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Exact analytic Gorkov-Ginzburg-Landau theory of type-II superconductivity
in the magnetoquantum oscillations limit
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A new Green’s function representation is employed in a microscopic derivation of a Ginzburg-Landau theory of
strongly type-II superconductivity at high magnetic fields. An exact analytical, physically transparent expression
for the quartic term in the corresponding order parameter expansion is presented. The resulting expression reveals
nonlocal contributions to the superconducting (SC) free energy, associated with highly coherent cyclotron motions
of the paired electrons near the Fermi surface, which lead to singular couplings to the vortex lattice. A major
part of these contributions arises from incoherent scattering by the spatially averaged pair potential, which is
purely harmonic in the de Haas–van Alphen frequency. However, coherent scatterings by the ordered vortex
lattice generate a large erratically oscillating (i.e., paramagnetic-diamagnetic) contribution to the SC free energy
as a function of the magnetic field. Vortex lattice disorder, which tends to suppress this oscillatory component, is
found to preserve the harmonic part of the SC free energy.
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I. INTRODUCTION

Revealing the mechanism in which a clean, ordered
superconducting (SC) material at very low temperatures
responds to the application of an external magnetic field is
of crucial importance for understanding the phenomenon of
superconductivity at its most fundamental level. Surprisingly,
as compared to high-field superconductivity under “nonideal”
conditions, i.e., in dirty or disordered materials at relatively
high temperatures, the “ideal” SC state at low temperatures
under high magnetic fields is currently not well understood
even within the conventional BCS theory.1,2 Experimental de-
tection of such high magnetic field states is currently restricted
mainly to magnetoquantum oscillations techniques,3 which
provide researchers with detailed quantum information of the
system investigated, but are difficult to analyze by the standard
Fourier transform techniques due to the highly restricted range
of magnetic fields available below the SC transition. There
have been many reports on the observation of de Haas–van
Alphen (dHvA) or Shubnikov–de Haas (SdH) oscillations in
the SC states of strongly type-II superconductors, showing
occasionally additional damping of the signal in the SC
state with respect to the normal state signal (a partial list of
references includes Refs. 3–8). However, their interpretation
has not lead so far to any kind of consensus regarding the
influence of the vortex matter on the oscillatory signal, partly
because of the difficulties in the data analysis, and partly
due to the lack of a consistent theory with a quantitatively
predictive power.2 The mean-field theories based on a detailed
exposition of the quasiparticle excitations obtained by solving
the corresponding Bogoliubov–de Gennes (BdG) equations for
an ordered vortex lattice,9–13 provide insight into fine features
of the Landau band structure, but lose their transparency
very quickly and become heavily numerical at early stages
of their application to any observable quantity. On the other
hand, a simple formula for the additional damping,14,15 used
frequently in the literature for a manageable interpretation of
experimental data, has been shown to be limited to situations

of random vortex distributions,2 and to the influence of the
SC order parameter on the quasiparticle relaxation rate,15

neglecting important contributions to the oscillatory SC free
energy.

Attempting to compare the results of the different theoret-
ical approaches leads to great confusion. In the field range
near Hc2 where the SC order parameter is small and the
leading (quadratic) term in the order parameter expansion
of the SC free energy should be a good approximation,2 the
results of all numerical simulation of the BdG equations9–13

deviate markedly from this universal limiting value (see, e.g.,
Fig. 8 in Ref. 13). The situation in the low magnetic fields
region well below Hc2 is even worse. Norman and MacDonald
(NM) in their numerical simulations of the BdG equations
reported12 that the harmonic of the Fourier transform of the
calculated magnetization in a finite interval of this regime
varies erratically in sign and magnitude (see Fig. 5 in Ref. 12)
with no pattern that they could discern. Similar calculations
carried out by Yasui and Kita13 have resulted in an additional
damping rate which deviates drastically from both NM result
and Maki’s formula, showing erratically oscillating patterns of
the corresponding Dingle plot, which seems to be indicative
of some fundamental problem of numerical instability.

It is therefore desirable to derive an exact analytical
expression for the SC thermodynamic potential which will
enable one to identify the origin of this erratic behavior and
carry out the calculation in a controlled fashion. In this paper
we present such an exact analytical expression within the
framework of the Gorkov-Ginzburg-Landau expansion of the
free energy in the SC order parameter (or pair potential) up to
fourth order. It is indeed found that highly correlated portions
of the electronic cyclotron orbits involved in pairing have
dominant contributions to the quartic and higher order terms
of the SC free energy. The corresponding, singularly divergent
distribution of the free energy obtained within an effective
temporal representation results in equally shared contributions
from the spatially uniform component of the SC pair potential
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and from its periodically modulated component associated
with the vortex lattice.

The resulting expression for the free energy consists of
two types of terms: harmonic in the dHvA frequency and
associated with the Landau level structure of the quasiparticles,
and erratically oscillating terms as functions of the magnetic
field, associated with coherent scattering channels of the
quasiparticles by the vortex lattice. The latter are strongly
enhanced when the length of a reciprocal vortex lattice vector
coincides, or nearly coincides, with the Fermi sphere diameter.

The resulting analytical expression also enables one to
study the effect of disorder in the vortex lattice on the
oscillatory free energy. In the white noise limit of the
self-consistent Born approximation (SCBA),15 the erratic
oscillations associated with the coherent scattering by the
vortex lattice are suppressed, yielding a result consistent
with Maki’s formula.14 However, deviations from the SCBA
should be carefully examined in light of the recent high-field
low-temperature μSR measurements in the vortex-glass (peak-
effect) region of borocarbide superconductors,16 which have
shown strong correlation between the enhanced additional
damping of dHvA oscillations with enhanced vortex lattice
disorder observed in the peak-effect region.2

II. GENERAL FORMULATION

We consider a 2D strongly type-II (neglecting the effect
of SC screening currents) superconductor in a perpendicu-
lar uniform magnetic field H = (0,0,H ). Generalization to
isotropic 3D systems is rather straightforward. It is assumed
that the superconductor can be described by means of BCS-
Hamiltonian density for the usual singlet s-wave electron
pairing

