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Dilute magnetic impurities in a disordered Fermi liquid are considered close to the Anderson metal-insulator
transition (AMIT). Critical power-law correlations between electron wave functions at different energies in the
vicinity of the AMIT result in the formation of pseudogaps of the local density of states. Magnetic impurities
can remain unscreened at such sites. We determine the density of the resulting free magnetic moments in the
zero-temperature limit. While it is finite on the insulating side of the AMIT, it vanishes at the AMIT, and decays
with a power law as function of the distance to the AMIT. Since the fluctuating spins of these free magnetic
moments break the time-reversal symmetry of the conduction electrons, we find a shift of the AMIT, and the
appearance of a semimetal phase. The distribution function of the Kondo temperature TK is derived at the AMIT,
in the metallic phase, and in the insulator phase. This allows us to find the quantum phase diagram in an external
magnetic field B and at finite temperature T . We calculate the resulting magnetic susceptibility, the specific
heat, and the spin relaxation rate as a function of temperature. We find a phase diagram with finite-temperature
transitions among insulator, critical semimetal, and metal phases. These new types of phase transitions are
caused by the interplay between Kondo screening and Anderson localization, with the latter being shifted by the
appearance of the temperature-dependent spin-flip scattering rate. Accordingly, we name them Kondo-Anderson
transitions.
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I. INTRODUCTION

The non-Fermi liquid behavior of disordered electronic sys-
tems such as the power-law divergence of the low-temperature
magnetic susceptibility, can originate from a wide distribution
of the Kondo temperatures of magnetic impurities.1–4 The
Kondo temperature TK is exponentially dependent on the local
exchange coupling J and, thus, on the hybridization of a
magnetic impurity state with the conduction band. Since the
hybridization is proportional to the overlap integral between a
localized magnetic impurity orbital and the conduction band, it
can be exponentially sensitive to microscopic variations of the
position of a magnetic impurity.1 The exchange coupling also
depends on all wave-function amplitudes of the conduction
electrons at that position and, thus, on the local density of
states (LDOS) in the conduction band. The distribution of the
LDOS depends strongly on the nonmagnetic disorder strength
and is known to attain a wide log-normal distribution.5 In the
earliest approaches to this problem it was argued that the LDOS
in the vicinity of the Fermi energy depends only slowly on
energy. Therefore, the small-TK tail of the distribution should
be directly connected to the distribution of the LDOS at the
Fermi energy, which results in a wide distribution of TK on the
metallic side of the AMIT whose width increases as the AMIT
is approached.3 However, since TK is determined by an integral
over all energies, the fluctuations of the LDOS are to some
degree averaged out so TK may not vary as strongly. In the
weak-disorder limit, explicit analytical calculations show that
the width of the distribution of Kondo temperatures is finite due
to correlations between wave functions at different energies.
In disordered metals, these correlations are induced by the
diffusion of conduction electrons. However, the resulting width

was found to be small in three dimensions in the weak-disorder
limit.6,7 For strong disorder the distribution of TK has been
studied by means of the exact numerical diagonalization of
finite systems to be wide and bimodal.8,9 Its low-TK power-law
tail has been argued to have a universal power.8 Similar
bimodal distributions of TK have been found in 2D disordered
metals using the nonperturbative numerical renormalization
group and the quantum Monte Carlo methods.10

In this paper, we consider dilute magnetic impurities in
a disordered Fermi liquid close to the Anderson metal-
insulator transition (AMIT). We use information about the
multifractality of the critical wave functions at and in the
vicinity of the AMIT,11–13 in order to derive physical properties
arising from the interaction between the conduction electron
spins and the quantum spins of the magnetic impurities at the
transition point. In particular, we obtain analytical expressions
for the distribution functions of the Kondo temperature TK at
and in the vicinity of the AMIT.

At finite density, the magnetic moments become coupled
by the indirect exchange coupling J I .3 The latter can be
calculated using the expression for the generalized RKKY
coupling,14 which is a function of the local exchange coupling
J .15 The distribution of J I and its competition with the Kondo
screening will be studied in a subsequent article.16 Here,
we consider the dilute limit when the coupling between the
moments can still be disregarded. In the metallic phase the
density of free, unscreened magnetic moments nFM is found to
vanish exactly in the zero-temperature limit. In the insulating
phase, nFM(T = 0) is finite and increases with a power law as
function of the distance to the AMIT.

In Sec. II we begin with a brief review of multifractal
statistics. Wave functions in the vicinity of the AMIT are,
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furthermore, power-law correlated in energy.17–20 As has been
noted in Ref. 18, this has the surprising consequence that
multifractal eigenfunctions that are close in energy are likely
to have their maximal intensity at the same positions in space.
This positive correlation has been called stratification18 and
is opposite to what is expected in the localized phase where
states close in energy have their maximal intensity most likely
at far-apart positions in space. Another consequence is the
opening of local pseudogaps at positions where the critical
wave functions have vanishing intensity.21 At other sites the
local intensity diverges with a power law.

In Sec. III the Kondo problem in disordered systems is
formulated. In Sec. IV the distribution of Kondo temperatures
at the AMIT is derived and discussed. In Sec. V we extend
the analysis to the metallic regime where the Fermi energy
is located above the mobility edge. Although all states in the
vicinity of the Fermi energy are extended, the multifractal
nature of the eigenstates on length scales smaller than the
correlation length ξ leads to fluctuations of the LDOS and
modifies the magnetic properties of the system as we review
in Sec. V.

In Sec. VI we extend the analysis to the insulating regime
when the Fermi energy is located below the mobility edge
and the wave functions are localized exponentially with a
localization length ξc. Multifractal fluctuations still occur
on length scales smaller than ξc and the wave functions
are power-law correlated within a localization volume. It is,
therefore, crucial to take these effects into account in order
to get the correct distribution of Kondo temperatures in the
insulating phase. In Sec. VII we summarize the results for the
2D system, where all states are localized.

In Sec. VIII the quantum phase diagram of the Anderson
metal-insulator transition in the presence of magnetic im-
purities is derived and plotted as function of the exchange
coupling parameter J and disorder amplitude W . We establish
the existence of a critical semimetal phase where both the
correlation and the localization lengths are infinite within a
finite interval of disorder amplitudes, and the conductivity is
vanishing.

In Sec. IX we consider how the quantum phase diagram
changes in an external magnetic field, which couples via
the Zeeman term to the magnetic impurities and via the
orbital term to the conduction electrons. In Sec. X we present
the results for the non-Femi-liquid properties, in particular,
the magnetic susceptibility, the specific heat, and the spin
relaxation rate as functions of temperature, concentration of
magnetic moments, and disorder amplitude.

In Sec. XI we study the consequences of the temperature
dependence of the spin relaxation rate, which is caused by
the Kondo effect. This leads to transitions among insulator,
critical semimetal, and metal phases at finite temperatures.
One may call these, accordingly, Kondo-Anderson transitions.
In Sec. XII we provide our conclusions, comment on experi-
mental realizations of these transitions, and discuss remaining
open problems.

In Appendix A we review the wave-function correlations in
the vicinity of the AMIT when one state is at the mobility edge.
The joint distribution function of eigenfunction intensities is
derived such that it matches the critical correlation functions.

Next, the correlation function and the joint distribution
functions are derived when both eigenstates are located away
from the mobility edge of the AMIT. We also discuss and
present results on higher-moment correlation functions. In
Appendix B we derive the function F (α,TK ) as defined
in Eq. (12).

II. MULTIFRACTALITY, LOCAL PSEUDOGAPS,
AND POWER-LAW DIVERGENCIES

The AMIT is known to be a second-order quantum
phase transition, where both the localization length and the
correlation length diverge to infinity. At the AMIT the electrons
are in a critical state, which is neither extended nor localized,
but sparse, as seen in Fig. 1, where the intensity |ψl(r)|2 at the
AMIT is plotted.

A. Multifractality

This critical state can be characterized by the moments of
eigenfunction intensities |ψl(r)|2, which scale as powers of the
system linear size L,

Pq = Ld〈 |ψl(r)|2q〉 ∼ L−τq , (1)

where d is the spatial dimension. In a metal the powers τq

would be given by d(q − 1). Critical states are characterized
by multifractal dimensions dq < d that may change with the
power q of the moments. These are related to the exponents
of the q-th moments by τq = dq(q − 1). The corresponding
distribution function of the intensity is close to log-normal in

FIG. 1. (Color online) The local intensity is plotted here for a
critical state at the three-dimensional AMIT, as obtained by exact
diagonalization of the Anderson tight binding model with W = 16.5t ,
with hopping parameter t at energy E = 2t on a cubic lattice with
spacing a and size L = 100a. The coloring of the plotted intensity is
as follows: (red) α ∈ [1.2,1.8], (green) α ∈ [1.8,2.4], and (light blue)
α ∈ [2.4,3.0], where is defined by α = − ln |ψ |2/ ln L. Sites with
higher intensity, α < 1.2, are so rare that their occurrence cannot be
resolved in this plot. All other sites whose intensities are not plotted
correspond to lower intensity α > 3.0. Thereby, about 80% of the
total state intensity is shown.
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good approximation,12

P (|ψl(r)|2) = 1

|ψl(r)|2 L
− (α−α0)2

2η , (2)

where α = − ln |ψl(r)|2/ ln L, η = 2(α0 − d), and α0 > d.
The multifractal dimension dq is then related to α0 by dq =
d − q(α0 − d) for not too large q. At qc = α0/2/(α0 − d)
there is a termination of τq so it remains constant τq = τqc

for q > qc.12 Throughout this paper we assume the validity
of this Gaussian distribution of α. In Fig. 1 the local intensity
is plotted for a critical state at the three-dimensional AMIT
as obtained by exact diagonalization of the Anderson tight
binding model with a box distribution of width W = 16.5t .
Here, t is the hopping parameter. The energy is at E = 2t

on a cubic lattice with spacing a and linear lattice size size
L = 100a. The coloring of the plotted intensity was done
according to the amplitude of α = − ln |ψ |2/ ln L. Sites with
higher intensity with α < 1.2 are so rare that their occurrence
cannot be resolved in this plot. All other sites whose intensities
are not plotted correspond to lower intensity with α > 3.0.
Thereby, about 80% of the total state intensity is shown in
Fig. 1.

