∫ kF

0
dk

∫ kF

k

dk′�k,k′(z,z′)

× λ

[
K

(
λ′

λ

)
(λ′2 − λ2) + E

(
λ′

λ

)
(λ2 + λ′2)

]
. (63)

K and E are the complete elliptic integrals of the first and the
second kinds, respectively:28

K(t) =
∫ 1

0

√
1

(1 − t2x2)(1 − x2)
dx, (64)

E(t) =
∫ 1

0

√
1 − t2x2

1 − x2
dx. (65)

We note that so far all results for bx(z,z′) hold in general
for arbitrary position z. Particularly, Eq. (62) evolves into the
following asymptotic form for limiting large electron position
z (see again Appendix D for the demonstration),

bx(z → ∞,z′) = −
√

kF γ

c3/2

1

z3/2
|φkF

(z′)|2, (66)

where

γ = 20
√

2

π5/2

∫ 1

0
dy(y + 1)−7/2[K(

√
y)(y − 1)

+ E(
√

y)(y + 1)]. (67)

Equation (66) displays similarly the delocalization nature
of the exchange hole. The amplitude of bx(z,z′) decays as
∼1/z3/2, a little faster than that of ρx(z,z′) shown in Eq. (55).

V. ASYMPTOTIC STRUCTURE OF APPROXIMATE
EXCHANGE POTENTIALS

The Slater potential V S
x (r) was proposed as an ap-

proximation to the orbital-dependent Hartree-Fock exchange
potentials.16 Upon the arrival of the KS-DFT, V S

x (r) was
regarded naturally also as an approximation to the KS
exchange potential vx(r). The large-distance structure of it at
the metal surface is shown in Eq. (3) and discussed in Sec. III.
In this section, we survey those of two of other approximate
exchange potentials, the KLI potential V KLI

x (r) and the HS
potential Wx(r). The former reads18,19

V KLI
x (r) = V S

x (r) + V 
x (r), (68)

where

V 
x (r) = 2

ρ(r)

occ.∑
i

|φi(r)|2〈φi |vx − uxi |φi〉. (69)

In passing, we mention that19

vx(r) = V KLI
x (r) + V shift

x (r), (70)

and the component V shift
x (r) defined as

V shift
x (r) = 1

ρ(r)

occ∑
i

[φ∗
i (r) �2 ψi(r) − ψi(r) �2 φ∗

i (r)],

(71)

is sacrificed for the purpose of less calculation labor. [For
convenience, the same symbols V


x (r) and V shift

x (r) in Ref. 12
are adopted here.]

We first make a digression to comment on some bulk
properties of ψk(z) and V KLI

x (z). The expression for V shift
x (z)

at the metal surface is

V shift
x (z) = 1

2π2ρ(z)

∫ kF

0
dkλ2

×
[
φ∗

k (z)
∂2

∂z2
ψk(z) − ψk(z)

∂2

∂z2
φk(z)

]
. (72)

On the other hand, in view of Eq. (31), one has

vx(z = −∞) = Da
k = −kF

π
(73)

and

uxk(z = −∞) = Db
k . (74)

It follows that the right-hand side of Eq. (27) vanishes. With
the understanding that the homogeneous solution of ψk(z) in
Eq. (27) is excluded, one thus has

ψk(z) = 0 for z = −∞. (75)

Therefore V shift
x (z), according to Eq. (72), vanishes in the metal

bulk:

V shift
x (z) = 0 for z = −∞, (76)

and, consequently, V KLI
x (z), according to Eq. (70), has the merit

of possessing the same bulk limit as vx(z):

V KLI
x (z) = −kF

π
for z = −∞. (77)

We next return to the issue of the asymptotic behavior of
V KLI

x (z) in the classically forbidden region. V KLI
x (z) is shown

below to deviate strongly from vx(z) at large distance from the
metal surface. To this end, we first write the expression for
V


x (z):

V 
x (z) = 1

π2ρ(z)

∫ kF

0
dkλ2|φk(z)|2Dk. (78)

For limiting large z, V

x (z) turns out to have the form:

V 
x (z → ∞)

=
√

β2 − 1

2π

1

z

[
ln

(
kF z√
β2 − 1

)
+ C + 2 ln 2 − 1

]
, (79)

with C = 0.577215 the Euler constant. In obtaining Eq. (79),
the following fact

Dk = 1

4π
(kF − k)

[
1 − 2 ln

kF − k

2kF

]
+ o(kF − k), (80)
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for small kF − k, [which follows from Eq. (30)], has been
employed. Equation (79) had also been reported in Ref. 12.
Finally, Eq. (68), together with Eqs. (3) and (79), yields

V KLI
x (z → ∞) =

√
β2 − 1

2π

1

z

[
ln

(
kF z√
β2 − 1

)

+C + 2 ln 2 − 1

]
− 2αx

1

z
, (81)

which has the leading form of O(ln z/z), and hence deviates
from vx(z).

