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Diffusion Monte Carlo for fermions with replica reduction
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We propose an improved framework of diffusion Monte Carlo method for quantum many-fermion systems.
This approach enables us to find the ground state of the system without any a priori information on the nodal
structure of the wave function. The main idea in this approach is to use sign-carrying replicas which are the
basis vectors in a restricted Hilbert space. For efficiency, we propose to reduce the number of replicas in a proper
manner. We test our method on a spinless fermion system, and compare the results with the exact values. We also
discuss this method in relation to exact diagonalization.
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For many-fermion systems, it is difficult, in general, to
diagonalize the Hamiltonian and find the exact ground-state
energy, because the dimension of the Fock space increases
exponentially with the system size. In order to circumvent
this difficulty, one can use the Lanczös method,1 or the density
matrix renormalization group.2 The Lanczös method, however,
can be applied only to systems with limited size. On the other
hand, the density matrix renormalization group method cannot
handle long-range interactions. The so-called fermion Monte
Carlo formalism was invented to treat many-fermion systems
in continuum space.3 A detailed study showed that there are
still uncontrolled approximations in the fermion Monte Carlo
methods.4 Furthermore, it is known that usual quantum Monte
Carlo formalisms in continuum space suffer from severe sign
problems.5

Recently, a new fermion Monte Carlo has been proposed to
simulate correlated many-fermion systems in Slater determi-
nant space.6–8 The key achievement of this method is to ensure
convergence to the solution of full configuration without any
a priori information regarding the nodal structure of the wave
function. Using a Monte Carlo method, even excited states
can be calculated by eliminating the components of the lower
states from the imaginary-time propagator.9

In this paper, following the procedure of diffusion Monte
Carlo,10–13 we propose an improved scheme for the new
fermion Monte Carlo by using a replica reduction. Further-
more, we argue that, when there are symmetries in systems,
it is necessary to restrict the replicas to walk only in the
reduced Hilbert space. By introducing the concept of guiding
state,14 we determine the ground state without any guessing.
For spinless fermion systems, we compare the exact values
with those obtained by our method. In this approach, we show
that we do not encounter the sign problem.

For a given Hamiltonian H , introducing an energy shift E

and the inverse of energy τ , we consider a formal solution of
the imaginary-time Schrödinger equation

|�(τ )〉 = ± exp{−(H − E)τ }|�(0)〉. (1)

As τ goes to infinity, with the properly chosen E, the state
|�(τ )〉 becomes the ground state. This is the basic idea of the
diffusion Monte Carlo method. We will discuss more on the ±
sign included in Eq. (1) when we introduce replicas, which are

the basis vectors performing random walks in this diffusion
Monte Carlo.

For a M-fermion system, the simplest basis {|i〉}, which we
call easy basis, is represented by a set of Slater determinants
as

|i〉 = c
†
i1
c
†
i2

· · · c†iM |0〉 (i1 < i2 < · · · < iM ). (2)

Here, note that several subindices can be combined into the
index in in the creation operator c

†
in

. For instance, a momentum
and a spin are represented by a single index.

If there is no symmetry at all in H , this easy basis {|i〉}
should be used straightforwardly. However, when symmetries
are involved, we should block diagonalize the matrix of H . In
this case, any states in a decomposed space should not cross
into other decomposed spaces in the diffusion Monte Carlo
process. Since we should restrict the Hilbert space, we should
find a proper basis. There are many methods to decompose the
Hilbert space for systems with translation, rotation, reflection
symmetries,15,16 as well as spin symmetries.17 Unless we make
symmetry breaking explicitly in the Hamiltonian, we should
restrict the Hilbert space until no further reduction through
block diagonalization can be done. In the Lanczös method, we
do this reduction only for saving of memory space but which is
not mandatory. However, in the diffusion Monte Carlo method,
the restriction of the Hilbert space is essential if the size of
energy fluctuation is larger than energy differences between
ground-state energies in different sectors.