HBCS = �∗(r)ψ(r)ψ(r) + �(r)ψ∗(r)ψ∗(r) − 1

gBCS
|�(r)|2,

(1)

where ψ(r) is the single electron field operator and gBCS

is BCS coupling constant (electron spin is neglected for
the sake of simplicity). Within mean-field approximation,
the order parameter �(r) = gBCS〈ψ(r)ψ(r)〉 should be deter-
mined self-consistently by minimizing the superconducting
thermodynamic potential �sc(�). We do not consider the
problem in a fully self-consistent manner, assuming that the
order parameter is described by a general vortex lattice state,

�(r) =
(

2π

a2
x

)1/4

�0ϕ0(r),

written in terms of a discrete set of ground-state Landau
orbitals:

ϕ0(x,y) = eixy
∑

n

e−iθn2+iqnx−(y+qn/2)2

= e− 1
2 |z|2+ 1

2 z2
∑

n

eiqnz− q2
n
4 , (2)

where z = x + iy and qn = 2π
ax

n = q0n with the lattice spacing
ax along the x axis and the angular parameter θ which
determines the point symmetry of the vortex lattice. It is easy
to see that for a general (rhombic) vortex-lattice geometry,

determined by the angular parameter θ , a2
x = π/

√
1 − (θ/π )2.

For the Abrikosov triangular lattice: θ = π/2 and q0 = 2π
ax

=
31/4

√
2π .

We use the symmetric gauge with vector potential
A = 1

2 [H × r] = 1
2H (−y,x,0) and dimensionless space coor-

dinates measured in units of the electronic magnetic length,
aH = √

ch̄/eH . The amplitude of the order parameter, �2
0 =

S−1
∫

d2ri |�(ri)|2, where S = πN is the area of the 2D
superconductor and N is the number of vortices, is treated
as a variational parameter for minimizing �sc(�).

The thermodynamic potential �sc(�) can be written as a
Taylor expansion in the SC order parameter:1

�sc(�0) = S
�2

0

(h̄ωc)2gBCS
+
∑
n=1

(−1)n

n
�2n(�0),

�2n = �
(0)
2n

∫
d2{r}	̃2n({r})K̃2n({r}),

�
(0)
2n =

(
2π

a2
x

)2n/4 1

(2π )2n
kBT a2

H

∣∣∣∣ �0

h̄ωc

∣∣∣∣2n

,

where

K̃2n({r}) = (2πh̄2/m)2n
∑

ν

G∗
0(r1,r2,ων) × G0(r2,r3,ων)

. . . G∗
0(r2n−1,r2n,ων)G0(r2n,r1,ων), (3)

	̃2n({r}) = g∗(r1,r2)g(r2,r3) . . . g∗(r2n−1,r2n)

×g(r2n,r1)ϕ0(r1)ϕ∗
0 (r2) . . . ϕ0(r2n−1)ϕ∗

0 (r2n).

(4)

Here we use the normal state single electron Green’s func-
tion in the uniform magnetic field, which is given by the
well-known expression, G(r2,r1,ων) = g(r2,r1)G0(r2,r1,ων),
where

G0(r2,r1,ων) ≡ G0(ρ,ων) = 1

2πa2
H

∑
n

e−ρ2/4Ln(ρ2/2)

μF − εn + ih̄ων

,

(5)

ρ = r2 − r1, and g(r2,r1) = e− i
2 [r2×r1] is the usual gauge

factor. Also note that in the above equations, ων = πkBT (2ν +
1)/h̄,ν = 0, ± 1, . . . is the Matsubara frequency at tempera-
ture T , μF is the chemical potential, and εn = h̄ωc(n + 1/2),
n = 0,1,2, . . . is a Landau level energy with ωc = eH/mc the
cyclotron frequency.

It will be very helpful to use an equivalent representation
of the translational invariant part of the Green’s function for
ων > 0, i.e.,

G0(ρ) = 1

2πh̄ωc

∫ ∞

0
dτeiτ [nF +i�ν ]

exp
(− ρ2

4
1+e−iτ

1−e−iτ

)
1 − e−iτ

= 1

2πh̄ωc

∫ ∞

0

dτ

α
eiτ [nF +i�ν ]−μρ2

, (6)

which can be easily derived from Eq. (5) by using the integral
representation of (μF − εn + ih̄ων)−1 and the generating
function of the Laguerre polynomials. The resulting expression
is written in terms of the following dimensionless quantities:
α ≡ 1 − e−iτ , μ ≡ 1

4
1+e−iτ

1−e−iτ , (μF − εn) = h̄ωc(nF − n), and
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ων = h̄ωc�ν . Note also that for �ν < 0, τ in Eq. (6) should
be replaced with −τ , yielding the complex conjugate of the
expression for �ν > 0.

Exploiting the integral representation, Eq. (6), we can
rewrite the electronic kernel K̃2n({r}) in the form:

K̃2n({r}) =
∏
j

∫ ∞

0
dτj e

−iεj τj nF −�ντj
1

αj

exp(−μjρ
2
j ),

εj = (−1)j+1, αj = 1 − eiεj τj , μj = 1

4

1 + eiεj τj

1 − eiεj τj
,

This representation of �sc(�0) has an obvious advantage
over the original expression: All space integrals are of
Gaussian forms and, therefore, can be calculated analytically.
Unfortunately, gauge factors mix all electron coordinates so
that the calculation of the higher order terms is not trivial.

III. QUARTIC VERSUS QUADRATIC TERMS:
EFFECT OF THE VORTEX LATTICE

A. The quadratic term

The second order term has been calculated long ago. We
repeat the calculation to illustrate the advantage of using the
Green’s function in the special representation, Eq. (6).