The HS potential Wx(r)20 is defined as the work done in
the Pauli field Ex(r) [Wx(r) hence also known as the Pauli
potential in the quantal density functional theory (Q-DFT)]:29

Wx(r) = −
∫ r

∞
Ex(r′) · dl′ (82)

and

Ex(r) = −
∫

ρx(r,r′) � 1

|r − r′|dr′. (83)

The asymptotic structure of Wx(z) has been extensively
investigated in Ref. 21, and one of the main results is

Wx(z) = −αW

1

z
, (84)

where

αW = β2 − 1

β2

{
β2 − 2

β2
+ 2

π
√

β2 − 1

×
[

1 − (β2 − 1) ln(β2 − 1)

β2

]}
. (85)

It might be helpful to mention the relation between Wx(r) and
vx(r):30

vx(r) = Wx(r) − W
(1)
tC (r), (86)

where W
(1)
tC (r) is the lowest-order correlation-kinetic com-

ponent of vx(r). Wx(r) has been well recognized as the
component of vx(r) which arises purely from the exchange
hole ρx(r,r′).20,30 Clearly, W (1)

tC (z) must also be long-ranged at
the metal surface. This is in sharp contrast to its behavior in
finite systems such as atoms and molecules in which W

(1)
tC (r)

decays in a rather short-ranged form of ∼1/r5.26 We wish to
further mention that it was shown in Ref. 21 that Wx(z) deviates
from vx(z) also in the metal bulk due to the contribution from
W

(1)
tC (z). Only in the LDA, Wx(z) has the same bulk value of

−kF /π as vx(z), as shown in Ref. 31. In this connection, we
list the long-known fact for V S

x (z):

V S
x (z) = −3kF

2π
for z = −∞. (87)

Therefore, strictly speaking, V KLI
x (z) only, among all the

approximate exchange potentials considered here, has the
remarkable property with the same bulk value as that of vx(z).

Finally, we would make several comments on the results
reported in Ref. 12. The large-distance structure of vx(z) was
attributed solely to V


x (z) in Ref. 12, and, consequently, the

conclusion vx(z) ∼ ln z/z was reached. On the other side,
V shift

x (z) was claimed to decay as ∼ln z/z2, and hence make no

leading order contribution to vx(z).12 On the contrary, we find
that in fact,

V shift
x (z → ∞) = −

√
β2 − 1

2π

1

z

[
ln

(
kF z√
β2 − 1

)

+C + 2 ln 2 − 1

]
+ αx

1

z
. (88)

The leading order of O(ln z/z) therefore exactly cancels out in
vx(z), resulting in a faster decay of O(1/z). The discrepancy of
V KLI

x (z) from vx(z) in the classically forbidden region is also
due to the ignored contribution [cf. Eq. (70)] from V shift

x (z).

VI. ASYMPTOTIC STRUCTURES OF vx(z), V S
x (z), V KLI

x (z),
AND Wx(z) AT THE SLAB SURFACE

So far, we have considered only the metal surface with the
semi-infinite geometry. A great deal of work of the electronic
structure at the metal surface has been carried out on a jellium
slab instead. We shall consider the slab case in this section. To
this end, we first mention two studies in which the asymptote
of the xc potential in the classically forbidden region was
addressed as one of the key issues. One was reported in Ref. 11,
mentioned previously in Introduction in which it was claimed
that vx(z → ∞) = −1/z asymptotically. Numerical calcula-
tion in Ref. 32 based on the GW approximation to the electron
exchange-correlation self-energy �xc, however, yielded the
different result: vx(z) ∼ −1/z2 and vc(z) ∼ −1/(4z). Both
studies were performed on the slab surface. Part of our effort
in this section will be devoted to shedding some light on these
results. In fact, it is found that the asymptotic behavior of vx(z),
V S

x (z), V KLI
x (z), and Wx(z) depends critically on the width of

the slab.
We consider a metal slab with a typical width not exceed-

ingly larger than λF or, in other words, comparable to or
smaller than λF , where λF is the bulk Fermi wavelength. In this
case, the discreteness of the eigenenergies of the electron in the
slab must be taken into account. The system can be regarded
virtually as a finite one, and the well-known conclusion for the
finite system that vx(r) ∼ −1/r mentioned in Sec. III therefore
holds. As a matter of fact, this already explains the result
in Eq. (4). More explicitly, the Dirac density matrix has the
following well-known asymptotic form:

γs(r,r′) = 2φm(r)φ∗
m(r′) for z → ∞. (89)

From Eq. (20), by the use of multipole expansion argument for
the Coulomb interaction, which evidently is applicable here,
one immediately has

uxm(z → ∞) = −1

z
. (90)

The notation m clearly has the same meaning as kF but is used
instead to emphasize the discreteness of the eigenenergies.
Equation (4) then follows from Eq. (42).

Additional care is needed in the above discussion for vx(z)
in that it is not fully rigorous since actually DkF

�= 0 in the
case of the slab metal surface. Equation (42) therefore is
not valid and we in effect must resort to Eq. (41) instead.
This point will get further refined near the end of this section
[cf. Eq. (103) below].
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In any way, the fact that the planar freedom remains
extending to infinity is essentially irrelevant in the present
discussion. The key point is the dominant behavior of the
highest occupied orbital and localization of the exchange
hole near the finite system. The slab clearly fails to catch
the continuity feature of the electron eigenenergies, which is
essential to the semi-infinite metal surface. Equation (4) thus
has limitation in that it is valid only for the slab surface and
can not be naively extrapolated for the semi-infinite surface.
Nevertheless, a numerical demonstration of Eq. (4) for the slab
surface like that in Ref. 11 is still quite valuable.

The effects of the delocalization of the exchange hole are
negligible in the case of the slab surface. V S

x (z) consequently
has the same asymptotic form as vx(z):

V S
x (z → ∞) = −1

z
(91)

at limiting large z. Correspondingly, εx (z → ∞) = −ρ(z)/2z.
On the other hand, ρ(z) has the following asymptotic form:

ρ(z → ∞) = 2|φkF
(z)|2. (92)

The reader is referred to Eq. (51) for comparison.
Equation (91) can be readily obtained from Eq. (48) via
keeping the leading-order term in the multipole expansion for
the Coulomb interaction. It is basically just another illustration
of the well-known result V S

x (r → ∞) = −1/r for a finite
system. Indeed, it follows from Eqs. (14) and (89) that, for
z → ∞,

ρx(r,r′) = |φm(r′)|2. (93)

Equation (91) immediately follows from Eqs. (48) and (93).
Similarly, Eq. (83) together with Eq. (93) yields

Ex(r) = − 1

z2
ez, (94)

and it then follows from Eq. (82) that

Wx(z) = −1

z
. (95)

V KLI
x (z) possesses the same asymptotic form [but see also

Eq. (101)]. Only in this case, V shift
x (z), which now decays

exponentially at large z, is much smaller than v

x (z), which in

contrast approaches a nonzero constant

v
x (z) = Dm for z → ∞. (96)

We note once again that kF has the same meaning as m. The fact
that Dk||k|=kF

= DkF
guarantees no ambiguity in the meaning

of Dm.
In summary, Eq. (90) [or Eq. (91)] can be obtained for

the slab case via the argument for the multipole expansion of
the Coulomb interaction. The metal-surface feature of the slab
plays no crucial role at this point. Therefore it is not necessary
to resort to detailed derivations based on Eq. (46) [or Eq. (49)].
[Equations (46) and (49) hold for both the cases of the
semi-infinite and the slab metal surfaces.] Nevertheless, such
derivations turn out to be amazingly simple (due of course also
to the feature of the finiteness of the system). In the meanwhile,
they could be fairly illuminating. We therefore include one in
the following mainly for the purpose of illustration. To this end,

we first copy Eq. (46) below with appropriate modifications in
the form for the slab case:

uxkF
(z) = − 2

LφkF
(z)

occ∑
k

λφk(z)
∫ 0

−L

dz′φ∗
k (z′)φkF

(z′)

×
∫ ∞

0
dr ′

‖
1√

(z − z′)2 + r ′2
‖

J1(λr ′
‖). (97)

Only the main domain (−L � z′ � 0) has been taken into
account for the integral over z′, which is clearly justified.
Since z � z′, the denominator