For systems having symmetries, the process of restricting
the Hilbert space is essentially equivalent to finding the
symmetrized basis {|bi〉} in terms of the easy basis. It is well
known in group representation theory18 that, in order to find
{|bi〉}, we should use projection operators pαβ written as

pαβ = n

g

∑
t∈G

rβα(t−1)ρt , (3)

where n is the dimension of representation, g is the order of
symmetry group G with group elements t , rβα is the irreducible
representation matrix elements, and ρt is the operator acting
on the Hilbert space. Using pαβ , we decompose the Hilbert
space H as

H =
h⊕

i=1

V
⊕mi

i =
h⊕

i=1

(
ni⊕

α=1

V
⊕mi

i,α

)
, (4)
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FIG. 1. (Color online) The normalized ground state |�g〉 is
represented in terms of the basis |bi〉, where the sign of the ground
state is arbitrary. The state |�n〉, which is not normalized, is used in
order to approximate the ground state.

where h is the number of irreducible representations, mi is
the multiplicity, and ni is the dimension of the corresponding
irreducible representation. Note that the vector space Vi is
unique, while Vi,α depends on our choice of basis {|bi〉}. Within
the mi-dimensional restricted space V

⊕mi

i,α , we represent the
Hamiltonian H in a mi × mi matrix C as

H |bi〉 =
∑

j

Cji |bj 〉, (5)

where the matrix elements Cji of C are given by complex
numbers in general.

Once we find C in the symmetrized basis, we can divide C

into two parts: diagonal A and off-diagonal B as

C = A + B. (6)

With a small step �τ = τ/T , we introduce the Suzuki-Trotter
decomposition as

± exp{−(H − E)τ } → ± exp{(E − C)τ }
= [± exp{(E − C)�τ }] · · · [± exp{(E − C)�τ }]
≈ [± exp{(E − A)�τ } exp(−B�τ )]

· · · [± exp{(E − A)�τ } exp(−B�τ )]. (7)

We note that in most cases of physical interests, the matrix
D ≡ exp(−B�τ ) has negative elements. This is the origin of
the sign problem.19–21

In a typical diffusion Monte Carlo, we approximate the
ground state |�g〉 by |�n〉. We let |�n〉 perform random walks
generating |�n+1〉, |�n+2〉, and so on. Finally we sum the states
to find the ground state. However, as shown in Fig. 1, the state
|�n〉 will wander around |�g〉 and sometimes may move close
to −|�g〉 if negative elements are included in D. Then |�n〉
will wander around −|�g〉 also for some period of time. In
this case, we may obtain a zero wave function for an averaged
state. Thus, it is necessary to make a restriction on random
walks. This restriction is incorporated in the process of Flip,
which will be explained later.

In order to handle negative values in D and |�n〉, we extract
the minus part of D(−) from D and rewrite D as D = D(+) −
D(−). Simultaneously we consider the minus part of |�(−)〉
from |�〉 and rewrite it as |�〉 = |�(+)〉 − |�(−)〉. Then, we
can find the wave-function evolution as

D|�n〉 = (D(+) − D(−))(|�(+)
n 〉 − |�(−)

n 〉)

→
(

D(+) D(−)

D(−) D(+)

) ( |�(+)
n 〉

|�(−)
n 〉

)
=

( |�(+)
n+1〉

|�(−)
n+1〉

)

→ |�(+)
n+1〉 − |�(−)

n+1〉 = |�n+1〉. (8)

We employ the spinorlike notation in the above in order
to identify the effect of the sign. For an explicit numerical
example for D|�n〉, we note⎛

⎜⎝
1 −5 3

−5 6 1

3 1 −4

⎞
⎟⎠

⎛
⎜⎝

1

−3

2

⎞
⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 3 0 5 0

0 6 1 5 0 0

3 1 0 0 0 4

0 5 0 1 0 3

5 0 0 0 6 1

0 0 4 3 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

2

0

3

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

22

2

3

0

23

11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎝

22

2

3

⎞
⎟⎠ −

⎛
⎜⎝

0

23

11

⎞
⎟⎠ =

⎛
⎜⎝

22

−21

−8

⎞
⎟⎠ . (9)

Here the key observation is that all numbers in the middle of
the above equation are positive or zero. Thus, as far as we
use the doubly enlarged space, it is conceptually possible to
interpret the numbers as probabilities for random walks.

In order to find the ground state with as small memory
as possible, we employ a Monte Carlo method.22,23 We first
represent |�n〉 in terms of integer multiples of basis as

|�n〉 =
∑

i

Nni |bi〉, (10)

where Nni can be negative integers. However, in the doubly
enlarged space, the walkers are |bi〉 or −|bi〉 and the total
number of walkers Nn is equal to

∑
i |Nni |. The wave-function

evolution from |�n〉 to |�n+1〉 is described by our algorithm
of four steps which we explain below: Walk, Branch, Cancel,
and Flip.

Walk. We now focus on the random walk of the symmetrized
basis |bi〉. For example, in Eq. (9), there are 6 = 1 + | − 3| + 2
walkers, which are one |b1〉, three −|b2〉’s, and two |b3〉’s. A
walker of −|b2〉 will go to |b1〉 with probability 5

12 , −|b2〉 with
probability 6

12 , and −|b3〉 with probability 1
12 .