The vertex part in Eq. (4) can be written as

	̃2(r1,r2) = g∗(r1,r2)g(r2,r1)ϕ0(r1)ϕ∗
0 (r2)

=
∞∑

n,m=−∞
eζ

(2)
nm ,

where ζ (2)
nm = i(x1y2 − y1x2) + ix1y1−ix2y2+iqnx1−(y1 +

qn/2)2 − iqmx2 − (y2 + qm/2)2. Noting that the depen-
dence on the center-of-mass coordinates, R ≡ r1+r2

2 , ap-
pears only in the vertex part, one can extract this de-
pendence from ζ (2)

nm, ending with two integrals over the
center of mass:

∫
dRx exp[i(qnRx − qmRx)] = axNxδnm and∫

dR′
y exp(−2R′2

y ) = √π
2 . Here Nx is the number of vortices

along the x direction, and R′
y is a shifted Ry coordinate. The

remaining function, ζ (2)
nm → − 1

2ρ2, does not depend on n, so
that summation over n gives the number of Landau orbitals
along the y axis, Ny . Consequently, the quadratic term can be
written as

�2ν = ax

√
π

2
NxNy�

(0)
2

∫ ∞

0

∫ ∞

0
dτ1dτ2e

inF (τ2−τ1)−�ν (τ1+τ2)

× 1

α1α2

∫
d2ρ exp

(
− μ1ρ

2 − μ2ρ
2 − 1

2
ρ2

)
(7)

or, after integrating over relative coordinates ρ, as

�2ν = ax

√
π

2
N�

(0)
2

∫ ∞

0

∫ ∞

0
dτ1dτ2

×einF (τ2−τ1)−�ν (τ1+τ2) 1

α1 + α2
, (8)

where N = NxNy is a number of vortices in the system.
The dominant contributions to the τ integrals originates in

the poles of the integrand where α1,2 → 0, namely at τj →
2njπ,nj = 0,±1, . . . , where the first exponent inF (τ2 − τ1)
is equal to 2iπnF n,n = 0,±1, . . . , corresponding to exact
harmonics of the dHvA frequency F = nF H . We therefore

conclude that the quadratic term is dominated by harmonics of
the dHvA frequency, which implies that to leading order in the
GGL expansion the Landau levels structure is not distorted by
the vortex lattice. This result is consistent with the well-known
property of the quadratic term to be independent of the vortex
lattice structure.

Considering the first harmonic for the sake of illustration,
we shift τ2 → 2π + τ2 and expand α1 + α2 in τ1 and τ2

for τ1 
 1 and |τ2| 
 1: α1 + α2 � i(τ2 − τ1) + 1
4 (τ1 + τ2)2.

Here the term 1
4 (τ1 − τ2)2 was neglected since (τ2 − τ1) ∼

(τ1 + τ2)2. Noting, further, that if τ1 + τ2 < 0 the pole is
located out of the integration interval, and calculating the
corresponding Cauchy integral over the (τ2 − τ1) variable
for τ1 + τ2 � 0, one obtains 1

2kBT a2
H N π3/2√

nF
( �0
h̄ωc

)2e2iπnF −2π�ν .
A similar expression can be derived by expanding near the
symmetric point τ1 → 2π + τ1 and τ2 → τ2 with |τ1| 
 1
and τ2 
 1. Therefore, the quadratic term is written as

�
(1h)
2 = kBT a2

HN
π3/2

√
nF

(
�0

h̄ωc

)2

Re e2iπnF −2π�ν .

Since near the poles μj ∼ 1
τj


 1, the spatial integral in Eq. (7)
is dominated by very small distances, a result consistent with
the locality of the quadratic term. Also note that the final
expression does not depend on ax , a result consistent with the
fact that the structure of the vortex lattice does not influence
the quadratic term.

B. The quartic term

1. Useful expressions and major analytical properties

The calculation of the next order term, the quartic term,
is much more complicated since, unlike the quadratic term,
it is strongly affected by the coupling of the electrons to
the vortex lattice. However, the use of the representation,
Eq. (6), for the single electron Green’s functions facilitates
greatly the entire eight-fold spatial integration by transforming
the corresponding integrand into a multiple Gaussian form.
Following the derivation described in detail in Appendix, the
quartic term can be written as a 4D “temporal” integral:

�4ν = 1

2
kBT a2

H N

∣∣∣∣ �0

h̄ωc

∣∣∣∣4 I4,

I4 =
∫ ∞

0
dτ1dτ2dτ3dτ4

β(γ )

α1 + α2 + α3 + α4

× e−�ν (τ1+τ2+τ3+τ4)−inF (τ1−τ2+τ3−τ4), (9)

where

β(γ ) =
√

π

ax

1

(1 − γ 2)1/2

×
∑
st

exp

[
−2iθst − 1

4
q2

0

(
1 − γ

1 + γ
s2 + 1 + γ

1 − γ
t2

)]
,

(10)

and

γ = α2α4 − α1α3

α1 + α2 + α3 + α4
. (11)
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The structure function β(γ ), expressed in Eq. (10), controls
the coupling between the four electrons involved and the vortex
lattice. For γ = 0 it reduces to the well-known Abrikosov
parameter βA = β(γ = 0) for an arbitrary vortex lattice
geometry,2 where the corresponding free energy, Eq. (9),
takes the form obtained in the local approximation. Its most
remarkable feature is associated with the dual singular points
at γ → ±1, where the lattice sums over s or t (depending
on whether 1 − γ → 0 or 1 + γ → 0, respectively) can
be replaced by integrals (over s̃ = s

√
(1 − γ )/2 or t̃ =

t
√

(1 + γ )/2, respectively), enhancing the singularities of the
corresponding pre-exponential factors to simple poles:

β(γ → 1) →
√

π

ax

1

(1 − γ )

∫
ds̃e− 1

4 q2
0 s̃2

×
∑

t

exp

[
−1

2
q2

0

(
1

1 − γ

)
t2

− i
√

2θ s̃

(
1

1 − γ

)1/2

t

]

→ 1

(1 − γ )
,

β(γ → −1) →
√

π

ax

1

(1 + γ )

∫
dt̃e− 1

4 q2
0 t̃2

×
∑

s

exp

[
−1

2
q2

0

(
1

1 + γ

)
s2

− i
√

2θ t̃

(
1

1 + γ

)1/2

s

]

→ 1

(1 + γ )
.

Note that in the sum over the remaining variable, t or s, only
the single term t(or s) = 0 survives, due to the large negative
real-part values of the corresponding exponent.

It is interesting to note that the values of the individual elec-
tronic “time” variables τj satisfying the singular conditions,
γ → ±1, are given, respectively, by

τ1 = τ3 → 0, τ2 → nπ − τ, τ4 → nπ + τ (12)

and

τ1 → nπ − τ, τ3 → nπ + τ, τ2 = τ4 → 0, (13)

where τ is an arbitrary real number in the interval: −π � τ �
π , and n = 0, ±1, ±2, . . .. Thus, the electrons at such highly
correlated pairs of cyclotron orbits are resonantly coupled
to the entire vortex lattice, yielding only purely harmonic
contributions to the SC free energy in the dHvA frequency
F = nF H since under these conditions e−inF (τ1−τ2+τ3−τ4) →
e−2πinnF . Note also that at the singular points the factor
e−�ν (τ1+τ2+τ3+τ4) is equal to e−2π |n�ν |, determining the thermal
damping of the quantum oscillatory part of the SC free energy,
and a natural (thermal) cutoff for the integrals over τj .