√
(z − z′)2 + r ′2

‖ can be readily
replaced by

√
z2 + r ′2

‖ . The dominant contribution to the
integration over k arises from the region of kF − k ∼ 1/z,
and accordingly λ � kF − k. On the other hand, the dominant
contribution to the integration over r ′

‖ arises from the region of
0 � r ′

‖ � O(λ−1) since J1(∞) = 0. Correspondingly, r ′
‖ � z

and hence
√

z2 + r ′2
‖ can be further replaced by z. The

integration over r ′
‖ then turns out simply to be∫ ∞

0
dr ′

‖J1(λr ′
‖) = 1

λ
. (98)

Equation (97) as a consequence, becomes

uxkF
(z → ∞) = − 2

zLφkF
(z)

occ∑
k

φk(z)
∫ 0

−L

dz′φ∗
k (z′)φkF

(z′).

(99)

One then employs the following equation:∫ 0

−L

dz′φ∗
k (z′)φkF

(z′) = L

2
δk,kF

. (100)

Equation (90) follows (with m equivalent to kF ). Equation (91)
can be obtained from Eq. (49) in a similar manner.

Notice that, strictly speaking,

V KLI
x (z → ∞) = Dm − 1

z
, (101)

where the term of the constant Dm arises from the V

x (z)

component on the right-hand side of Eq. (68), as shown in
Eq. (96). Furthermore, in accordance to the claims made for
finite systems in Ref. 15, such type of constant might also
possibly occur in vx(z), since as mentioned above the slab
can be regarded essentially as a finite system. Indeed, since
DkF

�= 0 for the slab surface, one should resort to Eq. (41)
instead of Eq. (42). Equation (41) in fact can be understood as
one of the special cases of the following general result:

vx(r) = uxm(r) + Dm, (102)

proposed for the finite system in Ref. 15. In the light of Eq. (90),
we consequently have

vx(z → ∞) = Dm − 1/z, (103)

instead of Eq. (4). Therefore, strictly speaking, vx(∞) �=
0 now [see also the discussions in the next paragraph.]
Equation (103) can be alternatively obtained from Eq. (70) and
Eq. (101) together with the fact that V shift

x (z → ∞) vanishes
exponentially.
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Finally, we remark that V S
x (∞) = 0 in any case. On the

other hand, Eq. (82) automatically guarantees Wx(∞) = 0.
Furthermore, Dm can be made to vanish so that vx(∞) = 0 by
shifting vx(r) in the finite system15 or the slab of the present
case. It is exactly in this sense that we justify the result in
Eq. (4). However, we wish also to mention that it remains
unclear whether vx(∞) can always be simultaneously shifted
to be zero in the exact (full) KS scheme in which one has
already adopted vxc(∞) = 0. The remarkable fact is that Dm in
Eq. (103) evolves into Dk at |k| = kF of Eq. (35) and vanishes
for the semi-infinite metal surface. Thus for the semi-infinite
metal surface one has definitely vxc(∞) = 0 and vx(∞) = 0.

VII. CONCLUSIONS

By the use of the OEP method, we have established
an identity between the planar-momentum averaged orbital-
dependent exchange potential uxkF

(z) and the KS exchange
potential vx(z) in the classically forbidden region of the metal
surface. Based on it, the asymptotic form of vx(z) at large
distance from the metal surface has been investigated. The
result is vx(z → ∞) = −αx/z, which resolves the controversy
raised recently in the literature. The point that vxc(∞) = 0 and
vx(∞) = 0 hold simultaneously gets emphasized and carefully
elucidated. The asymptotic form of the Slater exchange po-
tential V S

x (z → ∞) = −2αx/z is also verified. The result for
vx(z) and that for V S

x (z) were initially proposed in Ref. 8, and
the former was verified subsequently in Ref. 10. The further
confirmation in the present work indicates beyond doubt that
they are correct and the issue is finally settled. Furthermore,
the structure of the exchange hole has been examined, and
especially the delocalization nature of it for an electron far
outside the metal surface has been demonstrated. It is exactly
such delocalization that gives rise to the quite nontrivial
asymptotic behavior of vx(z). In addition, the asymptotic
structure of the approximate KLI exchange potential V KLI

x (z)
and HS exchange potential Wx(z) at large z has also been
surveyed, which are of the forms V KLI

x (z → ∞) ∼ ln z/z and
Wx(z → ∞) ∼ −αW/z, respectively.

