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The superfluid/normal-fluid interface of liquid 4He is investigated in gravity on earth where a small heat current
Q flows vertically upward or downward. We present a local space- and time-dependent renormalization-group
(RG) calculation based on model F , which describes the dynamic critical effects for temperatures T near the
superfluid transition Tλ. The model-F equations are rewritten in a dimensionless renormalized form and solved
numerically as partial differential equations. Perturbative corrections are included for the spatially inhomogeneous
system within a self-consistent one-loop approximation. The RG flow parameter is determined locally as a
function of space and time by a constraint equation, which is solved by a Newton iteration. As a result we
obtain the temperature profile of the interface. Furthermore, we calculate the average order parameter 〈ψ〉, the
correlation length ξ , the specific heat CQ, and the thermal resistivity ρT where we observe a rounding of the
critical singularity by the gravity and the heat current. We compare the thermal resistivity with an experiment
and find good qualitative agreement. Moreover, we discuss our previous approach for larger heat currents and
the self-organized critical state and show that our theory agrees with recent experiments in this latter regime.
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I. INTRODUCTION

On earth in liquid 4He the gravity is an external force which
causes a space dependent pressure p = p(z) depending on
the altitude coordinate z. Since the critical temperature of the
superfluid transition Tλ = Tλ(p) depends on the pressure p,
in the helium the critical temperature Tλ(z) = Tλ[p(z)] varies
with the altitude z. In leading approximation it is a linear
function of the altitude

Tλ(z) = Tλ(z0) + (∂Tλ/∂z) (z − z0), (1.1)

where the gradient is determined experimentally as1 ∂Tλ/∂z =
+1.273 μK/cm. The sign is positive, which means that the
critical temperature increases with the altitude z.

In thermal equilibrium, the local temperature of the helium
T (r,t) = T is constant with respect to any space and time
variable. If in an experiment we choose the temperature
T = Tλ(z0) we find an interface at z = z0, which separates
superfluid 4He in the upper region z > z0 where T < Tλ(z)
from normal-fluid 4He in the lower region z < z0 where
T > Tλ(z). This interface is the main concern of the present
paper.

Correlation effects imply an interface which is not sharply
defined but smeared out over a certain length scale ξg . Ginzburg
and Sobyanin2 have calculated the order-parameter profile
ψ(z) for liquid 4He in gravity within their ψ theory, which
is a mean-field theory modified by scaling functions in order
to incorporate the effects of critical fluctuations and the critical
exponents to some extent. They find the characteristic length
scale ξg = 67 μm [see Fig. 4 and Eq. (3.49) in Ref. 2].

A heat current Q flowing from bottom to top in the direction
of z enhances the formation of the superfluid/normal-fluid
interface. Heat transport phenomena imply a space-dependent
temperature T (z) with a negative gradient ∂T /∂z < 0, which
acts opposed to the positive gradient of the critical temperature
Tλ(z). Onuki3,4 has investigated the interface under a heat flow
Q within a dynamic mean-field theory modified by scaling

functions. He finds that the thickness of the interface decreases
according to ξQ ∼ Q−1/2 with increasing heat current Q.

While on earth the gravity acceleration g = 9.81 m/s2 is
constant, the heat current Q can be varied in the experiment.
For large heat currents Q � Q0, the heat-current effects
dominate, where on the other hand for small heat currents
Q � Q0 gravity effects dominate. The heat current which
separates both regimes, is about Q0 = 70 nW/cm2. In this
paper we focus on small heat currents where gravity is the
main effect.

The critical dynamics of liquid 4He near the superfluid
transition Tλ is described by a hydrodynamic model with
Gaussian fluctuating forces, which is called model F in the
classification of Hohenberg and Halperin.5 This model has
originally been derived by Halperin, Hohenberg, and Siggia6 in
order to describe the critical dynamics of a planar ferromagnet,
which is in the same universality class as liquid 4He. The
field-theoretic renormalization-group theory of model F has
been elaborated by Dohm.7,8 The specific heat and the thermal
conductivity have been calculated up to two-loop order7 and
compared with very accurate experimental data.9,10 In this
way, the renormalized coupling parameters and some other
parameters have been adjusted8 so that all parameters of model
F are known. Thus model F is ready for application without
any further adjustable parameters.