Another type of singular points of the integrand in Eq. (9)
corresponds to the vanishing denominator α1 + α2 + α3 + α4,
which takes place at simultaneous vanishing of all αj =
1 − eiεj τj , namely when τj → 2πnj ,nj = 0,1,2, . . .. At the
corresponding poles the effective coupling parameter of the

electrons to the vortex lattice γ → 0, and one recovers the
well-known local approximation in which the electrons are
only weakly coupled to the vortex lattice.

2. Effect of the vortex lattice

The effect of the vortex lattice on the free energy can be
expressed more clearly by transforming the lattice double sum
in Eq. (10) into a 2D reciprocal vortex lattice summation. To
do so the summation over t is carried out by means of the
Poisson formula into

β(γ ) = 1

(1 + γ )

∞∑
s,m=−∞

exp

{
−
(

1 − γ

1 + γ

)[(
π

ax

)2

s2

+ (πm − θs)2

(
ax

π

)2]}
. (14)

Now, using two primitive vectors spanning the vortex lattice
(a = x̂ax , b = x̂bx + ŷby), with by = π/ax , the correspond-
ing primitive vectors spanning the reciprocal vortex lattice are
a∗ = x̂by − ŷbx, b∗ = ŷax so that

(
π

ax

)2

s2 + (θs − πm)2

(
ax

π

)2

= (sa∗ + mb∗)2

and

β(γ ) = 1

(1 + γ )

∞∑
s,m=−∞

exp

[
−
(

1 − γ

1 + γ

)
|Gsm|2

]
,

(15)
Gsm ≡ sa∗ + mb∗.

A similar procedure in which the Poisson formula is used
with respect to the summation over s leads to an expression
identical to Eq. (15) after exchanging γ ←→ −γ . Since under
the integrations over all τj , j = 1, . . . ,4, a given value of
γ (corresponding to a given selection of τ1,τ3,τ2,τ4) always
appears with its opposite value −γ (corresponding to the
values of τ1,τ3 exchanged with those of τ2,τ4), one can always
replace β(γ ) in Eq. (9) with the symmetric expression

βsym(γ ) =
∑

G

β
sym
G (γ )

= 1

2

∑
G

{
1

(1 + γ )
exp

[
−
(

1 − γ

1 + γ

)
|G|2

]
+ 1

(1 − γ )
exp

[
−
(

1 + γ

1 − γ

)
|G|2

]}
(16)

without altering the result of I4.
Equation (16) near the singular points γ = ±1 describes

two additive coherent processes of two electron pairs moving
in cyclotron orbits on the Fermi surface and undergoing
scatterings by the vortex lattice. Near the singular point
γ = 1, where the positions of the electrons labeled (1,3)
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along their cyclotron orbit coincide [i.e., for τ1 = τ3 → 0, see
Eq. (12)], the other two electrons, labeled (2,4), are moving
coherently along their cyclotron orbits in opposite directions
(i.e., τ2 → nπ − τ,τ4 → nπ + τ ). Thus, the singular γ → 1
contribution of the first term within the brackets in Eq. (16)
is associated with the electrons labeled (1,3) and involves
many G vectors, whereas the singular γ → 1 contribution of
the second term is associated with the other two electrons
labeled (2,4) and involves only the G = 0 channel. Similarly,
near the dual singular point γ = −1, where the (1,3) elec-
trons are moving in opposite directions [i.e., τ1 → nπ − τ ,
τ3 → nπ + τ , see Eq. (13)] and the positions of the (2,4)
electrons along their orbit coincide (i.e., τ2 = τ4 → 0), the
contribution of the first term involves only the G = 0 channel,
whereas the contribution of the second term involves many G

vectors.
The physical meaning of the singular γ → ±1 contribu-

tions is therefore apparent: The two electrons whose positions
on the cyclotron orbit coincide at the singular point undergo
local mutual scattering and so exchange many G vectors
through the vortex lattice during the scattering process, while
those electrons moving coherently on a large cyclotron orbit in
opposite directions are mutually scattered through the entire
vortex lattice, and so do not exchange momentum.

The resulting leading contributions to βsym(γ ) can be
therefore written in terms of very simple formulas: The forward
scattering contribution takes the form

β
sym
G=0(γ ) = 1

2

(
1

1 + γ
+ 1

1 − γ

)
, (17)

whereas the rest of the reciprocal lattice contributions,
�G �=0β

sym
G (γ ), which involve increasingly large numbers of

reciprocal lattice vectors as γ → ±1, can be well approxi-
mated in these limiting cases by the two-dimensional integral,∫

β
sym
G (γ )d2G, yielding:

∑
G �=0

β
sym
G (γ ) →

∫
β

sym
G (γ )d2G = 1

2

{
1

1−γ
, γ → 1

1
1+γ

, γ → −1

}
.

(18)

Note that the G = 0 term, given by Eq. (17), represents the
effect of the spatially uniform component of the SC order
parameter on the free energy, whereas the rest of the terms
in Eq. (16) correspond to all possible umklapp (coherent)
scattering processes by the vortex lattice.

To gain further insight into this remarkable coupling to
the vortex lattice, we may expand β(γ )/(α1 + α2 + α3 + α4)
about one of the singular points, say γ = 1, and carry out the
τj integrations to derive a more transparent (but approximate)
expression for I4. Focusing, for simplicity, on the first har-
monic of the dHvA frequency F = nF H , our small expansion
parameters are (see also Sec. B 4) ξ̃1 = 1

4 (τ1 + τ2 + τ3 +
τ4) − π/2, ξ̃2 = 1

2 (τ1 − τ2 + τ3 − τ4) + π, ξ̃3 = τ1 − τ3, and
ξ̃4 = τ4 − τ2, so that to second order, the key composite
variables are given by

1 − γ

1 + γ
� −1

4
iξ̃2 + 1

16

(
4̃ξ 2

1 + ξ̃ 2
3

)
(19)

and

I4 → e2πinF e−2π�ν

∫ ∞

0
dξ̃1e

−4�νξ̃1

×
∑

G

∫ 2̃ξ1

−2̃ξ1

dξ̃2 exp

{
iξ̃2

[
1

4
|G|2 − 2nF

]}

×
∫ 2̃ξ1+ξ̃2

−(2̃ξ1+ξ̃2)
dξ̃3 exp

{
−
(̃

ξ 2
1 + 1

4
ξ̃ 2

3

)
1

4
|G|2

}
×
∫ 2̃ξ1−ξ̃2

−(2̃ξ1−ξ̃2)
dξ̃4.