In fact, we find that, with known matrix elements Dji of D,
the replica |R〉 walks in the doubly enlarged space as

|R〉 = sign(Nni)|bi〉 → |R′〉 = sign(Dji) × sign(Nni)|bj 〉,
where sign(x) is −1, 0, 1 when x < 0, x = 0, x > 0,
respectively. The corresponding transition probability is
given by

D
(+)
ji + D

(−)
ji∑

k(D(+)
ki + D

(−)
ki )

= |Dji |∑
k |Dki | . (11)

We emphasize again that the values of D
(+)
ji and D

(−)
ji cannot

be nonzero simultaneously.
Since D is a huge matrix in general, we need to truncate

D. We propose an approximation as follows. For a small �τ ,
we find D ≈ 1 − B�τ in the first order of �τ . Hence, when
a replica state walks from |bi〉 to |bj 〉, nonzero values of B

determine the next states |bj 〉 up to O(�τ ). Thus we consider
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a small space whose basis vectors are connected from |bi〉
such as

|bi〉 ∪ {|bj 〉|Cji 
= 0} = {|bi〉 ≡ |j0〉,|j1〉,|j2〉, . . . ,|jm〉}.
With this truncated space, we approximate D and find a
manageable number of Dki as

D|bi〉 = D|j0〉 ≈
m∑

k=0

Dki |jk〉. (12)

The procedure to find Dki is simple. We first write the matrix
elements of B connected to |bi〉 such as

B ≈

⎛
⎜⎜⎜⎝

0 C∗
j1j0

· · · C∗
jmj0

Cj1j0 0 C∗
jmj1

...
. . .

Cjmj0 Cjmj1 0

⎞
⎟⎟⎟⎠ .

Then, we diagonalize the above matrix, and find that

B ≈
∑

a

|λa〉λa〈λa| and |λa〉 =
∑

l

Ula|bl〉,

where |λn〉 are eigenvectors with the corresponding unitary
matrix U . In consequence, we find a manageable number of
matrix elements,

Dki =
m∑

a=0

Uka exp(−λa�τ )U †
a0. (13)

This approximation would be improved if we include more
connected states produced by B2.

Branch. As we see in Eq. (7), we have to handle the
proportional factor exp{(E − A)�τ }. After the random walk
from |bi〉 to |bj 〉 up to sign, the branching process is taken into
account by using the factor F ,

F = exp{(E − 〈bj |H |bj 〉)�τ }
∑

k

|Dki |, (14)

where
∑

k |Dki | is due to the probability normalization in
Eq. (11). Adopting the usual rule of birth-death process, we
replicate the replica as many as int(F + u), where u is a random
number uniformly distributed in the interval [0,1].

Cancel. It is crucial to take the procedure of cancellation
as shown in |�(+)

n+1〉 − |�(−)
n+1〉 in Eq. (8). In fact, after all

replicas perform random walks and branching, we have to
find the difference between the number of |bj 〉 walkers and the
number of −|bj 〉 walkers. As a result, we find the next-step
replica numbers Nn+1i , which are positive or negative, for each
symmetrized basis |bi〉.

Flip. As shown in Eq. (1), the sign of the ground state
|�g〉 is not determined. It is necessary to choose the sign in
front of |�(+)

n+1〉 − |�(−)
n+1〉 in order for |�n+1〉 to wander around

only one among |�g〉 and −|�g〉. Using the guiding state |ψg〉
which is the sum of all previous replicas,

|ψg〉 =
n∑

c=0

|�c〉, (15)

FIG. 2. (Color online) The state |�n〉 = |b1〉 − 3|b2〉 + 2|b3〉
walks into |�n+1〉 = −|b1〉 − |b2〉 + |b3〉 through the steps of Walk,
Branch, Cancel, and Flip. In the process of Walk, a typical transition
from −|b2〉 to |b3〉 is represented by using the curved arrow. In the
process of Branch, the numbers of ±|bi〉 are changed. In the process
of Cancel, the differences between the numbers of |bi〉 and −|bi〉 are
calculated. After the process of Flip, we finally find the state |�n+1〉,
which undergoes the four processes again.

we determine the sign in Eq. (7) with the following rule. For
the case where the state |�n〉 walks into |�(+)

n+1〉 − |�(−)
n+1〉, we

calculate the overlap I as

I = 〈ψg|(|�(+)
n+1〉 − |�(−)

n+1〉). (16)