B. Critical correlations

The wave-function intensity of a state at energy El at a
certain coordinate r has a power-law correlation with the
intensity at the mobility edge energy EM with the power η/d,
which is related to α0 by

η = 2(α0 − d), (3)

[see Eq. (A1) in Appendix A].17,18 As noted in Ref. 22 this
correlation is due to the fact that eigenstates in the vicinity of
the AMIT have a similar multifractal envelope function φl(r)
and can be written as ψl(r) = φl(r)χul(r). Here χul(r) denotes
a factor of the wave function that fluctuates independently
from φl(r) on short, microscopic length scales.

1. Joint distribution function

One can take this correlation into account by considering
the joint distribution function of two wave functions. In order
to obtain the correlation function Eq. (A1) and the distribution
function of a single state, Eq. (2), it should be of the form

P (αl,αk) = ξ
alk[f (αl )−d]
l Lalk[f (αk )−d]K

−alk
(αl−α0)(αk−α0)

dη

lk , (4)

where we obtained Klk = Max
[|El − Ek|,	ξl

]
/Ec, see Ap-

pendix A for the derivation and definitions of alk . Here, ξl

is the correlation length/ localization length of the state with
energy El on the metallic/insulating side of the transition, and
	ξl

= D/ξd
l .

2. Conditional intensity

Thus, we can derive the conditional intensity of a state at
energy El given that the intensity at the critical energy Ek =
EM is |ψM (r)|2 = L−α . This conditional intensity, relative
to the intensity of that of an extended state, is obtained by

averaging over the joint distribution function Eq. (4) (for the
derivation see Appendix A),21

Iα = Ld〈|ψl(r)|2〉|ψM (r)|2=L−α =
∣∣∣∣El − EM

Ec

∣∣∣∣
rα

, (5)

where the power is given by

rα = α − α0

d
− η

2d
glM. (6)

This result is valid for |El − EM | < Ec, where Ec is the energy
scale over which the critical correlations exist and glM =
ln |(El − EM )/Ec|/(d ln L). The average is done over the
intensity |ψl(r)|2 using the conditional distribution function,
Eq. (A7), fixing the intensity L−α at the AMIT. Typically, Ec

is a fraction of the bandwidth D: Ec ∼ D/(2d ln 2d).17 When
El is located at a finite energy interval away from the mobility
edge EM , the coefficient glM = ln |(El − EM )/Ec|/(d ln L)
vanishes for L → ∞. Close to EM the coefficient saturates,
glM |El→EM

→ −1 and Eq. (5) reduces to Ld−α , the local
intensity at EM relative to the intensity of an extended state
L−d . Note that in Eq. (5) the average over the uncorrelated
factor of the wave function χul(r) has been done, which is
〈|χul(r)|2〉 = 1.

3. Local pseudogaps

From Eq. (5) we see that at positions in space where the
local wave-function intensity at the mobility edge is small,
corresponding to α larger than its typical value α0, the wave-
function intensity is suppressed within an energy range of order
Ec around EM . Thereby local pseudogaps are formed with a
power rα = α−α0

d
with vanishing LDOS at the mobility edge,

as shown in Fig. 2.

4. Local power-law divergency

On the other hand, when the intensity at the mobility edge
is larger than its typical value L−α0 , which corresponds to
α < α0, the LDOS is enhanced within an energy range of order
Ec around EM , increasing as a power law when El approaches
the mobility edge, as shown in Fig. 2.

0.0 0.2 0.4 0.6 0.8 1.0
El EM

1

2

3

4
I

−

FIG. 2. (Color online) The conditional intensity Iα relative to the
intensity of an extended state as function of the distance in energy to
the mobility edge in units of the correlation energy Ec. The exponent
α, which is related to the intensity L−α at EM , takes the values α =
2,3,3.5,4,6 in the sequence of decreasing dashing. Local pseudogaps
are seen for α > α0, while local power-law divergencies occur for
α < α0. Here we set d = 3 and α0 = 4.
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III. KONDO EFFECT IN A DISORDERED ELECTRON
SYSTEM

A. Kondo impurity Hamiltonian

Magnetic impurities are generally described by an An-
derson model where a localized level with energy εd and
on-site Coulomb repulsion U hybridizes with electrons in the
conduction band that is described by a Hamiltonian H0.23 This
Hamiltonian may include the random potential of nonmagnetic
impurities V (r). Using the eigenstates {ψn} and energies {En}
of H0, with the corresponding one-particle density operator
given by n̂n,σ , the Anderson Hamiltonian is written as

HA =
∑
n,σ

En n̂n,σ + εd

∑
σ

n̂d,σ + U n̂d,+n̂d,−

+
∑
n,σ

(tnd c+
nσ dσ + H.c.), (7)

where n̂d,σ is the density operator of the impurity level. The
hybridization amplitude tnd is proportional to the eigenfunction
amplitude at the position of the magnetic impurity ψ∗

n (0) and
to the localized orbital amplitude φd (0): tnd = t ψ∗

n (0)φd (0).
One can employ the Schrieffer-Wolff transformation,24,25

formulated in terms of eigenstates ψn, to take into account
double occupancy up to second order in tnd .6 The result is an
s-d contact Hamiltonian with exchange couplings given by

Jnn′ = t∗nd tn′d

(
1

U + εd − En′
+ 1

En − εd

)
(8)

and an additional potential scattering term with amplitude

Knn′ = t∗nd tn′d

(
− 1

U + εd − En′
+ 1

En − εd

)
. (9)

Note that in the symmetric Anderson model, Knn′ vanishes
for all n,n′ when |En,n′ − EF | 
 U , since, in this case
εd = EF − U/2, where EF is the Fermi energy. For arbitrary
εd , wave functions with small amplitude at the position of
the magnetic impurity are hardly modified by this potential
scattering term since Knn′ ∼ ψ∗

n (0)ψn′(0). Hence, we will first
retain only the exchange couplings Jnn′ = Jψ∗

n (0)ψn′ (0), with
J ∼ t2/U , and leave the discussion of possible effects of finite
Kn,n′ to Sec. XII.

B. Kondo temperature

As we have shown previously with the numerical renormal-
ization group and the quantum Monte Carlo methods,10 the
distribution of Kondo temperatures is in very good qualitative
agreement with the one obtained from the one-loop equation
of Nagaoka and Suhl.26 Only its average needs to be rescaled,
in order to account for a shift of the distribution toward larger
values of TK due to the higher-loop corrections.10,27 Therefore,
we will use the one-loop equation to calculate TK , as given by

1 = j
	

2

∑
l

Ld |ψl(r)|2
εl

tanh

(
εl

2TK

)
≡ F ({αl},TK ), (10)

where j = J/D, 	 = D/N is the mean level spacing, and
εl = El − En. N is the number of states in the sample of
volume V = Ld . This defines the Kondo temperature in terms
of the local intensities at all energies εl in the sample.

C. Distribution function of the Kondo temperature

Thus, one can derive the distribution function of
TK , when the distribution function of all intensities
P (α1, . . . ,αl, . . . ,αN ) is known, by solving

P (TK ) =
∫ ∏

l

dαlP ({αl})δ[1 − F ({αl},TK )]

∣∣∣∣ dF

dTK

∣∣∣∣, (11)

where F ({αl},TK ) is defined by Eq. (10). Note that F ({αl},TK )
is always a decreasing function of TK , so | dF

dTK
| = − dF

dTK
.

IV. KONDO EFFECT AT THE
ANDERSON-METAL-INSULATOR TRANSITION

A. Conditional average

In a first attempt to get its distribution function we calculate
the Kondo temperature TK for a given intensity ξ−α at the
Fermi energy and integrate over all other intensities with the
conditional distribution function Eq. (A7) for fixed α. Thereby
we find TK (α) as a function of α, using that the conditional
intensity of state l, 〈|ψl(r)|2〉|ψn(r)|2=L−α is given by Eq. (5),

1 = j
	

Ec

∑
εl<Ec

∣∣∣∣ εl

Ec

∣∣∣∣
rα−1

tanh

(
εl

2TK

)
≡ F [α,TK ], (12)

where the summation over l is restricted to energies within
the energy interval of the correlation energy Ec around the
mobility edge.28

We note that Eq. (12) defines the Kondo temperature
in a system with pseudogaps of power rα , Eq. (6), in the
local density of states shown in Fig. 2, when this power is
positive.25 Therefore, the Kondo temperature is reduced at
such sites, since the magnetic impurities are placed in the
locally suppressed LDOS of the conduction electrons.