In this paper we present a renormalization-group (RG)
calculation of the superfluid/normal-fluid interface based on
model F . The calculation is technically very difficult and
challenging for two reasons. First the Green functions and
Feynman diagrams must be evaluated in a spatially inhomo-
geneous system. Second, the renormalization factors depend
on space and time coordinates via the RG flow parameter so
that the partial derivatives with respect to space and time must
be replaced by appropriate covariant derivatives.

The first challenge was overcome step by step in several
previous papers. On the normal-fluid side of the interface the
Green function was calculated11 for a zero order parameter
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〈ψ(z)〉 = 0 and a linear temperature parameter r0(z) = a0 +
b0z. The local thermal conductivity λT (T ,Q) and the related
temperature profile T (z) was calculated. On the superfluid side
of the interface the Green function and related thermodynamic
quantities were calculated12 for a plane-wave order parameter
〈ψ(z)〉 = η eikz and a constant temperature parameter r0.
Here a critical superfluid current was found which implies a
depression of the superfluid transition temperature Tλ(Q) < Tλ

by a nonzero heat current Q.
Later the normal-fluid approach11 was extended beyond the

interface into the superfluid region.13,14 The calculation was
made self-consistent by a lowest-order 1/n expansion which
is equivalent to the Hartree approximation of quantum many-
particle physics. In this way the superfluid region could be
reached where in the whole system the average order parameter
〈ψ(z)〉 = 0 is zero due to phase fluctuations related to the
motion of vortices where, however, the condensate density
ns = 〈|ψ(z)|2〉 and the superfluid current Js = 〈Im[ψ∗∇ψ]〉
are macroscopically large. The RG theory was applied locally
using a local flow parameter which depends on the altitude
coordinate z. The specific heat CQ and the thermal conductivity
λT were calculated for the whole superfluid/normal-fluid
interface where the effects of the gravity acceleration g and
the heat current Q were included. The temperature profile
T (z) was obtained by integrating the heat-transport equation
Q = −λT ∇T .

In the superfluid region a nonzero temperature gradient
∇T was found which is due to a nonzero thermal resistivity
induced by the motion of vortices and quantum turbulence.
The theory was especially successful to describe the so-called
self-organized critical state, which was predicted by Onuki4

and which was discovered in the experiment by Moeur et al.15

In this state the temperature gradient ∇T is equal to the
gravity induced gradient ∇Tλ of Eq. (1.1), i.e., ∇T = ∇Tλ,
so that the system is homogeneous over a large area in
space.

However, for the superfluid/normal-fluid interface the self-
consistent approach13,14 works only for large heat currents
Q � Q0 = 70 nW/cm2 where the heat current Q dominates
over the effects of gravity g. For smaller heat currents this
approach does not yield a result. The existence and motion of
vortices is essential for phase fluctuations in order to have a
zero average order parameter 〈ψ(z)〉 = 0.

For small heat currents Q � Q0 = 70 nW/cm2 vortices
are not present so that the average order parameter 〈ψ(z)〉
is nonzero. In this case, a local calculation is not possible.
Instead, the full model-F equations must be solved as partial
differential equations. Here the second challenge arises if the
RG theory is involved. The RG flow parameter is determined
locally by a constraint condition so that it will depend on
space and time. This fact requires the definition of covariant
differential operators. A first step for this kind of theory
was made by the author and Nikodem.16 The interface was
investigated in thermal equilibrium where only the gravity
acceleration g is present but no heat current. The covariant
derivatives were defined for the renormalized order parameter
and for the renormalized temperature parameter. The renor-
malized Ginzburg-Landau equation was solved numerically as
a boundary value problem by the multiple-shooting algorithm.
Results for the order-parameter profile 〈ψ(z)〉, the correlation

length ξ , and the heat capacity C were obtained. However, the
calculations16 were not finished and not published.

The present paper is devoted to continue, extend, and
publish our recent calculations.16 We develop a local and
time-dependent RG theory for small heat currents Q � Q0 =
70 nW/cm2 in order to fill the gap which our previous
theory13,14 has left. We solve the partial differential equations
of model F together with a local constraint condition for the
RG flow parameter. We calculate the average order-parameter
profile 〈ψ(z)〉 and the temperature profile T (z) for the
superfluid/normal-fluid interface. Furthermore, we calculate
the related thermodynamic and transport quantities, i.e., the
specific heat CQ and the thermal conductivity λT or thermal
resistivity ρT = 1/λT . The calculations are not restricted to a
stationary state of a constant heat current Q. More generally,
we solve the model-F equations as time-dependent partial
differential equations, so that time-dependent and transient
effects can be handled like the propagation of second sound.