We choose the sign as plus if I � 0 or minus otherwise.
Choosing the minus sign means flipping all replicas,

Nn+1i → −Nn+1i . (17)

Up to Flip, a cartoonlike numerical example is shown in Fig. 2.
Count. After the flip process, we have obtained another

approximation |�n+1〉 to the ground state. This approximation
is used to update the guiding state. Eventually the guiding state
|ψg〉 becomes the ground state |�g〉 in the restricted Hilbert
space. We also update the energy shift E using the energy
expectation value with the guiding state:

E = 〈ψg|H |ψg〉
〈ψg|ψg〉 . (18)

Since the true ground-state energy is always lower than any
E, one may guess that the number of replicas will increase
gradually. However, we find that there is some peak in the
number of replicas during the simulation. And then all replicas
eventually die out in the long run. In diffusion Monte Carlo, the
extinction of replicas happens when the shift energy is lower
than the ground-state energy. This controversy has originated
from the truncation of D, since the approximated branching
factor F is less than the exact value Fexact at the extinction of
replicas:

F

Fexact
= exp{(E − Etrue)�τ }

∑
k |Dki |∑

k |Dki |full
< 1. (19)

As far as the difference
∑

k |Dki |full − ∑
k |Dki | is in the order

of (�τ )2, we conclude that the expectation value E approaches
the true ground-state energy Etrue up to the order of �τ . The
Suzuki-Trotter decomposition whose error is of the order of
(�τ )2 is not the main approximation in the procedure.24
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FIG. 3. (Color online) Flowchart for the algorithm in diffusion
Monte Carlo for fermions with replica reduction.

Reduce. One may notice a drawback in this process. It
is true that, when we handle a large fermion system, the
number of replicas grows quickly and exceeds the limit of our
resources: memory space and CPU time. In order to overcome
this drawback, we propose the replica reduction. Whenever
the number of replicas becomes bigger than some upper bound
limit N , we reduce the replica numbers Nn+1i as

Nn+1i → sign(Nn+1i)int(f |Nn+1i | + u), (20)

where the reduction factor f is sufficiently smaller than 1,
and the random number u is distributed uniformly in [0,1].
Whenever the replica reduction takes place, the survivors
become more important. This should be taken into account
when we update the guiding state. We save Z when we do
the Zth reduction so far. The power Z is used to update the
guiding state as

|ψg〉 → |ψg〉 + 1

f Z

∑
|R〉. (21)

We note that, as simulation goes on, the remaining replicas
make the bigger contribution to the ground state.

The algorithm cycle for our method is described in Fig. 3.
As we will see, if the number of replicas Nn in Fig. 3 does not
become zero, the simulation runs in the loop of the cycle.

Now we present some results obtained by our method for the
ground-state energy and wave function in a spinless fermion
system.25 The corresponding Hamiltonian is written as

H = t

L−1∑
i=1

(c†i ci+1 + c
†
i+1ci) + V

L−1∑
i=1

nini+1, (22)

where ni = c
†
i ci and the single-particle states are characterized

by the index i running from 1 to L. Since the Hamiltonian does
not contain c

†
Lc1, c

†
1cL, and nLn1, the translational symmetry

is broken. The only symmetry is the reflection R, which acts
on the Fock space such as

Rc
†
i = c

†
L+1−iR, R|0〉 = |0〉. (23)

The symmetry group is {1,R}, and the one-dimensional
irreducible representations 
1 and 
2 are given by


1 : r11(1) = 1, r11(R) = 1,


2 : r11(1) = 1, r11(R) = −1.

Thus, the Hilbert space is divided into two subspaces, which
we call the 
1 sector and the 
2 sector. For the M-fermion
case, the typical symmetrized bases before normalization are
given by

(1 + R)c†i1
· · · c†iM |0〉 for 
1 sector,

(1 − R)c†i1
· · · c†iM |0〉 for 
2 sector.

When we consider normalization, we should pay attention
to some special bases which are eigenstates of R such
as Rc

†
i1

· · · c†iM |0〉 = ±c
†
i1

· · · c†iM |0〉. With these symmetrized
bases, we find the ground-state energy and wave function.

For the case of L = 13 and M = 6, we find the 848
dimensional 
1 sector and the 868 dimensional 
2 sector. Our
method provides us with the ground-state energy in each sector,
where the ground state in the 
1 sector is the first excited state
in the system. The numerical results are summarized in Table I
for the model of t = 1 and V = 1, where we compare them
with the exact ground-state energy.