Considering the umklapp scattering terms with large vectors
G, it is clear that the dominant contributions originate from
reciprocal lattice vectors satisfying 1

2 |G| ≈ √
2nF , namely

having length close to the Fermi surface diameter. Further-
more, due to the large values of nF and the discrete nature
of G (which are measured in units of the magnetic length)
with an elementary unit of about π , the integration over ξ2

yields an erratically oscillating function of nF , which reflects
the dramatic influence of the vortex lattice on the fermionic
quasiparticles at high magnetic field.

3. Numerical calculations

For numerical calculations we use Eq. (9), assuming a
square vortex lattice with ax = √

π . Performing the Poisson
summation over s or t in Eq. (10), one can transform β(γ ) into
simpler, equivalent forms:

βsq (γ ) = 1

1 − γ

∑
mt

exp

[
−π

1 + γ

1 − γ
(m2 + t2)

]

= 1

1 − γ

(∑
n

exp

[
−π

1 + γ

1 − γ
n2

])2

= 1

1 + γ

(∑
n

exp

[
−π

1 − γ

1 + γ
n2

])2

. (20)

The integrals in Eq. (9) can be more conveniently evaluated
by transforming to the new variables [shifted with respect to
ξ̃i , defined above Eq. (19)]: ξ1 = 1

4 (τ1 + τ2 + τ3 + τ4), ξ2 =
1
2 (τ1 − τ2 + τ3 − τ4), ξ3 = (τ1 − τ3), ξ4 = (−τ2 + τ4):

I4 =
∫ ∞

0
dξ1e

−4�νξ1I3(ξ1), (21)

I3(ξ1) ≡
∫ 2ξ1

−2ξ1

dξ2e
−2inF ξ2

∫ 2ξ1+ξ2

−(2ξ1+ξ2)
dξ3

×
∫ 2ξ1−ξ2

−(2ξ1−ξ2)
dξ4

β(γ )

α1 + α2 + α3 + α4
. (22)

The distribution function I3(ξ1) has been calculated nu-
merically for different integer values of nF . Selecting integer
values of nF pins the SC free energy at the maxima of its
magnetic quantum oscillations, allowing us to determine their
amplitude for any given harmonic in the dHvA frequency
F = HnF . The result for I3(ξ1) is shown in Fig. 1. It appears
as a series of sharp peaks located around the points ξk

1 = π
2 k
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FIG. 1. (Color online) The distribution function I3(ξ1) given by
Eq. (22) for nF = 32. The peak near ξ1 = 0 is too small to be
observable in the considered scale.

with k = 0,1, . . . , having monotonically increasing intensity
with increasing order k. The maximum positions of the peaks
are slightly shifted with respect to π

2 k toward larger values due
to the ξ1 dependence of the ξ3,ξ4 integrals. The peaks’ height
is found to increase with increasing harmonic order k as k2,
but the number of significantly contributing peaks is limited
by the thermal damping factor e−4�νξ1 . A simple estimation
shows that for 2π2kBT � 4h̄ωc, the contribution of the second
harmonic does not exceed 10% of the first harmonic where the
3rd harmonic contribution is less than 1%. On the other hand,
at temperatures as low as 2π2kBT � h̄ωc many harmonics
provide comparable contributions. In this low-temperature
limit, replacing summation over harmonics with integration
one finds for an integer nF : kBT

∑
ν

∫∞
0 dξ1e

−4�νξ1I3(ξ1) →
kBT

∑
ν,k k2 exp[−π2kBT

h̄ωc
(2ν + 1)k] → h̄ωc( h̄ωc

kBT
)2. Therefore,

the quartic term diverges as 1
T 2 as T → 0, due to the

resonance pairing conditions2 characterizing the zero spin
splitting situation considered here. Note, however, that the
resulting divergence is weaker than that obtained in the
local approximation.2 In the latter the quartic term for an
integer nF was found to be proportional to kBT

∑
ν q2

ν , with

qν = eXν

cosh Xν+cos 2π(nF +1/2) , and Xν = 2π2kBT
h̄ωc

(2ν + 1), with

the following low-temperature limit: kBT
∑

ν q2
ν → 1

T 3 . Note
also that the quadratic term, which is local in nature, is
characterized by the low-temperature limit: kBT

∑
ν qν → 1

T
.

Obviously, for real materials, even in the ultra clean limit,
the effect of nonmagnetic impurity scattering evaluated in
the relaxation time approximation17 can remove this zero-
temperature singularity.18 However, in this limit the expansion
parameter becomesso large that a nonperturbative evaluation
of the thermodynamic potential is required. So far such a
nonperturbative calculation has been done (see Ref. 18) only
within the local approximation. Furthermore, the standard
technique of averaging over impurity configurations17 may not
be valid at such ultra low temperatures due to neglect of coher-
ent electron paths responsible for mesoscopic fluctuations.2,19

For the sake of illustrating the salient features of the
nonlocal theory discovered in this paper, we will focus here on
the leading magnetic quantum oscillatory effect by considering
the first harmonic of the thermodynamic potential in the
dHvA frequency F = HnF . This situation corresponds to the
usual dHvA experimental conditions when higher harmonics

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

3.0

nF

I 4
1

FIG. 2. (Color online) The four-fold τ integral, I
(1)
4 , calculated

at integer values of nF for a square vortex lattice (blue solid line).
The red dashed line presents the harmonic part, obtained by using
Eq. (23). Use of the first term in this expression (corresponding to the
single pole at γ = 1) in the calculation of I4 yields the green dotted
line. Note that the magnitude of these oscillations relative to the usual
dHvA oscillations is temperature independent.

are relatively small. Under these circumstances the main
contribution to I4 [see Eq. (21)] originates in the second
peak at ξ1 � π/2, which is dominated by the integral over
small intervals around ξ2 � ±π , and to a lesser extent by
all other values of ξ2. The resulting integral over ξ2 [with
the integrand including e−2inF ξ2 , see Eq. (22)] in the small
intervals near ξ2 � ±π yields the dominant contribution to
the first harmonic. As usual for the first harmonic one may
restrict the thermal Matsubara summation to the single term
ν = 0.