On the other hand, at sites where the power rα is negative the
opposite occurs and TK is enhanced. The Kondo problem with
a power-law divergence in the density of states was studied
in Ref. 29, finding an enhancement of TK toward the strong
coupling fixed point given by J . Since α is distributed over
all values from 0 to infinity according to Eq. (2), we find
by solving Eq. (12) that TK (α) is distributed accordingly. We
note that Eq. (10) is averaged over the uncorrelated part of
the wave function, χul(r). Since these short scale fluctuations
are uncorrelated in energy, they are averaged out by the
summation over energy levels l in Eq. (12) and give rise to
small fluctuations of TK of order of 1/N only. Therefore,
their effect on the distribution of TK is negligible in the
thermodynamic limit.

We can now proceed and solve Eq. (12) analytically in
various limits. The Kondo temperature for a given intensity
|ψn(r)|2 = L−α at the Fermi energy is for α > α0 − d found
to be given by

TK

Ec

=
[(

1 − α − α0

d

1

j

)
cα

] d
α−α0

, (13)

where j = J/D and cα = 2α−η

α−η/2+d
. Equation (13) takes into

account the critical correlations at the AMIT. In deriving it (see
Appendix B for details), we approximate tanh x ≈ x for x < 1
and tanh x ≈ 1 for x > 1, yielding two terms. One includes the
integral over all energies within a window of width 2TK around
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the Fermi energy. The other one is over all larger energies in
the conduction bands. In order that the resulting equation is
valid for all α it is important to keep both terms.

For the typical value α = α0 we recover TK of a clean
system in the one-loop approximation, namely

TK (α = α0) ∼ Ec exp(−1/j ) ∼ T
(0)
K . (14)

From Eq. (13) we see that at particular sites where the
wave-function amplitude is large, corresponding to α < α0, TK

becomes enhanced. In particular, for a wave-function intensity
comparable to the one of a metallic state, α = d, we find that

TK (α = d) ∼ j 2/η/d . (15)

This is larger than T
(0)
K when j < 1.

B. Density of free magnetic moments at zero temperature

At sites where the wave-function amplitude is small, corre-
sponding to α > α0, TK is suppressed due to the appearance
of local pseudogaps. The Kondo temperature in the presence
of pseudogaps of power r is well known to vanish when the
exchange coupling does not exceed a critical value jc = r .25

Since the power of the local pseudogaps depend on α, Eq. (6),
that critical value jc(α) depends on α as well. Accordingly,
magnetic moments remain unscreened even at T = 0 K, when
α exceeds the critical value

αFM = α0 + dj. (16)

From the N = Ld atomic sites in the system, magnetic
moments remain free at all temperatures if placed on one
of NFM sites, where a sufficiently strong local pseudogap
is developed. Thus, for small J there can be a macroscopic
number of such sites, although their density nFM = NFM/N ,

nFM(T = 0 K) = L
−d2 j2

2η nM, (17)

vanishes, nFM → 0 for L → ∞.

C. Distribution function of Kondo temperature

1. TK → 0 limit of P(TK )

In deriving the conditional intensity, Eq. (5), and inserting
it in Eq. (12), we took into account the correlations of all states
to the intensity at the Fermi energy as characterized by local
pseudogaps and power-law divergencies. Since their power rα

is distributed, we can now obtain the distribution of the Kondo
temperature TK by solving Eq. (13) for α(TK ) and inserting it
in P (α). To this end, we use the Fourier representation of the δ

function. We can then expand in F [{αl},TK ] and perform the
average, keeping αl = α at the Fermi energy EF = EM fixed.
Next, we use the conditional pair approximation introduced
above. If we impose the condition F [{αl},TK ] = 1 to obtain
TK for given α and insert this in P [α(TK )], this yields in the
limit of small TK → 	,

P 0(TK → 0) ∼
(

TK

Ec

)j−1

L
− (dj )2

2η . (18)

For j = 0.25 the power of the TK → 0 tail is β = 1 − j =
0.75 in exact agreement with the numerical result in three
dimensions reported in Ref. 8. However, we find that its weight

FIG. 3. The distribution of α defined in the metallic regime by
Eq. (26), as obtained by exact numerical diagonalization of a 3D
sample of size L3 = 1283 in units of the grid cell volume a3. The
energy of that state is approximately E = 0, and a box distribution of
uncorrelated disorder potential with W = 15t is taken. The analytical
expression Eq. (27) is plotted for comparison as the solid line for
a correlation length ξ = 22a (taken from the numerical results of
Ref. 30).

is vanishing with a power of the system size L. Note that the
number of sites used in Ref. 8 is N = 2197, yielding a level
spacing 	/T 0

K ≈ 0.025, so Eq. (18) indeed can explain the tail
of the distribution TK � 	 displayed in their Fig. 3. Clearly,
at larger TK the fluctuations of the wave-function intensities
at energies away from the AMIT are important. These can
strongly change TK and the width of its distribution as we find
in the next subsection.

2. P(TK ) for TK > �

In order to proceed in the calculation of P (TK ), at TK

exceeding the level spacing 	, we need to take into account
the fluctuations of the intensities at all energies. To this end,
let us, first, rewrite Eq. (11) as

P (TK ) = −
∫ ∞

0
dαP (α)

〈
dF

dTK

δ(1 − F )

〉
α

, (19)

where 〈· · ·〉α denotes the average over all intensities, except
the one at the Fermi energy that is fixed to L−α . Next, we use
the Fourier representation of the δ function to get

P (TK ) = −
∫ ∞

0
dαP (α)

d

dTK

∫ ∞

−∞
dt

ieit

2πt

×〈exp(−itF [TK ])〉α. (20)

Now we can expand F [{αl},TK ], around F [α,TK ] = 〈F 〉α , to
take into account the fluctuations of all intensities. Expanding
in δF = F [{αl},TK ] − F [α,TK ], and performing the integral
over t , we find

P (TK ) = −
∫ ∞

0

dα√
2π�

P (α)
dF [α,TK ]

dTK

e
− (1−F [α,TK ])2

2�2 , (21)

where F [α,TK ] = 〈F 〉α is given by Eq. (B2) and � is defined
by

�2 = 〈F 2〉α − 〈F 〉2
α, (22)
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where 〈· · ·〉α denotes the average over all αl , keeping only α

at the Fermi energy fixed. We find that, for 	 � TK 
 Ec,

�2 ≈ j 2 (TK − 	)2

T 2
K

{
c1

(
TK − 	

Ec

)−η/d

−c2 + 5 ln

[
TK

Ec

]
− 2 ln

[
TK

Ec

]2}
, (23)

where we determined numerically, c1 ≈ 7.51 and c2 ≈ 9.60.
Note that � vanishes in the limit TK → 	, �(TK → 	) = 0,
since then only energy levels in a range of order 	 around the
Fermi energy contribute, whose correlations are already taken
into account correctly by Fα . Thus, in this limit, the condition
1 = F (α,TK ) is imposed exactly, and we recover the tail of the
distribution, Eq. (18), diverging with the power β = 1 − j .

At larger TK > 	, � has a finite value and decays for 	 <

TK 
 Ec with the power η/d. P (α) is peaked at α = α0 with
a width that scales with the system size as 1/

√
ln L. Thus,

for L → ∞, α = α0 is imposed in Eq. (21) for any finite TK .
Thus, we can substitute

〈F [TK ]〉 = j

[
TK − 	

2TK

+ ln
D

2Max(TK,	)

]
(24)

and find that the distribution diverges at 	 < TK 
 T
(0)
K as

P (TK ) ≈
(

TK

Ec

) η

2d
−1

× exp

{
− 1

2c1

(
TK

Ec

)η/d

ln2

[
TK

T
(0)
K

]}
. (25)

with the power β = 1 − η/d/2. In d = 3 dimensions, with
α0 = 4, the power is βd=3 = 2/3, which is smaller than the
one obtained numerically in Ref. 8, β ≈ 0.75. We note that
there is a noticeable deviation toward smaller powers for TK >

	 ≈ 0.03 in the Fig. 3 of Ref. 8.

V. KONDO EFFECT IN THE METAL PHASE

A. Multifractality in the metallic phase

In the metallic regime all wave functions are extended and
their intensities scale with the inverse system volume, |ψ |2 ∼
L−d . On length scales smaller than the correlation length ξ ,
multifractal fluctuations of the wave-function intensity occur
as long as ξ is larger than the microscopic length scale
ac.18,20 As pointed out in Refs. 20 and 22 the moments
of the intensity do scale with the correlation length ξ as
Ldq〈|ψ |2q〉 ∼ ξ (d−dq )(q−1). Therefore, in the metallic regime
we define α as

Ld |ψl(r)|2 = ξ
d−αl

l , (26)

where ξl is the correlation length of state l. Note that this
definition of α crosses over to the one we used above in the
critical regime, where ξ diverges and is replaced by the system
size L, when L < ξ . It has to a good approximation still the
Gaussian distribution,

P (αl) ∼ exp

[
− ln ξl

(αl − α0)2

2η

]
, (27)

where its width scales with the logarithm of the correlation
length ξl . This is confirmed in Fig. 3, where we plot Eq. (27)
together with the numerical result, as obtained from exact
diagonalization.