The paper is organized as follows. In Sec. II we briefly
describe model F , the reduced hydrodynamic model for the
critical dynamics of liquid 4He near the superfluid transition.
Furthermore, we explain the approximations that we use.
In Sec. III we develop our method in order to solve the
model-F equations together with local constraint conditions
for the local RG theory. In Sec. IV we present our numerical
results for the superfluid/normal-fluid interface in gravity
where small heat currents are flowing upward or downward.
We compare our results with the experiment of Chatto et al.17

and find good agreement for the local thermal resistivity.
In Sec. V we compare our small-heat-current results with
the large-heat-current results of our previous approach.13,14

We discuss the stability of the solutions of our present and
our previous approach. Finally, in Sec. VI we compare our
present and our previous approach with other theories and
recent experiments. We discuss and conclude to which extent
our theory can describe mutual friction effects for larger
heat currents due to the motion of vortices and quantum
turbulence.

II. MODEL AND APPROXIMATION

The local thermodynamic properties of liquid 4He are
described by the three standard hydrodynamic variables: the
mass density ρ(r,t), the mass-current density j(r,t), and the
entropy density σ (r,t). Since 4He becomes superfluid below
the critical temperature Tλ ≈ 2 K, there exists an additional
fourth hydrodynamic variable, the macroscopic wave function
ψ(r,t), which is the order parameter of the superfluid phase
transition. The full hydrodynamic equations for superfluid 4He
described by all these four variables have been derived long
ago by Pitaevski.18

For the critical dynamics near Tλ the mass density ρ and
the mass-current density j are irrelevant variables, because the
related hydrodynamic modes, first sound, and viscosity effects,
are fast. ρ and j can be eliminated or integrated out, so that the
remaining relevant variables for the critical slow modes near
the transition (second sound and order-parameter relaxation)
are the order parameter ψ and the entropy density σ . For these
two relevant variables, the hydrodynamic equations are given
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by model F 5 and read
∂ψ

∂t
= −2	0

δH

δψ∗ + ig0 ψ
δH

δm
+ θψ, (2.1)

∂m

∂t
= λ0∇2 δH

δm
− 2g0 Im

(
ψ∗ δH

δψ∗

)
+ θm. (2.2)

For convenience and historical reasons, the dimensionless
entropy density is denoted by m = σ/kB. In the equations

H =
∫

ddr

[
1

2
τ0|ψ |2 + 1

2
|∇ψ |2 + ũ0|ψ |4

+ 1

2
χ−1

0 m2 + γ0m|ψ |2 − h0m

]
(2.3)

is the free-energy functional divided by kBT . The Gaussian
stochastic forces θψ and θm incorporate the fluctuations. They
are defined by the averages 〈θψ 〉 = 0, 〈θm〉 = 0, and by the
correlations

〈θψ (r,t)θ∗
ψ (r′,t ′)〉 = 4 	0 δ(r − r′) δ(t − t ′), (2.4)

〈θm(r,t)θm(r′,t ′)〉 = −2 λ0 ∇2 δ(r − r′) δ(t − t ′). (2.5)

The dimension of the space d is assumed to be arbitrary and
continuous in the general calculations. However, eventually
we set d = 3 when evaluating explicit results for liquid
4He in a three-dimensional cell. For the calculations in the
critical regime the model-F equations (2.1)–(2.3) are treated
by field-theoretic means, i.e., perturbation series expansion
with respect to Feynman diagrams, renormalization, and the
renormalization group. For example, the heat capacity and the
thermal conductivity were evaluated up to two-loop order.7

In this paper, we use an approximation following our pre-
vious work.13,14 In many-particle physics this approximation
is known as the Hartree approximation (see, e.g., Ref. 19).
It is a self-consistent approximation including only a single
one-loop diagram, which is the tadpole diagram. Alternatively,
the approximation is obtained by the 1/n expansion in leading
order, where n is the number of complex fields in a generalized
model with a generalized order parameter � = (ψ1, . . . ,ψn).