The integration over ξ1 around the point ξ1 � π/2 has been
performed for different integer values of nF under the as-
sumption that e−4�νξ1 � e−2π�ν=0 . This approximation enables
us to write I4 as I4 � e−2π�ν=0I

(1)
4 where I

(1)
4 is temperature

independent, depending only on nF . To avoid interference with
the usual dHvA oscillations, we have calculated I

(1)
4 only at

integer values of nF . The result presented in Fig. 2 (solid, blue
line) shows clearly the erratic oscillatory dependence on nF

associated with the coupling to the vortex lattice. The dashed
line shown in the figure, which is seen to lay slightly above the
mean baseline of the erratically oscillating curve, corresponds
to I

(1)
4 (ξ1 � π/2) calculated after replacing βsq(γ ) with

β(h)
sq (γ ) ≡ 1

1 − γ
+ 1

1 + γ
. (23)

The result is purely harmonic, as can be seen by expanding one
of the denominators, e.g., (α1 + α2 + α3 + α4)(1 − γ ) → 0
near τ1,τ3 → 0; τ2,τ4 → π , in the small variables (̃τi 
 1),
τ̃1 = τ1 ,̃τ2 → −π + τ2 ,̃τ3 → τ3 ,̃τ4 → −π + τ4, up to sec-
ond order and keeping only leading terms in each variable
[see Eq. (19)]. The pole contribution at ξ2 (ξ2 = −π + ξ̃2)
yields the first harmonic e2inF πe−2nF (̃ξ 2

1 + 1
4 ξ̃ 2

3 ), which is strongly
localized around the origin along both directions ξ1 and ξ3

with a characteristic width ∼ 1√
nF

. The integral over ξ4 is
not local, and it is restricted only by its integration limits
±(2ξ1 − ξ2) � ±2π . The remaining local (Gaussian) behavior
in the corresponding 2D subspace enables one to estimate
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FIG. 3. (Color online) The “erratic” function w (nF ) showing the
relative contribution to I4 associated with the coherent scattering
by the vortex lattice. Note that the negative jumps are due to
paramagnetic distortions of the cyclotron orbits traversing through
vortex core regions, whereas the positive jumps are associated with
diamagnetic distortions.

the global dependence of I
(1h)
4 (ξ1 � π/2) on nF as I

(1h)
4 (ξ1 �

π/2) ∼ 1
nF

.
Fig. 2 also confirms the conclusion drawn in Sec. III B 3 on

the basis of an analytical consideration saying that umklapp
scattering of electron pairs by the vortex lattice via large re-
ciprocal lattice vectors across the entire Fermi sphere diameter
leads to erratic oscillatory dependence of the thermodynamic
potential on nF = F

H
about the baseline envelope ∼ 1

nF
. The

absence of similar Umklapp scattering effects in the leading
quadratic term in the order parameter expansion, and their
expected increasingly enhanced appearances in higher order
terms of this expansion, indicate that the irregularity discussed
above should appear pronounced far from the SC transition
where the quartic and higher order terms become important.

The final result for the first harmonic of the SC thermo-
dynamic potential, up to fourth order, can be written in the
form:

�(1h)
sc /�(1h)

n � 1 − π3/2

√
nF

∣∣∣∣ �0

h̄ωc

∣∣∣∣2
+1

2
w0(1 + w(nF ))

π3

nF

∣∣∣∣ �0

h̄ωc

∣∣∣∣4 − · · · , (24)

where w0 � 1.1 arises from the spatially uniform component
of the SC order parameter, and is purely harmonic, whereas
w(nF ), shown in Fig. 3, represents the effects of umklapp
scattering by the vortex lattice leading to deviations from the
purely harmonic Fourier spectrum.

It is interesting to note that these “erratic” umklapp
scattering processes can be viewed in real space as arising
from the passages of paired electrons in cyclotron orbits
(near the Fermi energy) through vortex core regions, where
the cyclotron orbit is strongly distorted by the pair potential
into small orbits around the vortex cores.2 The resulting
deviations from the normal state cyclotron orbit in a vortex core
are paramagnetic or diamagnetic, depending on the electron
energy relative to the Fermi surface, with the paramagnetic
sectors leading to the sharp drops of the free energy shown
in Fig. 3, while the diamagnetic ones yield the sharp
rises.

20 25 30 35 40
0.0

0.5

1.0

1.5

2.0

2.5

3.0

nF

I 4

FIG. 4. (Color online) I4, calculated at integer values of nF for a
square vortex lattice, as in Fig. 2, in which the singularities at γ = ±1
are removed (see text) with the regularization parameter σ = .01 (red
solid line). The (blue) dashed line, which is proportional to n

−3/2
F , is

the best fitting curve, whereas the (green) dotted curve follows a
fitting formula proportional to n−1

F .

The existence of these erratic oscillations is due to the
highly coherent cyclotron motions of the two pairs of electrons
responsible for the singular terms γ = ±1 in Eq. (16). A
scattering process of these electrons which can destroy this
coherence should lead to removal of the singular behavior.
Leaving to future publications the question of how such scat-
tering processes can be implemented into the present theory
(see the discussion in Sec. V), it is desirable to investigate the
robustness of the quartic term I4 with respect to smearing of
the singularities at γ = ±1. This can be done by artificially
shifting 1 − γ and 1 + γ in Eq. (20) slightly away form their
vanishing forms to 1 + σ − γ and 1 + σ + γ , respectively, for
small values of σ > 0, and repeating the calculation shown in
Fig. 2. The result for σ = 0.01 is shown in Fig. 4. In addition
to the significant reduction of the overall magnitude and
suppression of the (coherent-scattering) “erratic” oscillations,
the nF dependence of the mean baseline changes from n−1

F

to n
−3/2
F , characterizing the local approximation of the GGL

theory.2

IV. THE EFFECT OF VORTEX LATTICE DISORDER
IN THE WHITE NOISE LIMIT

Calculation of the influence of vortex-lattice disorder
on the SC free energy in the magnetoquantum oscillations
limit can be performed analytically in the white noise
limit. Invoking the general expansion of the state function
ϕ0(x,y) in terms of Landau orbitals wave functions, ϕ0(x,y) =
eixy