B. Intensity correlations in the metal

There are still power-law correlations in energy between
wave-function intensities as given by Eq. (A3). Averaging with
the conditional distribution function Eq. (A4) in the metallic
regime, we find the conditional intensity in the metallic regime:
Given that a state at the energy Ek has intensity Ld |ψk(r)|2 =
ξd−α
k , a state at energy El at position r has on average the

intensity

Iα(ξl,ξk) = 〈Ld |ψl(r)|2〉α = K

α−α0
d

− η

2d2
ln Klk
ln ξk

lk , (28)

where Klk = Max{|El − Ek|,Min(	ξl
,	ξk

)}/Ec and

	ξl
= Ec(ac/ξl)

d , (29)

is the mean level spacing of a sample of finite size ξl (for the
derivation, see Appendix A). Thus, the intensity at the energy
El has still a dip when α > α0, although the LDOS at energy
El → Ek is no longer suppressed to zero but rather to a finite
value (see Fig. 4), given by

〈Ld |ψl(r)|2〉α|El→Ek
= ξ

(d−α)
k =

∣∣∣∣Ek − EM

Ec

∣∣∣∣
ν(α−d)

, (30)

which is slowly varying with energy in an interval of order 	ξk

around the Fermi energy.

C. Distribution of Kondo temperatures

Since the intensity is finite at all sites in the metallic
regime we expect that the magnetic impurity spin is at
low temperatures always screened. Therefore, the Kondo
temperature does not vanish in the metallic regime at any site.

FIG. 4. (Color online) The conditional intensity Iα at energy El ,
given that a state at the energy Ek has intensity Ld |ψk(r)|2 = ξd−α

k ,
relative to the intensity of an extended state. It is plotted as function of
the distance of energy El from the mobility edge energy EM , in units
of the correlation energy Ec. The exponent α at the energy Ek , takes
the value α = 4.5. The energy Ek is varied from the mobility edge into
the metallic regime with (Ek − EM )/Ec = 0,0.2,0.3,0.4,0.7, from
left to right. Instead of a local pseudogap, one sees an increasingly
shallow depression. Here we set d = 3 and α0 = 4. Note that it varies
slowly in a range 	ξk around the Fermi energy.
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FIG. 5. (Color online) The distribution of Kondo temperatures TK

in units of T
(0)
K in the metallic phase, Eq. (33), is plotted as function

of the distance to the mobility edge, EF − EM , in units of Ec for an
exchange coupling j = 1/5.

According to Eq. (30) the local intensity can be substantially
suppressed or enhanced, depending on the random value of α.
Its distribution, as given by Eq. (27), has a finite width. On the
other hand, the second moment of F does saturate to a finite
value when TK < 	ξ ,

�2|TK<	ξ
→ j 2c1

(
	ξ

Ec

)−η/d

, (31)

where c1 ≈ 7.51. Inserting both Eqs. (31) and (27) into the
expression for P (TK ), Eq. (21) we find that the probability to
find a small Kondo temperature such that TK < 	ξ = |(EF −
EM )/Ec|νd , is decaying to zero as

P (TK ) ≈
(

	ξ

Ec

) η

2d 1

TK

e
− 1

2c1
(

	ξ

Ec
)η/d ln2( TK

T
(0)
K

)
. (32)

Thus, in the metallic phase EF > EM there are no free
magnetic moments and the low-TK tail terminates at TK ≈ 	ξ

as seen in Fig. 5. For TK > 	ξ a power-law tail of the
distribution can still be observed, as seen in Fig. 5. There,
we plot P (TK ) as obtained by Eq. (25) and substituting TK by
Max(TK,	ξ ) in the expression for �, Eq. (23),

P (TK ) ≈
[

Max(TK,	ξ )

Ec

] η

2d 1

TK

× exp

{
− 1

2c1

[
Max(TK,	ξ )

Ec

]η/d

ln2

[
TK

T
(0)
K

]}
.

(33)

VI. KONDO EFFECT IN THE INSULATOR

In the insulating regime each localized state is restricted to
a volume of the order of ξd

l = ξd
c (El), the localization volume.

On length scales smaller than the localization length ξl there are
still multifractal fluctuations. In addition, the wave functions
in the insulating regime are power-law correlated close to
the AMIT.18 Neglecting a small logarithmic enhancement that

occurs at energy spacings smaller than the local level spacing
	ξ = ξ−dD,18 we can get the distribution of TK simply by
using the results obtained at the critical point and replacing
the system size L by the localization length ξc. Defining

|ψl(x)|2 = ξ−α
l , (34)

we, thus, find that the distribution function of α within a
localization volume is the same as if we had considered the
distribution at the AMIT in a finite volume of order ξd

l .
We note that the probability to find a state at energy El

inside the localization volume is decaying with the system
volume Ld as ξd

l /Ld . Outside the localization volume the
intensity decays exponentially, |ψl(r)|2 ∼ exp[−2r/ξ ] corre-
sponding to α = 2r/(ξl ln ξl). Since most sites in the sample are
a distance r ∼ L → ∞ away from the localization volume one
finds α ∼ L → ∞ at most sites of the sample. The correlation
function between two wave functions at different energies
El and Ek is still given by Eq. (A1), where 	ξl

is now
the local level spacing at energy El . Accordingly, the joint
distribution function has the form given in Eq. (A4). However,
the difference to the metallic regime is that there are only
discrete energy levels that are separated by the local level
spacing 	ξl

. This difference is important, especially when
calculating the Kondo temperature, since the hard gap 	ξl

in the insulating regime cuts off the Kondo renormalization
flow at small energies.31

Thus, we can conclude that there is a finite density of free
magnetic moments nFM, which remain unscreened. Therefore,
we need to subtract this density from the distribution function
of TK given by Eq. (21). The width � is given by Eq. (23) when
substituting 	 by the level spacing in a localization volume,
	ξ for TK � 	ξ ,

�2 ≈ j 2 (TK − 	ξ )2

T 2
K

c1

(
TK − 	ξ

Ec

)−η/d

, (35)

where c1 ≈ 7.51. For TK < 	ξ , we find that it vanishes, � = 0,
and the condition 1 − Fα is enforced exactly. Therefore, we
get from Eq. (21) the low-TK tail in the localized regime as

P (TK ) =
[

1 − nFM(T = 0)

nM

](
Ec

TK

)1−j

ξ
− 1

2η
(dj )2

. (36)

Thus, we find that the distribution diverges with the power
β = 1 − j . This is in full agreement with the numerical results
of Ref. 8, where a power 0.75 has been obtained for j = 0.25
for a wide range of disorder amplitude W . Also, the increase
of the weight of the power-law tail with disorder strength W

is in good agreement with the numerical results.
The finite density of free magnetic moments is found to

be21

nFM(T = 0K) = nMξ
− 1

2η
(dj )2

= nM

(
W − Wc

Wc

) ν
2η

(dj )2

, (37)

which decays to zero as a power law when the disorder
amplitude W approaches the AMIT at Wc. It converges to
the total density of magnetic moments nM far away from
the mobility edge, EM − EF → Ec. Thus, according to this
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expression all magnetic moments should be free in the strongly
localized regime where ξ → ac.

VII. KONDO EFFECT IN 2D ANDERSON INSULATORS

We can apply this analysis also to two-dimensional dis-
ordered electron systems, where all states are localized. The
Kondo effect in such systems has been studied numerically
based on the one-loop equation,6,8 and with nonperturbative
methods in Ref. 10, where both the distribution of Kondo
temperatures and the density of free magnetic moments have
been obtained. The two-dimensional localization length in the
absence of a magnetic field is known to depend exponentially
on the disorder strength, ξ2D = g exp(πg), where g = EF τ .
The scattering rate 1/τ is related to the disorder amplitude W as
1/τ = πW 2/6D. There are weak wave-function correlations
in two dimensions that are logarithmic, with an amplitude
of order 1/g. For weak disorder, g � 1, we can rewrite this
correlation as an effective power law with power

η2D = 2/πg. (38)

The correlation energy in 2D is of the order of the elastic
scattering rate, Ec2D ∼ 1/τ . Thus, for systems whose size L is
smaller than the localization length ξ2D , the 2D system behaves
like a critical system with α0 defined by η2D = 2/πg = α0 − 2
or

α0 = 2 + 2

πg
. (39)

There is a critical exchange coupling J (1)
c above which there is

no more than one free magnetic moment in the whole sample.21

Substituting η2D , we find that

J (1)
c =

√
D

3EF

W. (40)

This is in good agreement with Ref. 10, where J (1)
c has been

determined numerically for a 2D disordered system and found
to increase linearly with disorder amplitude W . There and in
Ref. 8 the density of free moments have been obtained, which
we can now compare with our analytical expression,

nFM(T = 0K) = nMξ
− d

η2D
j 2

2D = nM [g exp(πg)]−πgj 2
, (41)

with g = 6/(πW 2)EF /D. By substituting ξ2D into Eq. (36)
and inserting the parameters used in Ref. 10 we compared the
analytical distribution of TK with the numerical results and
found a good qualitative agreement (not shown). We note that
there is a low-TK power-law tail divergence where the power
is given by β = 1 − j .