For the model-F equations (2.1) and (2.2) the approxima-
tion is obtained by taking the nonequilibrium average 〈· · ·〉 for
all terms and by performing appropriate factorizations of the
averages of products of the fluctuating hydrodynamic variables
ψ , ψ∗, and m. The factorizations are justified by inspection of
the Feynman diagrams of the Hartree approximation, which
are shown in Fig. 2 of Ref. 14. We factorize the nonlinear terms
according to

2

〈
δH

δψ∗

〉
≈ [τ0 − ∇2 + 4ũ0〈|ψ |2〉 + 2γ0〈m〉]〈ψ〉, (2.6)

〈
ψ

δH

δm

〉
≈ 〈ψ〉

〈
δH

δm

〉
, (2.7)

where 〈
δH

δm

〉
= χ−1

0 〈m〉 + γ0〈|ψ |2〉 − h0. (2.8)

Without an approximation we obtain

−2

〈
Im

(
ψ∗ δH

δψ∗

)〉
= ∇〈Im[ψ∗∇ψ]〉. (2.9)

Consequently, from Eqs. (2.1) and (2.2) we obtain the
approximate equations

∂〈ψ〉
∂t

= −	0[τ0 − ∇2 + 4ũ0ns + 2γ0〈m〉]〈ψ〉
+ ig0

[
χ−1

0 〈m〉 + γ0ns − h0
]〈ψ〉, (2.10)

∂〈m〉
∂t

= λ0∇2[χ−1
0 〈m〉 + γ0ns − h0] + g0 ∇Js, (2.11)

where we define the condensate density ns and the superfluid
current density Js by

ns = 〈|ψ |2〉, (2.12)

Js = 〈Im[ψ∗∇ψ]〉, (2.13)

respectively.
Next, for convenience and simplification of the equations

we define the temperature parameters

�r0 = 2χ0γ0

〈
δH

δm

〉
= 2χ0γ0

[
χ−1

0 〈m〉 + γ0ns − h0
]
, (2.14)

r0 = τ0 + 2χ0γ0h0 + �r0 = τ0 + 2χ0γ0
[
χ−1

0 〈m〉 + γ0ns
]
,

(2.15)

and the modified temperature parameter

r1 = r0 + 4u0ns, (2.16)

where u0 = ũ0 − 1
2χ0γ

2
0 is a combined coupling constant

following Ref. 7. Thus the model-F equations can be written
in the simple form

∂〈ψ〉
∂t

= −	0[r1 − ∇2]〈ψ〉 + i
g0

2χ0γ0
�r0〈ψ〉, (2.17)

∂〈m〉
∂t

= −∇q. (2.18)

The last equation is the heat transport equation where 〈m〉 =
〈σ 〉/kB is the dimensionless entropy density and

q = − λ0

2χ0γ0
∇�r0 − g0Js (2.19)

is the dimensionless entropy current density. The latter is
related to the heat current Q in standard physical units by
q = Q/kBT ≈ Q/kBTλ.

The order-parameter equation (2.17) can be written in the
form L〈ψ〉 = 0 where the operator L is defined in Eq. (3.13)
of our previous paper14 and related to the off-diagonal matrix
elements of the inverse Green function. This observation shows
that the factorizations of the present approach are equivalent
to the self-consistent approximation in our previous paper. We
note that the factorization is applied only in the order parameter
equation (2.17). The heat transport equation (2.18) is derived
without any factorization or approximation.

The parameters �r0 and r0 are related to the local space-
and time-dependent temperature T = T (r,t) and to the critical
temperature Tλ = Tλ(z) of Eq. (1.1) according to

�r0 = 2χ0γ0

〈
δH

δm

〉
= 2χ0γ0

T − T0

Tλ

, (2.20)

r0 − r0c = 2χ0γ0
T − Tλ

Tλ

, (2.21)

where T0 is a constant reference temperature. These equations
have been derived in our previous paper.14 The critical
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value of r0 is r0c = 0 in one-loop approximation7 and hence
also in our self-consistent approximation. The factor Tλ in
the denominators is easily explained. Since H is the free
energy divided by kBTλ and since m is the entropy density
divided by kB, we find that the functional derivative δH/δm

is a temperature divided by Tλ. We note that the critical
temperature Tλ = Tλ(z) defined in Eq. (1.1) depends on the
altitude z. Since the gradient is very small, the z dependence is
very weak. Thus in the denominator we may approximately use
a constant average value which may be the critical temperature
at the interface z = z0, i.e., Tλ = Tλ(z) ≈ Tλ(z0).