∑
n cne

iqnx−(y+qn/2)2
, the structure factor takes the form:

β(γ ) =
√

π

ax

1

(1 − γ 2)1/2

1

Nx

×
∑
nst

exp

[
−
(

π

ax

)2 (1 − γ

1 + γ
s2 + 1 + γ

1 − γ
t2

)]
×c∗

nc
∗
n+s+t cn+scn+t , (25)

where the coefficients {cn} may be considered as random
variables. Averaging the structure factor over realizations of
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these coefficients and exploiting the usual (Wick) decoupling

〈β(γ )〉 =
√

π

ax

1

Nx(1 − γ 2)1/2

×
∑
nst

exp

[
−
(

π

ax

)2 (1 − γ

1 + γ
s2 + 1 + γ

1 − γ
t2

)]
×[〈c∗

ncn+s〉〈c∗
n+s+t cn+t 〉 + 〈c∗

n+s+t cn+s〉〈c∗
ncn+t 〉]

in the white noise limit, i.e., 〈c∗
ncn+s〉〈c∗

n+s+t cn+t 〉 →
δn,n+sδn+s+t,n+t = δs,0 and 〈c∗

n+s+t cn+s〉〈c∗
ncn+t 〉 →

δn+s+t,n+sδn,n+t = δt,0, one finds:

〈β(γ )〉 =
√

π

ax

1

(1 − γ 2)1/2

[ ∑
s e

−( π
ax

)2( 1−γ

1+γ
)s2

+∑t e
−( π

ax
)2( 1+γ

1−γ
)t2

]
. (26)

The final step in the procedure leading to the white noise
limit should be the replacement of the discrete summations
in Eq. (26) with integrations (e.g., by taking ax → ∞ there),
resulting in the expression

〈β(γ )〉 → 1

1 − γ
+ 1

1 + γ
. (27)

This is a rather surprising result since it is seen to be twice
Eq. (17), obtained for the forward scattering term. The latter
(i.e., the G = 0 term), which is usually associated with all
incoherent scattering processes, is expected to be the sole
survivor of an averaging over white-noise disorder, and as
such to coincide with Eq. (27). In this limiting case, only
incoherent scattering processes by the vortex matter contribute
to the SC thermodynamic potential, and the final result, up to
fourth order, is purely harmonic, with the first harmonic given
by〈
�(1h)

sc

〉 /
�(1h)

n � 1 − π3/2

√
nF

∣∣∣∣ �0

h̄ωc

∣∣∣∣2 + 1

2
w0

π3

nF

∣∣∣∣ �0

h̄ωc

∣∣∣∣4 − · · · ,
(28)

i.e., very close to the well-known Maki-Stephen
expression,14,15 as expanded to the same order in �0.

An interesting question arises here as to whether the
white-noise average of higher order terms in the order-
parameter expansion presented in this paper also agrees with
the self-consistent Born approximation (SCBA) inherent to the
Maki-Stephen approach.2 In particular, possible destruction
of the highly coherent cyclotron orbits of the electron pairs,
responsible for the singular couplings to the vortex lattice, by
an infinite subset of diagrams which are topologically distinct
from the quartic diagrams, might lead to significant deviations
from the SCBA.

V. CONCLUSION AND DISCUSSION

A special Green’s function representation is exploited in
this paper for a microscopic derivation of the Ginzburg-Landau
theory of strongly type-II superconductivity at high magnetic
fields. An exact analytical expression for the quartic term in the
corresponding order parameter expansion, having a physically
transparent form, is presented. The resulting expression reveals
nonlocal contributions to the SC thermodynamic potential,
associated with highly coherent cyclotron motions of the

paired electrons near the Fermi surface, which are strongly
coupled to the vortex lattice. The dominant contributions to the
SC free energy arise from incoherent scattering by the spatially
averaged pair potential, which is purely harmonic in the
dHvA frequency. However, coherent scatterings by the ordered
vortex lattice generate, at low temperatures, an erratically
oscillating (i.e., paramagnetic-diamagnetic) contribution to the
SC free energy as a function of the magnetic field, associated
with sharp distortions of the large quasiparticle cyclotron
orbits on the Fermi surface traversing through vortex core
regions. Vortex lattice disorder, which tends to suppress this
oscillatory component, is found to simplify considerably the
calculation allowing analytical evaluation of higher order
terms in the order-parameter expansion. However, it can
be shown that the infinite subset of diagrams constituting
the standard, self-consistent Born approximation (SCBA),15

exploited in the white noise limit of the disordered vortex
system,2 have the same type of singular points as that found in
our calculation of the quartic term. It would be therefore very
interesting to search for subsets of diagrams, topologically
distinct from those appearing in the SCBA, which might,
after resummation, destroy the highly coherent cyclotron
orbits responsible for the singular couplings to the vortex
lattice. Whether or not the robustness of this coherence with
respect to scattering of quasiparticles by a disordered vortex
matter is destroyed by going beyond the SCBA is a crucial
question for our understanding of the dHvA effect in the SC
state.16 Another interesting open question concerns the effect
of nonmagnetic impurity scattering on the nonlocal singular
coupling discovered here. Physically speaking, it is expected
that impurity scattering of the paired electrons, if calculated
beyond the relaxation time approximation, could destroy the
underlying coherence.
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APPENDIX

Similar to the calculation of the quadratic term, it is
convenient to introduce the following center-of-mass and
relative coordinates:

R = 1
4 (r1 + r2 + r3 + r4)

Q = 1
2 (r1 − r2 + r3 − r4) = 1

4 (ρ1−ρ2+ρ3−ρ4)

D = 1
2 (r1 − r2 − r3 + r4) = 1

2 (ρ4−ρ2)

P = 1
2 (r1 + r2 − r3 − r4) = 1

2 (ρ1−ρ3),

where ρi = ri − ri−1. This transformation can be written in
the matrix form: X = M ∗ r, where X ≡ {R,Q,D,P} are four
2D vectors and M is a 4 × 4 matrix with | det M| = 1/2.
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All ingredients of the quartic term, which depend on the electronic spatial coordinates, i.e.,