VIII. ZERO-TEMPERATURE QUANTUM
PHASE DIAGRAM

It is well known that the scattering of conduction electrons
by magnetic impurities can lead to the relaxation of the conduc-
tion electron spin and, thereby, the loss of the electron phase
coherence. At finite temperature this leads to a suppression of
the quantum corrections to the conductance, the so-called weak
localization corrections. In the low-temperature limit phase
coherence is restored, but the magnetic scattering may still

break the time-reversal symmetry of the conduction electrons
similarly to an external magnetic field. The breaking of time-
reversal symmetry is known to weaken Anderson localization
and thereby the localization length becomes enhanced. In
systems with an Anderson metal-insulator transition the
transition is shifted toward stronger disorder amplitudes W

and lower electron density n.32–34 Thus, the symmetry class
changes, shifting the AMIT from the orthogonal symmetry
class (time-reversal symmetric) to the unitary symmetry class
(broken time-reversal symmetry).32–34

In the presence of an external magnetic field this change of
the symmetry class of the conduction electrons from orthogo-
nal to unitary is governed by the parameter XB = ξ 2/l2

B , where
lB is the magnetic length. Therefore, the spin scattering rate
due to magnetic impurities 1/τs is expected to enter through the
symmetry parameter Xs = ξ 2/Deτs , where De is the diffusion
constant and ξ is the correlation (localization) length on the
metallic (insulating) side of the AMIT.35 When Xs � 1, the
electron spin relaxes before it can cover the area limited by ξ

and the system is in the unitary regime. One can then study
the crossover of the mobility edge through a scaling Ansatz
for the conductivity on the metallic side, as done in Ref. 32
in the case of a magnetic field. Following this approach, using
the spin scattering rate 1/τs , we get

σ (1/τs) = e2

hξ
f (Xs). (42)

The conductivity then goes to zero at the critical disorder
WM

c (1/τs) as σ (1/τs) ∼ [WM
c (1/τs) − W ]ν , where the index

M indicates that this is the critical disorder strength when it is
approached from the metallic side, W < WM

c (1/τs).
Coming from insulating side, we need instead to apply the

scaling ansatz to the dielectric susceptibility χe,36,37

χe(1/τs) = ξ 2g(Xs). (43)

This diverges at the critical disorder WI
c (1/τs) as χ (1/τs) ∼

[W − WI
c (1/τs)]−2ν , where the index I indicates that this is

the critical disorder strength when it is approached from the
insulating side, W > WI

c (1/τs). While in a magnetic field these
two critical points are found to coincide,33 we will see below
that, in the presence of magnetic impurities, WM

c (1/τs) and
WI

c (1/τs) can differ due to the Kondo effect.
When a finite concentration of classical magnetic impurities

nM with spin S is present, the magnetic relaxation rate at
zero temperature is given by 1/τ classical

s = 2πnMS2j 2ρ(εF ),
where ρ(εF ) is the density of states at the Fermi energy.
However, the quantum mechanical nature of the impurity
spins affects this rate in several ways: First, its magnitude
is enhanced since the quantum mechanical eigenvalue of the
square of the spin is S(S + 1). This results for S = 1/2 in a
factor of 3 enhancement. Second, the Kondo effect tends to
screen the impurity spin leading to a vanishing spin relaxation
rate at zero temperature when magnetic impurities are dilute.
However, at finite temperature the Kondo correlation can
instead enhance the spin relaxation rate with a maximum
at TK . This effect has been observed in weak-localization
experiments as a plateau in the temperature dependence of the
dephasing time.38,39 Recently, its full temperature dependence
was obtained numerically.7,40 A good agreement with the
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numerical results can be obtained through the approximate
expression,6

1

τ
(0)
s

(T ) = π nm S(S + 1)

ρ

{
ln2

(
T

TK

)

+π2S(S + 1)

[(
TK

T

)2

+ 1

β
− 1

]}−1

, (44)

with β = 0.2, as obtained numerically.40 The temperature
dependence scales with TK . Note that in the low-temperature
limit the spin relaxation rate vanishes as T 2/T 2

K , similarly to
the inelastic scattering rate in a Fermi liquid and in agreement
with Nozieres’ renormalized Fermi liquid theory of dilute
Kondo systems.41

A. Metal phase

In the zero-temperature limit, coming from the metallic side
of the AMIT, the Kondo screening results in the vanishing of
the spin relaxation rate, 1/τs(T = 0) = 0.42 Therefore, Xs = 0
and the AMIT occurs at the orthogonal critical value for
time-reversal symmetric systems, WO

c . For the Anderson tight-
binding model in three dimensions, one finds WO

c /t = 16.5 ±
0.02, with the orthogonal critical exponent νO = 1.57 ± 0.02
and the correlation exponent η/dO = 0.56 ± 0.02.12,44 Most
recently, with a more accurate multifractal scaling method,
WO

c /t = 16.530(16.524,16.536), νO = 1.590(1.579,1.602),
α0 = 4.048(4.045,4.050), and ηO = 1.763(1.792,1.727) was
obtained.45

Looking now at the transition point we can conclude from
the analytical results of Sec. VI, namely Eq. (37), that at
the AMIT the density of free magnetic moments vanishes.
However, there can remain a macroscopic number of free
moments. We find that from the NM magnetic moments in the
sample, at least

√
NM of them remain free when the exchange

coupling does not exceed the value j (2)
c = √

η/d .

B. Insulator phase

On the insulating side of the AMIT the density of free
magnetic moments is finite as given by Eq. (37). Therefore,
the time-reversal symmetry and the spin symmetry of the
conduction electrons is broken in proportion to the spin
relaxation rate 1/τs . This leads to a shift of the AMIT
from WO

c to WI
c (1/τs), which we will determine in the

following.
Before proceeding we note that in a disordered system the

spin relaxation rate is proportional to the local density of states
ρ(E,r) at position r, since it is given by

1

τs(E,T ,r)
= − nm �

ρ(E,r)

ν

(
t2
0 Im Gd + πρ t4

0 G2
d

)
= ρ(E,r)

ν

1

τ
(0)
s (E,T )

, (45)

with the propagator of a localized d level in the Anderson
model Gd .40 Here, 1/τ (0)

s is the spin scattering rate in a clean
system as given by Eq. (44). Thus, Eq. (45) leads us to conclude
that the spin scattering rate depends not only on the ratio T/TK

but also explicitly on the LDOS. Since both TK and ρ(E,r)
are randomly distributed, 1/τs(E,T ,r) is distributed as well.

In Sec. VI it was found that on the insulating side of
the AMIT the LDOS at the position of unscreened magnetic
moments scales as ρ(εF ,r) ∼ ξd−α(J ), where αFM = α0 + dj

is the critical value. Therefore, for α > αFM the magnetic
moments remain free. According to Eq. (45) the spin relaxation
rate due to the free moments depends itself on the localization
length as

1

τ FM
s

(T = 0) = 2π nFM(ξ ) S(S + 1)j 2

× ρ(εF )

(
ξ

ac

)d−α0−dj

, (46)

where the density of free moments is given by Eq. (37) and de-

pends on the localization length ξ as nFM = nM (ξ/ac)−
d

2η/d
j 2

.
Following Ref. 32, we get the critical disorder amplitude when
the argument of the scaling function g in Eq. (43) is of order
unity, yielding the condition Dτs(J ) = ξ [WI

c (J ) − WO
c ]2 as

function of the exchange coupling J . This condition is valid as
long as the deviation from WO

c is small. For larger deviations
it will converge to its unitary value WU

c . The exact analytical
form cannot be obtained from this phenomenological scaling
approach. We note that, in contrast to the case of an external
magnetic field, as considered in Ref. 32, according to Eq. (47),
τs depends on the localization length ξ as

1

τ FM
s

(T = 0) = 1

τ 0
s

(
ξ

ac

)− d
2η/d

(j+η/d)2

, (47)

where

1

τ 0
s

= 2πnMS(S + 1)j 2ρ(εF ). (48)

Thus, we finally get the shift of the critical disorder as function
of J as

WI
c (j ) = WO

c + WO
c

(
a2

c

Deτ 0
s

)κ(j )

, (49)

where 1/κ(j ) = ν[2 − d2

2η
(j + η/d)2]. This result is valid

for small deviations from WO
c . For larger deviations it will

approach the unitary value WU
c in a still unknown form. We

see that for j = j ∗ where

j ∗ = 2
√

η

d
− η

d
, (50)

which gives in d = 3, j ∗ ≈ 0.276, the exponent κ(j ) diverges
and WI

c approaches its orthogonal value WO
c , see Fig. 6. Also,

for larger values of J , it will stay at WO
c as a consequence of

the increase of Kondo screening with the exchange coupling J .

C. Critical semimetal phase

For smaller exchange couplings, j < j ∗, a paradoxical
situation appears: The position of the critical point WI

c

depends on the direction from which the AMIT is approached.
Therefore, for intermediate disorder strengths, WO

c < W <

WI
c (j ), there exists a critical region. Accordingly, the mobility

edge is extended to a critical band whose width is a function of
j . The resulting zero-temperature quantum phase diagram is
shown in Fig. 6. According to Eq. (49) with Eq. (48), the width
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FIG. 6. (Color online) The fraction of free magnetic moments
PFM at T = 0 K, Eq. (37), in a three-dimensional disordered metal as
function of the exchange coupling J (in units of the band width D)
and disorder strength W (in units of the critical value WO

c ). Critical
correlations result in a finite PFM even for large J > J A

c (dashed line).
For J < J ∗, Eq. (50) there is a critical region for disorder amplitudes
WO

c < W < Wc(J ), where Wc(j = J/D) is given by Eq. (49). This
figure was previously published by the authors in Ref. 21.

of the semimetal phase, WI
c (J ) − WO

c ∼ n
κ(j )
M , increases with

a power of the density of magnetic impurities, nM .