As mentioned in Introduction, common wisdom favors the
belief that the full Kohn-Sham exchange-correlation potential
vxc(z) decays like the classical image potential at large distance
from the metal surface. Doubt, however, has been cast on it
in Ref. 10 in which the asymptote of vc(z) was also studied.
It was shown in Ref. 10 that the asymptotic form of vxc(z) is
not the same as the classical image potential. Recent progress
on the asymptote of vc(z) has also been made in Ref. 33.
Unfortunately, approximations have been employed in the
calculations for vc(z) in both of Refs. 10 and 33 and it is
not clear whether they are fully justified. The subject of the
asymptote of vxc(z) thus remains not fully settled.

The asymptotic behavior of the exchange potential at the
metal slab surface has also been investigated. It is shown that
asymptotically vx(z) as well as V S

x (z), V KLI
x (z), and Wx(z)

depends critically on the width of the slab. In particular, if
the width is comparable to or smaller than λF , the slab can
be essentially regarded as a finite system and asymptotically
vx(z) = −1/z. V S

x (z), V KLI
x (z), and Wx(z) all have this same

form. The exchange energy density εx(z) correspondingly
approaches asymptotically −ρ(z)/2z. All these facts are

inherently due to the localization of the exchange hole in the
finite system. While by definition V S

x (z) and Wx(z) vanish
in the classically forbidden region of both the semi-infinite
and the slab metal surfaces, a careful analysis reveals that the
−1/z term commences only to the second-order contribution
to vx(z) and V KLI

x (z) and, actually, both vx(z → ∞) and
V KLI

x (z → ∞) approach a nonzero constant, i.e., vx(∞) =
V KLI

x (∞) = Dm �= 0. The constant Dm however can always be
made to vanish in th exchange-only self-consistent calculations
by shifting vx(z). It is precisely in this sense that one has the
result of Eq. (4).
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APPENDIX A: PROOF FOR EQ. (24)

We substitute Eq. (12), together with Eq. (6), into Eq. (20).
This results in

uxk(r) = − 1

π2φk(r)

√
2

AL

∫ kF

0
dk′λ′φk′(z)

×
∫ ∞

−∞
dz′φ∗

k′(z′)φk(z′)

×
∫

dx′
‖e

ik‖·x′
‖

J1(λ′|x‖ − x′
‖|)

|r − r′||x‖ − x′
‖|

. (A1)

Making the transform r′
‖ = x‖ − x′

‖ in the above equation and
making the use of Eq. (6) once again, we establish Eq. (24)
explicitly with the following expression:

uxk(z) = − 1

π2φk(z)

∫ kF

0
dk′λ′φk′(z)

∫ ∞

−∞
dz′φ∗

k′(z′)φk(z′)

×
∫

dr′
‖e

ik‖·r′
‖

J1(λ′r ′
‖)

r ′
‖
√

(z − z′)2 + r ′2‖
. (A2)

Further algebra then yields

uxk(z) = − 2

πφk(z)

∫ kF

0
dk′λ′φk′(z)

∫ ∞

−∞
dz′φ∗

k′(z′)φk(z′)

×
∫ ∞

0
dr ′

‖
J0(k‖r ′

‖)J1(λ′r ′
‖)√

(z − z′)2 + r ′2‖
. (A3)

APPENDIX B: DERIVATION FOR EQ. (47)

It is not difficult to see that, for limiting large z, the leading
contribution to the integral over k on the right-hand side of
Eq. (46) arises from the region kF − k ∼ 1/z, and that to the
integral over z′, on the other side, from the region of the metal
bulk. Accordingly, λ � (kF − k) and hence |z − z′| � 1/λ.
Since J1(∞) = 0 and accordingly the dominant contribution to
the integral over r ′

‖ arises from the region of 0 � r ′
‖ � O(λ−1),

one has |z − z′| � r ′
‖ in the integral over r ′

‖ in Eq. (46). Thus
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it follows that∫ ∞

0
dr ′

‖
1√

(z − z′)2 + r ′2
‖

J1(λr ′
‖)

= 1

|z − z′|
∫ ∞

0
dr ′

‖J1(λr ′
‖) = 1

λ|z − z′| . (B1)

Correspondingly,

uxkF
(z → ∞) = − 2

πφkF
(z)

∫ kF

0
dkφk(z)

×
∫ ∞

−∞
dz′ 1

|z − z′|φ
∗
k (z′)φkF

(z′). (B2)

We next define

�k,k′(z) = 2
∫ ∞

−∞
dz′ 1

|z − z′|φ
∗
k′(z′)φk(z′). (B3)