�4 = �
(0)
4

∫
d2 {r} 	̃4({r})K̃4({r}), �

(0)
4 = 2π

a2
x

1

(2π )4 kBT a2
H

∣∣∣∣ �0

h̄ωc

∣∣∣∣4
K̃4({r}) =

∫ ∞

0
dτ1dτ2dτ3dτ4e

−i(τ1−τ2+τ3−τ4)nF −�ν (τ1+τ2+τ3+τ4) 1

α1α2α3α4
exp
[− (μ1ρ

2
1 + μ2ρ

2
2 + μ3ρ

2
3 + μ4ρ

2
4

)]
(A1)

	̃4({r}) = g∗(r1,r2)g(r2,r3)g∗(r3,r4)g(r4,r1)ϕ0(r1)ϕ∗
0 (r2)ϕ0(r3)ϕ∗

0 (r4),

will be rewritten now in terms of the new
coordinates. Let us start with the gauge factors,
g�(r1,r2)g(r2,r3)g�(r3,r4)g(r4,r1) = eηg , where

ηg = i

2
([r1 × r2]z − [r2 × r3]z + [r3 × r4]z − [r4 × r1]z)

= 2i(QxRy − QyRx),

which depends only on the vectors R,Q.
The product of the four Landau orbitals, labeled by n1 =

n + s + t , n2 = n + s,n3 = n, and n4 = n + t , is given by the
following expression:

ϕ0n1 (r1)ϕ∗
0n2(r2)ϕ0n3 (r3)ϕ∗

0n4
(r4)

= exp
[
η

(m)
� + η

(sq)
� + η

(lin)
� + η

(0)
�

]
with

η
(m)
� = i

∑
j

εj xjyj = i[2QxRy + 2QyRx + (DxPy + PxDy)]

η
(sq)
� = −

∑
j

y2
j = −(Q2

y + 4R2
y + (D2

y + P 2
y ))

η
(lin)
� =

∑
j

(iεj qnj
xj − qnj

yj )

= i
∑

j

(εjnj )Rx + iq0
1

2
(QxN4 − 2Dxt − 2Pxs)

− q0(RyN4 − Dys − Pyt)

η
(0)
� = −1

4
q2

0

∑
j

n2
j

= −1

2
q2

0 [2n2 + 2ns + 2nt + st + s2 + t2]

and N4 ≡∑ nj = 4n + 2s + 2t .
The last factor, K̃4({r} ∼ exp (ηG), arising from the transi-

tional invariant parts of the Green functions, is independent of

the center-of-mass coordinates:

ηG = −
∑

μjρ
2
j

= −
[

(μ1 + μ2 + μ3 + μ4)Q2 + 2(μ2 − μ4)(DQ)+
2(μ1 − μ3)(PQ) + (μ2 + μ4)D2 + (μ1 + μ3)P 2

]
.

(A2)

The simplest integration to carry out, over Rx , yields a
nonvanishing result only if

∑
(εjnj ) = 0, justifying the

parametrization of nj chosen above. In this case,
∫

dRx =
Lx = axNx . Next, the Ry integration,∫

exp[4iQxRy − 4R2
y − q0NRy]dRy

= 1

2

√
π exp

[
1

16
q2

0N2 − 1

2
iq0NQx − Q2

x

]
, (A3)

leads to a space independent correction 1
16q2

0N2, which re-

moves the n dependence of η
(0)
� : η

(0)
� + 1

16q2
0N2 = − 1

4q2
0 (s2 +

t2). As a result, summation over Landau orbitals is trivially
done, yielding the total number of orbitals

∑
n 1 = Ny .

Combining the Q-dependent terms, the corresponding
integral is∫

d2Q exp[−β0[Q2 + 2β24(DQ) + 2β13(PQ)]]

= π

β0
exp
[
β0
(
β2

24D
2 + β2

13P
2 + 2β24β13(DP )

)]
(A4)

where

β0 = μ1 + μ2 + μ3 + μ4 + 1, β24 = μ2 − μ4

β0
,

(A5)
β13 = μ1 − μ3

β0
.

The DP integrations can be now done by introducing the 4D
vectors,

Z = {Dx,Dy,Px,Py}, L = q0{−it,s, − is,t}, (A6)

and the τ dependent 4 × 4 matrix,

U =

⎛⎜⎜⎜⎝
(μ2 + μ4) − β0β

2
24 0 −β0β24β13 −i/2

0 (μ2 + μ4) − β0β
2
24 + 1 −i/2 −β0β24β13

−β0β24β13 −i/2 (μ1 + μ3) − β0β
2
13 0

−i/2 −β0β24β13 0 (μ1 + μ3) − β0β
2
13 + 1

⎞⎟⎟⎟⎠ , (A7)
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and then performing the resulting Gaussian integrations to
have∫

d4Z exp[−ZT UZ + LZ] = π2

√
det U

exp[LT U−1L].

(A8)

Adding field depending factors appearing due to Rx

integration and summation over n to �
(0)
4 and combining all

pre-exponential, �[τ ], and exponential, �[τ ], factors obtained
in Eqs. (A3), (A4), and (A8) with pre-exponential factors of
Green’s functions and Jacobian, | det M|−2, one can rewrite
Eq. (A1) as

�4ν = �
(0)
4 LxNy

√
π

2

∫ ∞

0
dτ1dτ2dτ3dτ4

× e−�ν (τ1+τ2+τ3+τ4)−inF (τ1−τ2+τ3−τ4)�[τ ]�[τ ]

(A9)

where

�[τ ] = 1

α1α2α3α4

4π

β0

π2

det U
,

(A10)

�[τ ] =
∑
st

exp

[
−1

4
q2

0 (s2 + t2) + 1

4
LT U−1L

]
.

The simplification of det U can be done by using original αi

variables with the help of the relations μi + 1
4 = 1

2αi
. Noting

that det U can be factorized to det U = λbλa where λa,b =
λ0

2β0
(1 ± γ ) with λ0 = 1

α1α2α3
+ 1

α2α3α4
+ 1

α1α2α4
+ 1

α1α3α4
, and

γ = α2α4−α1α3
α1+α2+α3+α4

, and substituting these values to �[τ ] and

to LT U−1L = −q2
0 [ λa−λb

λb
s2 + λb−λa

λa
t2], one arrives at the

compact expressions

�[τ ] = 8π3

α1 + α2 + α3 + α4

1

(1 − γ 2)1/2
;

(A11)

LT U−1L = 2q2
0γ

(
s2

1 + γ
− t2

1 − γ

)
,

which finally transforms Eq. (A9) to Eq. (9).
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