IX. KONDO-ANDERSON TRANSITIONS IN A
MAGNETIC FIELD

A Zeeman magnetic field polarizes the free magnetic
moments. Thereby, their contribution to the spin relaxation
rate becomes diminished by the magnetic field.7,46,47 On the
other hand, the Kondo singlet which Kondo screened magnetic
moments form with the conduction electrons is partially
broken up by the Zeeman field. Thus, these magnetic moments
contribute a spin relaxation rate that is increasing with the
Zeeman field. Finally, an orbital magnetic field breaks the
time-reversal symmetry and, therefore, also results in a shift of
the AMIT toward the unitary limit. It is, therefore, an intriguing
problem how these competing magnetic field effects combine
to change the quantum phase diagram.48

The magnetic field dependence of the spin relaxation rate
from magnetic impurities in a metal at finite temperature
was calculated in Ref. 47. The magnetic field polarizes the
magnetic impurity spins due to the Zeeman interaction,

HZ = −γsB
∑

i

Siz, (51)

where γs = gsμB is the gyromagnetic ratio of the magnetic
impurities, gs their g factor and μB is Bohr’s magneton. Here,
the magnetic field B is taken to point in the z direction.
The spin relaxation rate from free magnetic impurities is
found to be exponentially suppressed according to 1/τs ∼
exp(−γsB|Sz|/kBT ). Thus, in the zero-temperature limit
all free moments are expected to become polarized by an
arbitrarily small magnetic field, and their contribution to the
spin relaxation is vanishing identically.

Magnetic impurities that are screened with a finite Kondo
temperature TK , however, have without magnetic field a spin
relaxation rate Eq. (44) that vanishes in the low-temperature
limit. Applying a magnetic field the Kondo singlet is partially
broken up and a finite spin relaxation rate appears, which scales

with TK as7,47

1

τs

(TK ) = nM

πρ

(γsB|Sz|)2

T 2
K

. (52)

To get the total spin relaxation rate, we integrate over the
distribution of Kondo temperatures P (TK ). We note that the
contribution from magnetic impurities with a small Kondo
temperature, TK < gsμBB|Sz| vanishes since these spins
become polarized. The ones with larger Kondo temperatures
then yield the spin relaxation rate,

1

τs

=
∫ ∞

γsB|Sz|
dTKP (TK )

nM

πρ

(γsB|Sz|)2

T 2
K

. (53)

For small magnetic fields, γsB|Sz| 
 T
(0)
K , the main contribu-

tion comes from the low TK tail of the distribution,

P (TK ) ∼
(

Ec

TK

)1−j

ξ
− d2

2η
j 2

. (54)

Thus, we get

1

τs

= nM

πρ

dj

2 − j
ξ

− d2

2η
(j+η/d)2

(
γsB|Sz|

Ec

)j

. (55)

Setting Xs = ξ 2/Deτs = 1, we find that the Zeeman field shifts
the critical disorder to

Wc(B) = WI
c (j ) + WO

c cM

(
γsB|Sz|

Ec

)jκ(j )

, (56)

where 1/κ(j ) = 2ν[1 − d2

4η
(j + η/d)2] and cM =

{djnM/[(2 − j )πρDe]}κ(j ).
Thus, the transition between critical semimetal and insu-

lator is shifted in a magnetic field according to Eq. (56) as
plotted in Fig. 7.

The orbital magnetic field is known32 to shift Wc to

Wc(B) = WO
c + WO

c (πeB/h)1/(2ν). (57)

This determines the transition line between metal and
semimetal, since the Zeeman field contributes a slower
dependence on B, coming from the metal side of the transition
we find Wc(B) = WO

c + WO
c ( γsB|Sz|

Ec
)1/ν .

Metal

Insulator

Semimeta l

16.6 16.8 17.0 17.2 17.4 17.6 17.8 18.0
0.0

0.1

0.2

0.3

0.4

0.5

W

B

FIG. 7. (Color online) The quantum phase diagram in a magnetic
field B (arbitrary units), as function of disorder amplitude W , in units
of t . We set d = 3,η = 2, and j = 0.2.
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For the transition between semimetal and insulator, we can
conclude that for

j < jZ = η/d(2
√

d + 1 + d2/η/d − 1 − 2/d), (58)

the shift of Wc is dominated by the Zeeman field over the orbital
magnetic field. For d = 3,η/d = 2/3 one finds, jZ = 0.185,
so the Zeeman field effect dominates for realistic values of
exchange couplings j as seen in Fig. 7.

X. FINITE-TEMPERATURE PROPERTIES

We can now proceed to calculate finite-temperature prop-
erties. To this end, we first derive the density of free magnetic
moments at temperature T . It can be obtained by integrating
P (TK ) according to

nFM(T ) = nM

∫ T

0
dTKP (TK ). (59)

At low temperatures, T 
 T 0
K , the free moments are deter-

mined by the tail of the distribution.

A. Insulator

In the insulating regime for T > 	ξ , P (TK ) is given by
Eq. (25), while at lower temperatures, not exceeding the
local level spacing, T < 	ξ , the tail of P (TK ) is changing
to Eq. (36). Thus, we find the density of free moments in the
insulating regime

nFM(T ) = nFM(0) + nM

⎧⎨
⎩

2d
η

(
T
Ec

) η

2d for T > 	ξ

1
j

(
T
Ec

)j
ξ

− 1
2η

(dj )2

for T < 	ξ

,

(60)

where the density of free moments at T = 0, nFM(0) is given
by Eq. (37), decaying toward the AMIT. This result is plotted
as function of disorder amplitude W for various temperatures
T in Fig. 8. Thus, we find that the magnetic susceptibility is
diverging at low temperature

χ (T ) = nFM(T )

T
∼ nFM(0)

1

T

+ nM

1

Ec

⎧⎨
⎩

2d
η

(
T
Ec

) η

2d
−1

for T > 	ξ

1
j

(
T
Ec

)j−1
ξ

− 1
2η

(dj )2

for T < 	ξ

,

(61)

with a Curie tail, whose weight increases as the Fermi energy
moves deeper into the insulating regime. The specific heat is
given by

C(T ) ∼ T
dnFM(T )

dT
= nM

⎧⎨
⎩

(
T
Ec

) η

2d for T > 	ξ(
T
Ec

)j
ξ

− 1
2η

(dj )2

for T < 	ξ

.

(62)
These results also apply at the AMIT, where nFM(0) → 0 and
	ξ → 	.
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FIG. 8. (Color online) The ratio of free magnetic moments
(magnetic moments with TK < T ), nFM/nM , as function of disorder
strength W on the insultating side of the transition for temperatures
T/Ec = 0, 1 × 10−6, 5 × 10−6, 1 × 10−5 from the bottom to the top
curve. We set j = 0.2, d = z = 3, and η/d = 2/3.

B. Metal

In the metallic regime, P (TK ) is for T < 	ξ given by
Eq. (32), so we obtain

nFM(T ) = nM

d

η

(
T

Ec

) η

2d

exp

⎡
⎣−	

η

d

ξ

c1
ln

(
T

T 0
K

)2
⎤
⎦ , (63)

Accordingly, we find that the magnetic susceptibility χ (T ) =
nFM(T )/T has also in the metallic regime a power-law tail,
which is, however, cutoff at T < 	ξ , where it converges to
zero. We get the contribution to the specific heat, using C(T ) ∼
T dnFM(T )

dT
∼ nFM(T ), vanishing at low temperatures, T 
 	ξ .

One may ask if these thermodynamic results are modified
by inelastic scatterings, introducing a thermal length LT ,
which decreases with increasing temperature according to
LT ∼ T −1/z, where z is the dynamical exponent. If electron-
electron and electron-phonon scatterings are disregarded, LT

is set by the relation T = 	LT
= D/Ld

T , yielding z = d.
Therefore, it has been argued that on length scales exceeding
LT , the system size L and the localization length/correlation
lengths ξ are substituted by LT , in the scaling theory of the
AMIT.37 Thus, indeed, for temperatures T > 	ξ , ξ would
have to be substituted by LT . However, as we find above, in
this temperature range the results no longer depend on ξ , so
the finite LT does not modify the above results.

XI. FINITE-TEMPERATURE PHASE DIAGRAM:
KONDO-ANDERSON TRANSITIONS

The spin relaxation rate is found to depend on temperature,
Eq. (44), due to the Kondo screening, and the temperature
dependence of the density of free magnetic moments, Eq. (60).
Therefore, the amount by which the spin and time-reversal
symmetry is broken depends on temperature as well. Since the
position of the AMIT is determined by these symmetries,44 it
shifts as function of temperature T : When the spin relaxation
rate increases with temperature, the AMIT shifts toward
larger values of disorder amplitude W . Thus, a metal-insulator
transition may occur at a finite temperature Tc(W,J ). In
order to investigate the existence of such a transition, we
will apply the Larkin-Khmel’nitskii condition32,33 with the

115112-11



S. KETTEMANN, E. R. MUCCIOLO, I. VARGA, AND K. SLEVIN PHYSICAL REVIEW B 85, 115112 (2012)

temperature-dependent symmetry parameter Xs(T ) =
ξ 2/Deτs(T ). Since the condition Xs = 1 gives an estimate for
the position of the transition, Wc(J,T ), we find

[ξ (Wc(J,T )]2 = a2
c

[
WO

c

Wc(J,T ) − WO
c

]2ν

= Deτs(J,T ).(64)

Again, as in the previous section, we can apply this criterion
in two ways.