In order to see the effect of the upper bound number N ,
we also simulate with small numbers. The number of replicas
and the ground-state energy of each cycle are presented in
Fig. 4, where the upper bound replica number N is given
by 200, 300, 400, 500, and 1000. We observe that a very
small upper bound number makes no convergence toward the
ground state. With a small number of replicas, the step of
cancellation is not sufficient. It seems that there is a critical

TABLE I. Numerical results on the ground-state energy of 
1 and 
2 sectors in spinless fermion system of t = 1 and V = 1 for a small
system of L = 13 and M = 6 with f = 1

2 . With the smaller time step �τ and the bigger upper bound number N , the longer simulation time is
needed to approach closer to the exact values of −6.266 05 and −6.813 12. The fluctuation of the energy values is roughly of the order of �τ .
We find that the norm of wave-function difference ‖�MC − �exact‖ is given by 0.016 503 for the 
2 sector and 0.020 135 for the 
1 sector in
the case of �τ = 0.001 and N = 200 000.

�τ \ N 2000 20 000 200 000

0.01 −6.22300, −6.76496 −6.24783, −6.79147 −6.25211, −6.79304
0.005 −6.24803, −6.77069 −6.25876, −6.80500 −6.26221, −6.80807
0.002 −6.25109, −6.79992 −6.26178, −6.81094 −6.26524, −6.81214
0.001 −6.25344, −6.81046 −6.26527, −6.81215 −6.26581, −6.81283
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FIG. 4. (Color online) For each upper bound number N = 200,
N = 300, N = 400, N = 500, and N = 1000, the ground-state
energy E and the number of replicas Nn are shown in the condition
of Table I with �τ = 0.01. The final ground-state energy is given
by −6.705 16 for N = 300, −6.688 63 for N = 400, −6.7446 for
N = 500, and −6.761 57 for N = 1000. The number of the last cycle
is given by 9645 for N = 300, 5606 for N = 400, 3592 for N = 500,
and 4837 for N = 1000, while the simulation with N = 200 never
ends.

value for the upper bound replica number in simulations. If the
upper bound replica number N is less than a certain value Nc,
which is between 200 and 300 in this example, we guess that
the random walkers itinerate forever.

In order to test stability of the method, we calculate the
ground-state energy up to ten fermions at the filling factor 1

2 , as
shown in Table II. We observe the replica number diminishing
to zero in all cases.

In order to compare this Monte Carlo method with exact
diagonalization, let us consider the memory space. Since
exact diagonalization by iteration needs at least two states,
which are the initial state |ψ0〉 and the resulting state H |ψ0〉,

TABLE II. Monte Carlo (MC) results on ground-state energy of

1 and 
2 sectors in a spinless fermion system of t = 1 and V = 1. We
compare them with exact diagonalization (ED) results. The number
of fermions increases from M = 6 to M = 10, while the filling factor
is fixed as L = 2M . We fix the parameters as �τ = 0.01 and f = 1

2 .
The upper bound number N should be increased as many fermions
are involved. The exact ground-state energies are integers because of
the specific value of t = 1 and V = 1 at half filling. We find the trend
of less accuracy as many fermions are involved.

M L N MC in 
1 ED in 
1 MC in 
2 ED in 
2

6 12 900 −5.32(3) −5.40414 −5.96(2) −6
7 14 3400 −6.92(3) −7 −6.39(4) −6.47936
8 16 12000 −7.92(4) −8 −7.44(4) −7.53782
9 18 48000 −8.48(5) −8.58455 −8.87(8) −9
10 20 180000 −9.46(9) −9.62274 −9.82(11) −10

the minimal memory space in exact diagonalization would
be mi + mi when we repeatedly calculate the Hamiltonian
elements, where mi is the restricted Hilbert space dimension.
On the other hand, our Monte Carlo method needs roughly
mi + 0.5mi for the guiding state and replicas. We find that
slightly less memory space is required in the Monte Carlo
method, in principle. However, we need a longer simulation
time but achieve a relatively lower accuracy.

Another useful application of this diffusion Monte Carlo
method would be the case where a given Hamiltonian
includes random parameters,26,27 for instance, the Anderson
localization model. Exact diagonalization is not adequate as
far as the Hamiltonian contains random parameters. However,
our method makes it possible to simulate systems without
fixing parameters.

In summary, we have presented an improved diffusion
Monte Carlo method to obtain the ground-state energy and
wave function in a system where fermions are involved. Real
physical applications will be possible if we find an efficient
parallel computing scheme.
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