Since, as just mentioned, the integral over z′ arises mainly
from the bulk region, one can make the use of Eq. (8a) for the
orbitals in the above expression and it follows that

�k,k′(z) =
∫ −d

−∞

dz′

z − z′ [cos(k−z′ + δ−) − cos(k+z′ + δ+)],

(B4)

where k± = k ± k′, δ± = δ(k) ± δ(k′), and −d stands for
a negative position near the surface whose exact value is
irrelevant for z � d. Indeed,

�k,k′(z) =
∫ z+d

−∞

dz′

z′ {cos[k−(z − z′) + δ−)]

− cos[(k+(z − z′) + δ+)]}, (B5)

and the upper limit of the integral, z + d, can be readily
replaced by z. Thus one has

�k,k′(z) = cos(k−z + δ−)
∫ ∞

z

dz′

z′ cos(k−z′)

+ sin(k−z + δ−)
∫ ∞

z

dz′

z′ sin(k−z′)

− cos(k+z + δ+)
∫ ∞

z

dz′

z′ cos(k+z′)

− sin(k+z + δ+)
∫ ∞

z

dz′

z′ sin(k+z′) (B6)

or

�k,k′(z) = − cos(k−z + δ−)ci(k−z) − sin(k−z + δ−)si(k−z)

+ cos(k+z + δ+)ci(k+z) + sin(k+z + δ+)si(k+z),

(B7)

where si and ci are the sine integral and cosine integral,
respectively,28

si(x) = −
∫ ∞

x

dt

t
sin t, (B8)

ci(x) = −
∫ ∞

x

dt

t
cos t. (B9)

For z → ∞, the third and fourth terms on the right-hand side
of Eq. (B7) will be demonstrated at the end of this appendix to
make only higher-order contribution to uxkF

(z). Consequently,
these terms can be ignored. Hence one comes to

�k,k′(z → ∞) = − cos(k−z + δ−)ci(k−z)

− sin(k−z + δ−)si(k−z). (B10)

We now substitute Eqs. (B3) and (B10) (with k replaced by kF

and k′ by k) into Eq. (B2), and obtain

uxkF
(z → ∞) = 1

πφkF
(z)

∫ kF

0
dkφk(z)[cos(a + δ̃−)ci(a)

+ sin(a + δ̃−)si(a)], (B11)

where δ̃− = δ(kF ) − δ(k) and a = (kF − k)z. Again, as men-
tioned above, for large z, the dominant contribution to the
integral in the above equation arises from the region kF − k ∼
1/z. Correspondingly, δ̃− → 0 and φk(z)= φkF

(z) e−ca , where
c = 1/

√
β2 − 1. Therefore we finally obtain Eq. (47) with

αx = − 1

π

∫ ∞

0
dae−ca[ci(a) cos a + si(a) sin a]. (B12)

The value of αx given in Eq. (2) may be obtained via carrying
out the integral in Eq. (B12):28

∫ ∞

0
dae−ca[ci(a) cos a + si(a) sin a] = −π + 2c ln c

2(1 + c2)
.

(B13)

Solely to draw a connection with the calculations performed
in an alternate approach in Ref. 10, we mention the following
identity:28

∫ ∞

0
du

u

u2 + a2
e−u = −ci(a) cos a − si(a) sin a. (B14)

Were the third and fourth terms in Eq. (B7) taken into
account, they would have made the following contribution to
uxkF

(z):

− 1

cπz
{cos[2kF z + δ(kF )]ci(2kF z)

+ sin[2kF z + δ(kF )]si(2kF z)}. (B15)

Since ci(2kF z) → 0 and si(2kF z) → 0 as z → ∞, this
contribution is therefore of the order o(1/z) and the neglect of
these terms in Eq. (B7) is thus justified.