A. Approaching the AMIT from the insulator side

Coming from the insulating side of the transition, where the
localization length ξ is still finite and smaller than the thermal
length LT , the ratio X = ξ 2/Deτs(T ) is finite, giving a measure
of the amount of time-reversal symmetry breaking. 1/τs(T )
saturates at low temperatures to the spin relaxation rate from
free magnetic moments [Eq. (47)]. Thus, at low temperatures
the transition occurs at WI

c (J ) as given by Eq. (49). At
higher temperatures 1/τs(T ) increases with a power that
depends on the distribution of the Kondo temperature. Thus,
the spin relaxation rate at finite temperature is given by
a weighted integral over the distribution function of TK ,
as 1/τs(T ) = ∫∞

0 dTKP (TK )1/τs(T/TK ). The spin relaxation
rate of a magnetic impurity with a given Kondo temperature
TK , 1/τs(T/TK ), follows Eq. (44). Thus, it increases, first,
like T 2/T 2

K when T < TK , until it reaches a maximum and
then decays logarithmically slowly toward its classical value
1/τ classical

s . Since our analysis is limited to low temperatures
T 
 T 0

K , we can simplify 1/τs(T ) as a sum of spin relaxation
of free moments of density Eq. (60), at sites whose density of
states is suppressed as ρ(r) ∼ ξd−αFM , and the spin relaxation
from spins whose Kondo temperature exceeds T , which we
can approximate by T 0

K due to the peaked distribution. Thereby
we get in good approximation the spin relaxation rate in the
insulator as

1

τs

(T ) = 1

τ 0
s

[
ξd−α0−dj nFM(T )

nM

+ T 2

T 02
K

1 − nFM(T )
nM

S(S + 1)π2

]
. (65)

When Xs = 1 the symmetry breaking is sufficient to shift
the transition to the larger disorder amplitude WI

c (J,T ).
Accordingly, we find the transition temperature,

T I
c = EccI

(
W − WI

c

WO
c

) 1
j

, (66)

where WI
c is given by Eq. (49) and cI = (κj/j )−1/j (Deτ

0
s )κj /j ,

where 1/κj = ν[2 − d2/2/η(j + η/d)2].

B. Approaching the AMIT from the metallic side

Coming from the metallic side, the density of free magnetic
moments is decaying fast at temperatures T < 	ξ according
to Eq. (63). Thus, the spin relaxation rate is dominated by the
screened magnetic impurities, yielding

1

τs

≈ 1

τ 0
s

1

S(S + 1)π2

T 2

T 02
K

, (67)
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FIG. 9. (Color online) The finite-temperature phase diagram
of Kondo-Anderson transitions. The solid lines are plots of the
critical temperatures T M

c (W,J ), Eq. (68), and T I
c (W,J ), Eq. (66),

respectively, where the disorder amplitude W is given in units of
the hopping parameter t and the temperature is in ratios of Ec. We
used the following parameters: j = 0.2, α0 = 4, d = 3, η/d = 2/3,
ν = 1.57, and a2

c /(Deτ
(0)
s ) = 0.1.

where 1/τ 0
s is given by Eq. (48). Thus, the transition is shifted

to WM
c (T ) and, accordingly, we find a transition temperature,

T M
c (W ) =

√
S(S + 1)π2Deτ 0

s

∣∣∣∣W − WO
c

WO
c

∣∣∣∣
ν

T 0
K. (68)

This is plotted in Fig. 9 as function of disorder amplitude W .
Thus, we can conclude that there is a critical semimetal

region that extends over a finite-temperature range, T I
c <

T < T M
c . Since we derived the scaling function only at the

small symmetry breaking parameter, Xs , the phase diagram
at larger disorder, where the critical disorder of the unitary
ensemble (when time-reversal symmetry completely broken)
is approached, might be modified. This part of the phase
diagram is further complicated by the fact that 1/τs reaches a
maximum and decays logarithmically at temperatures exceed-
ing T

(0)
K . Furthermore, as inelastic scattering and dephasing

processes will become stronger at higher temperatures, that
higher temperature part of the phase boundaries is expected
to become less well defined, mainly indicating a crossover
region.

XII. CONCLUSIONS AND DISCUSSION

We conclude that spin correlations in disordered metals
do strongly modify the disorder induced Anderson metal-
insulator transitions. Starting from the numerically well-
established fact that a system of noninteracting electrons in
a nonmagnetic disorder potential undergoes a second-order
transition between a metallic state and an insulator, we studied
the mutual influence of Kondo correlations and the Anderson
localization transition. Since the position of the AMIT depends
very strongly on time-reversal and spin symmetries, we find
that the critical density and the critical disorder depend on
the density of magnetic impurities, since these randomize
the conduction electron spins. However, since the magnetic
impurity spin in a metal is screened at low temperatures due
to the Kondo effect, restoring a renormalized Fermi liquid
with full time-reversal symmetry,41 we conclude that coming
from the metallic side, the transition occurs at the critical
disorder of a time-reversal invariant system, WO

c . However,
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coming from the insulating side, it occurs, instead, at the
stronger critical disorder of a system where this symmetry is
to some degree broken by free magnetic impurity spins. Since
a shift in the AMIT results in an exponential change of the
finite-temperature resistivity, this has very strong experimental
consequences. Since both the correlation length and the
localization length are infinite in the critical region between the
two critical points, the zero-temperature conductivity vanishes
in this region, making the system a semimetal.

Taking into account the multifractality of the critical
wave functions, we derived the concentration of unscreened
magnetic impurities, the resulting spin scattering rate, and,
therefore, the shift of the AMIT. Information on the multi-
fractal distribution of the critical wave functions, which is
well established by numerous careful numerical calculations,12

allowed us also to characterize this critical region in more
detail. Unscreened magnetic moments occur at sites with
low intensity, which break the time-reversal symmetry of
the conduction electrons. At sites with high intensity local
singlets are formed, where one conduction electron is captured
and localized, leaving the symmetry of the other conduction
electrons unchanged. Thus, the Kondo-Anderson transitions
share some features of a first-order phase transition: In the
critical semimetal phase there is coexistence of different
magnetic states of the magnetic impurity spins, which change
the states of the conduction electrons, accordingly. A magnetic
Zeeman field is found to shift the transition to larger disorder
W and dominates the magnetic field dependence for small
exchange couplings, j < jz.

An experimental consequence of the critical semimetal
phase is the divergence of the dielectric susceptibility, χ (T =
0) ∼ ξ 2 ∼ [WI

c (J ) − W ]−2ν , at the disorder amplitude WI
c (J )

[or at a critical electron density nI
c (J )], while the zero-

temperature limit of the resistivity diverges with the corre-
lation length as ρ(T = 0) ∼ ξc ∼ (W − WO

c )−ν at the weaker
disorder amplitude WO

c (or at a larger critical density nO
c ,

accordingly). This difference, WI
c (J ) − WO

c , increases with
the concentration of Kondo impurities, as given by Eq. (49),
until it converges to its limiting value WU

c − WO
c .44 We expect

the critical semimetallic phase to be observable in materials
where both the AMIT and the Kondo effect are present
simultaneously at experimentally accessible temperatures,
such as in amorphous metal-semiconductor alloys49,50 with
dilute magnetic impurities,51 or in doped semiconductors, such
as Si:P, where thermopower measurements are consistent with
the presence of Kondo impurities with 〈TK〉 ≈ 1K .52 On the
insulating side of the transition, physical properties, such as
the finite-temperature resistivity, are governed by the single-
particle gap 	c = 1/(ρξd ) = Ec[(W − WI

c )/WI
c ]νd , which

causes activated behavior.
Aspects of the Kondo-Anderson transitions may be relevant

for the understanding of metal-insulator transitions in real
materials like Si:P. There have been detailed observations
of a finite density of magnetic moments in Si:P across the
transition, from magnetic susceptibility and specific heat
measurements.53 These have been previously modeled by the
phenomenological two-fluid model of Refs. 54 and 55 that
did not take into account the Kondo effect. On the other
hand, a realistic description of Si:P should consider that
uncompensated Si:P contains a random array of half-filled

donor levels that are randomly coupled. At low-donor con-
centration, close to the MIT, these levels are only weakly
hybridized with the conduction band. Therefore, Si:P should at
least be described by a half-filled Hubbard model with random
hopping and on-site potentials.1,53,55 Thus, all localized states
carry single electrons with spin-1/2 and double occupancy
is prevented by the on-site interaction U . For the Hubbard
model without disorder, the ground state at half filling is
antiferromagnetic and there is an excitation gap of order U .
Dynamical mean-field theory (DMFT) calculations show that,
at least in the limit of infinite dimensions, spectral weight
is transferred into the middle of the gap; it has been argued
that these states yield extended quasiparticles that may form a
Fermi liquid.56 These quasiparticles interact with the localized
magnetic moments in the lower Hubbard band, similarly to
normal conduction electron quasiparticles that interact with
magnetic Anderson impurities. In the presence of disorder, it
has been shown that even when there are no resonant levels,
and the donor levels have merged with the conduction band, the
localized states in the band tail may carry localized magnetic
moments.57 Calculations of the disordered Hubbard model,
using the statistical DMFT4,58 and a variant of the local DMFT
method,59 show also that this model shares many features with
the disordered Anderson impurity model studied in this article.
As mentioned above, starting from the Anderson impurity
model, we neglected the magnetic impurity scalar potential
K given in Eq. (9). We can justify this now by referring to
nonperturbative numerical studies of the Kondo effect with
a pseudogap of power r that find that, below the critical
exchange coupling Jc = rD, a scalar scattering potential is
irrelevant and the magnetic moment remains unscreened,25

leaving our conclusion about the density of free moments
unchanged. In the other case of power-law divergencies, which
we find to occur in the multifractal states at sites with large
intensity (α < α0), a nonperturbative renormalization group
analysis shows that the on-site potential is irrelevant for all
antiferromagnetic exchange coupling amplitudes,29 leaving
our conclusion on the formation of local singlets at such sites
unchanged as well. At finite density of magnetic moments the
indirect exchange coupling is in competition with the Kondo
screening. In a disordered metal these couplings are widely
distributed. In the vicinity of the AMIT, their distribution
function can be calculated in a manner similar to that of the
Kondo temperature, and this will be presented in a subsequent
paper.16

A nonphenomenological, analytical approach to the AMIT
of interacting, disordered electrons is provided by field-
theoretical methods that typically employ the replica trick.60

Decoupling the resulting action of interacting Grassmann
fields with the Hubbard-Stratonovich transformation, a sub-
sequent gradient expansion of the matrix fields results in the
nonlinear sigma model.60,61 This kind of field theory treats
the disorder scattering nonperturbatively and allows for a
renormalization group analysis. It turns out that not only the
conductance but also a frequency parameter and the spin
density are renormalized. In particular, it has been found
that the disordered electron system becomes unstable to local
spin density fluctuations at the AMIT.60 It is still unclear if
these indicate the onset of a magnetic phase transition62,63

or are, rather, precursors of the formation of local magnetic
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moments.61 Since the nonlinear sigma model is formulated
in order to account for long wavelength fluctuations such
as charge diffusion and spin diffusion modes, it cannot,
at least in these early formulations, describe local moment
formation. Therefore, it is an open challenge to combine the
field-theoretical approach to the AMIT with a nonperturbative
treatment of the local moment formation and the Kondo
correlations caused by them. Field-theoretical formulations of
the disordered Kondo problem have been developed in the
mean-field approximation64,65 and in the Ginzburg-Landau
theory.66,67 However, in these approaches, the AMIT of the
conduction electrons in the disordered potential has not yet
been taken into account. We hope that the theory of the
Kondo-Anderson transitions presented in this paper, which was
based, to some extent phenomenologically, on the multifractal
distributions and correlations at AMITs, can serve as a
guide in the quest for a theory, which is derived from
the Hamiltonian of disordered, interacting electrons, taking
into account nonperturbatively both disorder and interaction
effects, including Kondo correlations.
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APPENDIX A: WAVE-FUNCTION CORRELATIONS IN THE
VICINITY OF THE AMIT

1. One energy at the mobility edge EM

The long-range spectral correlations in a d-dimensional
system can be quantified by spatially integrating the correlation
function of the eigenfunction probabilities associated to two
energy levels distant by ωnm = En − Em.19 When one of these
energies is at the mobility edge EM , one finds

Cnm = Ld

∫
ddr 〈|ψn(r)|2|ψm(r)|2〉

=
{(

Ec

Max(|ωnm|,	)

)η/d
, 0 < |ωnm| < Ec,

(Ec/|ωnm|)2, Ep > |ωnm| > Ec,
(A1)

where 0 < η < d, with η = 2(α0 − d). This exponent is
obtained by the requirement that in the limit of small energy
differences, |ωnm| → 	, one recovers

Cnm||ωnm|→	 → L2d〈|ψn(r)|4〉 ∼ Ld−τ2 , (A2)

where τ2 = d2 = d − 2(α0 − d) and 	 = D/Ld . For |ωnm| <

Ec, correlations are enhanced in comparison to the plane-wave
limit, where Cnm = 1. Note that for |ωnm| > Ec the correlation

function decays below 1. This anticorrelation ensures that the
intensity is normalized: A dip in the intensity at one energy
implies an enhancement of intensity at another energy in the
band. This anticorrelation is expected to occur up to some finite
energy Ep, beyond which the correlation function increases to
the uncorrelated value 1 in a nonuniversal way.

2. Both energies at a distance from the mobility edge EM

The spectral correlations in a d-dimensional system also
exist away from the transition whenever either the correlation
length ξ (on the metallic side) or the localization length ξc

(on the insulator side) are finite. In the correlation function
of Eq. (A1), the energy difference |ωnm| is for εn < εm then
substituted by Max[|ωnm|,	ξn

], where 	ξn
= Ec (ξn/ac)−d ,

and ac is defined by Ec = 1/(ρad
c ), with ρ denoting the average

density of states. We get, therefore,

Cnm = Ld

∫
ddr 〈|ψn(r)|2|ψm(r)|2〉

=
⎧⎨
⎩
[

Ec

Max[|ωnm|,	ξn ]

]η/d
, 0 < |ωnm| < Ec,(

Ec

|ωnm|
)2

, |ωnm| > Ec,
(A3)

where η = 2(α0 − d). For ωnm < Ec, correlations are still
enhanced in comparison to the plane-wave limit, where
Cnm = 1.

3. Joint distribution function

The joint distribution function of two eigenfunction in-
tensities at the same position should be log-normal since
the distribution function of a single eigenfunction intensity
is log-normal as given by Eq. (2). Therefore, we recently
hypothesized it to be of a log-normal form, when one of
the energies is at the mobility edge.21 In general, when,
one or both energies are away from the mobility edge, the
finite correlation length/localization length ξ needs to be
taken into account when one or both energies are on the
metallic/localized side of the transition, respectively. We can
then hypothesize the joint distribution function for αl and αk ,
where, in the metallic regime, we define α = − ln[(L/ξ )d |ψ(x)|2]

ln ξ
,

which has the distribution P (α) ∼ ξ−(α−α0)2/(2η). Accordingly,
in the localized regime, we get the same distribution function,
defining there α = − ln[|ψ(x)|2]/ ln ξ . Then, for |εl − εk| <

Ec, we hypothesize the joint distribution function to be of the
form,

P (αl,αk) = ξ
alk[f (αl )−d]
l ξ

alk[f (αk )−d]
k K

−alk
(αl−α0)(αk−α0)

dη

lk , (A4)

where ξl is the correlation/localization length of a state at
energy El , Klk = Max[|El − Ek|,Min(	ξl

,	ξk
)]/Ec, and

alk = 1

1 − ( ln Klk

d ln ξ̂

)2 , (A5)

where we introduced the length scale ξ̂ through

ln ξ̂ =
√

ln ξl ln ξk. (A6)

Averaging the local intensity of the state with energy El

with the conditional probability P (α,αl)/P (α), which can be
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rewritten as

Pαk=α(αl) = ξ
−alk

[αl−α0+ ln Klk
d ln ξl

(α−α0)]2

2η

l , (A7)

we then get Eq. (28),

Iα(ξl,ξk) = 〈Ld |ψl(r)|2〉α = K

α−α0
d

− η

2d2
ln Klk
ln ξk

lk . (A8)

Note that when the energy Ek is at the mobility edge
Ek = EM then ξk → L, in Eq. (A4), and we recover the
conditional intensity at energy El , Eq. (5), in a more rigourous
way (the finite correlation length of that state, ξl , did not appear
explicitly in our previous conjecture Eq. (7) of Ref. 21, but is
now taken into account in Eq. (A4).

4. Higher-moment correlation functions

The correlation of higher moments of the intensities is
defined by

C
q

{ni } = Lqd

〈
q∏

i=1

|ψni
(r)|2

〉
. (A9)

We consider, first, the case where one of the energies is fixed to
the mobility edge, En1 = EM . The power law of the correlation
of higher moments of the intensity can then be obtained by
taking the limit of small energy differences, ωni,nj

→ 	, which
yields

C
q

{ni } |ωni ,nj
→	,∀i = Lqd〈|ψn(r)|2q〉

∼ L(q−1)d−τq ∼ Lηq , (A10)

where τq is found to terminate for q > qc = α0/η. Thus, for
d = 3 and α0 = 4, qc = 2, so all higher-order moments have
the same τq = τ2 = d − η,∀q > qc. Thus, we find

ηq = (q − 2)d + η. (A11)

Furthermore, we note that the pair of intensities whose energies
are closest to each other are correlated with a power η/d. Thus,

we can conclude that the third-order correlation function is to
leading order given by

C3
{ni } ∼

(
Ec

|Min(ωni,nj
)|
) η

d Ec

|Max(ωni,nj
)| . (A12)

This result is valid for 0 < |ωni,nj
| < Ec∀i,j . If all energies

in C3 are placed away from the mobility edge, En1 �= EM ,
then the energy difference |Min(ωni,nj

)| is replaced by 	ni
=

Ec/ξ
d
ni

if it is smaller than that energy scale, respectively.

APPENDIX B: F[α,TK ]

Let us, first, consider the case where the Fermi energy
is at the mobility edge. We can then evaluate F [α,TK ] in
the following way. We transform the summation over states
l to the integration over energy ε. We then transform to t =
− ln(ε/Ec). Next, we can substitute in good approximation
tanh x ≈ x for 0 < x < 1 and tanh x ≈ 1 for x > 1. Thereby,
we get

F [α,TK ] = j

[∫ ln(Ec/	)

ln(Ec/TK )
dte−t +

∫ ln(Ec/TK )

0
dt

]

× exp

[
− α − α0

d
t − α0 − d

d2

t2

ln L

]
. (B1)

The integrals can now be performed, yielding Error func-
tions,

∫ b

a
e−At2−Bt = eB2/(4A)

√
π

2
√

A
(Erf[

√
Ab + B/(2

√
A))] −

Erf[
√

Aa + B/(2
√

A))]), for each term in Eq. (B1). Since
A = (α0 − d)/(d2 ln L) the arguments of all Error functions
diverge for L → ∞, and we can use the asymptotic expansion
Erf [z] → signz × 1 − e−z2

/(
√

πz). Thereby, we find for α >

α0 − d,

F [α,TK ]/j = d

α − α0
+
(

d

2α − η
− d

α − α0

)(
Ec

TK

) α0−α

d

− dα

Ec

TK

L−α, (B2)

where dα = d/(η + 2α). Solving 1 = F [α,TK ] we obtain then
for L → ∞, Eq. (13) for TK (α).
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