APPENDIX C: VERIFICATION OF EQ. (3)

The φk(z) is in fact real, and hence the integrals over k and
k′ in Eq. (49) are clearly symmetric. Accordingly, we change
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the domain of the k′ integration in Eq. (49) to
∫ k

0 dk′ combined
with a corresponding double. Similar arguments to those at the
beginning of Appendix B then lead, for z → ∞, to∫ ∞

0
dr ′

‖
1

r ′
‖
√

(z − z′)2 + r ′2
‖

J1(λr ′
‖)J1(λ′r ′

‖)

= 1

|z − z′|
∫ ∞

0
dt

1

t
J1(t)J1(λ′t/λ)

= λ

2λ′|z − z′| . (C1)

Thus it follows from Eq. (49) that, for z → ∞,

V S
x (z) = − 4

π3ρ(z)

∫ kF

0
dkφk(z)λ2

∫ k

0
dk′φ∗

k′(z)

×
∫ ∞

−∞
dz′ 1

|z − z′|φ
∗
k′(z′)φk(z′). (C2)

Making the use of Eq. (B3) in the preceding equation yields,
for z → ∞, further

V S
x (z) = − 2

π3ρ(z)

∫ kF

0
dkφk(z)λ2

∫ k

0
dk′φ∗

k′(z)�k′,k(z).

(C3)

Clearly, the third and fourth terms in Eq. (B7) for �k′,k(z) can
be ignored once again. Accordingly, Eq. (B10) for �k′,k(z)
is substituted into Eq. (C3) instead. We make further the
transform of the integral variable k′ = k − b/z. It follows then
that, for z → ∞,

V S
x (z) = 2

π3ρ(z)

∫ kF

0
dk|φk(z)|2λ2

×
∫ ∞

0
dbe−cb[ci(b) cos b + si(b) sin b]. (C4)

We next compare the above equation with Eq. (B12) to obtain
Eq. (3). In doing so, the expression (13) for ρ(z) has also been
employed.

APPENDIX D: DERIVATIONS FOR EQS. (55), (62), AND (66)

For limiting large z, the leading-order contribution to the
integral over k′ on the right-hand side of Eq. (54) arises from
the region of k′ → k, and hence we have

ρx(z,z′) = − 4

π3zρ(z)

∫ kF

0
dkλ2 κ

k
φ∗

k (z)φk(z′)φk(z)φ∗
k (z′).

(D1)

Similarly, the contribution to the integral over k arises from
the region of k → kF . Therefore

ρx(z,z′) = − 4

π3zρ(z)

1

c

∣∣φkF
(z′)

∣∣2
∫ kF

0
dkλ2|φk(z)|2. (D2)

We then make the use of the expression (13) for ρ(z).
Equation (55) follows.

We next present the derivation leading to Eqs. (62) and (66).
The explicit expression for F (q) has been reported in Refs. 8

and 10 as

F (q) = πλ2
<θ (λ> − λ< − q) + θ (λ> + λ< − q)

× θ (q − λ> + λ<){πλ2
< θ [(λ2

> − λ2
<)1/2 − q]

+ Sλ>
(q) + Sλ<

(q)}, (D3)

where λ> (λ<) is the larger (smaller) one of λ and λ′,
respectively. In Eq. (D3),

Sλ(q) = λ2 tan−1

(
λ2 − X2

λ

)1/2

Xλ

− Xλ

(
λ2 − X2

λ

)1/2
, (D4)

Sλ′(q) = Sλ(q)|λ→λ′, (D5)

and

Xλ(q) = 1

2

(
q + λ2 − λ′2

q2

)
, (D6)

Xλ′(q) = 1

2

(
q − λ2 − λ′2

q2

)
. (D7)

The fact that the integral
∫ ∞

0 dqF (q) can be carried out
analytically is the key point in obtaining the neat final
expressions (62) and (66) for bx(z,z′). To this end, we write
it as∫ ∞

0
dqF (q) =

∫ √
λ2

>−λ2
<

0
dqπλ2

<

+
∫ λ>+λ<

λ>−λ<

dq[Sλ>
(q) + Sλ<

(q)]. (D8)

The first integral on the right-hand side of the above equation
is trivial. After performing a partial integration over q in the
second one, we come to∫ ∞

0
dqF (q) = −

∫ λ>+λ<

λ>−λ<

dq
∂

∂q
[Sλ>

(q) + Sλ<
(q)]. (D9)

We caution the reader that the function Sλ>
(q) + Sλ<

(q) has a
discontinuity at q = √

λ2
> − λ2

<:

Sλ>
(
√

λ2
> − λ2

<−) + Sλ<
(
√

λ2
> − λ2

<−) = −π

2
λ2

<, (D10)

Sλ>
(
√

λ2
> − λ2

<+) + Sλ<
(
√

λ2
> − λ2

<+) = π

2
λ2

<. (D11)

Care therefore is needed in obtaining Eq. (D9). We next list
the following properties:

λ2
> − X2

λ>
= λ2

< − X2
λ<

(D12)

and

∂

∂q
Sλ>

(q) = ∂

∂q
Sλ<

(q) = −
√

λ2
< − X2

λ<
. (D13)

They are found to be useful in our further simplifying Eq. (D9)
to ∫ ∞

0
dqF (q) = 2

∫ λ>+λ<

λ>−λ<

dqq
(
λ2

< − X2
λ<

)1/2
. (D14)
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Equation (D14) is rewritten trivially as

∫ ∞

0
dqF (q) = 2

∫ √
λ2

>−λ2
<

λ>−λ<

dqq
(
λ2

< − X2
λ<

)1/2

+ 2
∫ λ>+λ<

√
λ2

>−λ2
<

dqq
(
λ2

< − X2
λ<

)1/2
. (D15)

The right-hand side of Eq. (D15) can be further simplified via
the following transform in the integrals:

x = 1

λ<

(
λ2

< − X2
λ<

)1/2
. (D16)

Under this transform,

Xλ<
= −λ<

√
1 − x2,

(D17)
q =

√
λ2

> − λ2
<x2 − λ<

√
1 − x2

in the first integral on the right-hand side of Eq. (D15), but

Xλ<
= λ<

√
1 − x2,

(D18)
q =

√
λ2

> − λ2
<x2 + λ<

√
1 − x2

in the second one. The resultant expression is

∫ ∞

0
dqF (q) = 4λ2

<

∫ 1

0
dxx2 λ2

> + λ2
<(1 − 2x2)√

(λ2
> − λ2

<x2)(1 − x2)
.

(D19)

The preceding integral could be efficiently evaluated numer-
ically. We here prefer to express it in terms of complete
elliptic integrals. To this end, we cite the following relations
(t � 1):28

∫ 1

0
dxx2 1√

(t2 − x2)(1 − x2)
= t

[
F

(
π

2
,
1

t

)
− E

(
π

2
,
1

t

)]

= t

[
K

(
1

t

)
− E

(
1

t

)]
(D20)

and

∫ 1

0
dxx4 1√

(t2 − x2)(1 − x2)

= 1

3
t

[
(2t2 + 1)F

(
π

2
,
1

t

)
− 2(t2 + 1)E

(
π

2
,
1

t

)]

= 1

3
t

[
(2t2 + 1)K

(
1

t

)
− 2(t2 + 1)E

(
1

t

)]
, (D21)

where F and E are the elliptic integrals of the first and the
second kinds, respectively. Substituting these relations into
Eq. (D19), one has

∫ ∞

0
dqF (q) = 4λ>

3

[
K

(
λ<

λ>

)
(λ2

< − λ2
>)

+ E
(

λ<

λ>

)
(λ2

< + λ2
>)

]
. (D22)

Further substitution of Eq. (D22) into Eq. (61) then leads to

bx(z,z′) = − 4

3π5ρ(z)

∫ kF

0
dk

∫ kF

k

dk′

× [�k,k′(z,z′) + �k′,k(z,z′)]

× λ

[
K

(
λ′

λ

)
(λ′2 − λ2) + E

(
λ′

λ

)
(λ2 + λ′2)

]
.

(D23)

Equation (62) follows from the symmetry property �k,k′

(z,z′) = �k′,k (z′,z).
We next make the variable transform y = λ′2/λ2 in Eq. (63)

to obtain, for z → ∞,

G(z,z′) = φkF
(z)|φkF

(z′)|2
∫ kF

0
dkλ5φ∗

k (z)

×
∫ 1

0

dy

2
√

k2
F − λ2y

e−c(kF −
√

k2
F −λ2y)z

× [K(
√

y)(y − 1) + E(
√

y)(y + 1)]. (D24)

Further transform x = (kF − k)z then yields

G(z → ∞,z′) = 3π3

16
k

3/2
F γ (cz)−7/2

∣∣φkF
(z)

∣∣2∣∣φkF
(z′)

∣∣2
,

(D25)

where

γ = 32
√

2

3π3
c7/2

∫ ∞

0
dx

∫ 1

0
dye−cx(y+1)x5/2

× [K(
√

y)(y − 1) + E(
√

y)(y + 1)]. (D26)

Finally, we substitute Eq. (D25) into Eq. (62) and apply the
identity

∫ ∞

0
dxx5/2e−c(y+1)x = 15

8

√
π [c(y + 1)]−7/2 (D27)

to Eq. (D26). The result is the expressions of (66) and (67). In
doing so, we have also made the use of Eq. (51).
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