Until now, the condensate density ns and the superfluid
current density Js defined in Eqs. (2.12) and (2.13) are
unknown. Since they are defined by an average of two fields
ψ and ψ∗ they are related to the equal-time Green function

G(r,t ; r′,t) = 〈ψ(r,t)ψ∗(r′,t)〉
= 〈ψ(r,t)〉 〈ψ∗(r′,t)〉 + 〈δψ(r,t)δψ∗(r′,t)〉.

(2.22)

This Green function was evaluated in the Appendix of Ref. 14.
However, while in our previous paper the average order
parameter 〈ψ〉 was zero, in the present paper it is nonzero.
Hence we must split the Green function into two contributions,
a mean-field term and a fluctuating term where δψ = ψ − 〈ψ〉
is the fluctuating field. While the mean-field term is expressed
in terms of the average order parameter 〈ψ〉, the fluctuating
term is given by the result of our previous paper. Consequently,
the condensate density ns and the superfluid current density
Js are split into two contributions, too. From Eqs. (3.24) and
(3.25) of Ref. 14 we obtain

ns = |〈ψ〉|2 − 2

ε
Ad �−1+ε/2(X) r

1−ε/2
1 , (2.23)

Js = Im[〈ψ∗〉∇〈ψ〉] + g0

2	′
0

∇�r0

2χ0γ0

1

ε
Ad

×
(

1 − ε

2

)
�ε/2(X) r

−ε/2
1 . (2.24)

Here it is ε = 4 − d where d is the dimension of the space.
Furthermore, Ad = Sd 	(1 − ε/2)	(1 + ε/2) is a geometrical
factor which is related via Sd = �d/(2π )d to the surface of the
d-dimensional unit sphere �d = 2 πd/2/	(d/2). The function
�α(X) is defined by the divergent series

�α(X) =
∞∑

N=0

	(α + 3N )

	(α)

XN

N !
, (2.25)

where the argument X is related to the square of the gradients
of the parameters r1 and �r0 according to

X = 1

12 r3
1

[
(∇r1)2 + 2

	′′
0

	′
0

(
g0

4χ0γ0	
′
0

∇�r0

)
· ∇r1

−
(

g0

4χ0γ0	
′
0

∇�r0

)2]
. (2.26)

The Green function (2.22) was evaluated locally for a spatial
inhomogeneous system where the temperature parameters r1

and �r0 depend on the space coordinate r. Gradient terms
∇r1 and ∇�r0 are included but curvature terms and higher
derivatives are omitted. This fact is clearly seen in the function
(2.25) and its argument (2.26).

Now, all quantities are determined. The approximate
model-F equations (2.17) and (2.18) together with the entropy
current density (2.19), the temperature parameters (2.16),
(2.20), (2.21), and the quantities (2.23)–(2.26) are closed
equations, which in principle can be solved numerically. We
insert the condensate density (2.23) into the equation for the
modified temperature parameter (2.16). After reordering the
terms we obtain

r1

{
1 + 8u0

1

ε
Ad �−1+ε/2(X) r

−ε/2
1

}
= r0 + 4u0|〈ψ〉|2.

(2.27)

The left-hand side shows clearly that this is an implicit equation
for the parameter r1. Furthermore, we insert the superfluid
current (2.24) into the formula for the entropy current (2.19).
After reordering the terms we obtain

q = − λ0

2χ0γ0

{
1 + g2

0

2λ0	
′
0

1

ε
Ad

(
1 − ε

2

)
�ε/2(X) r

−ε/2
1

}

×∇�r0 − g0Im[〈ψ∗〉∇〈ψ〉]. (2.28)

Equations (2.27) and (2.28) of the present paper should
be compared with Eqs. (3.32) and (3.35) of our previous
paper,14 respectively. New contributions are those terms on the
right-hand sides which involve the average order parameter
〈ψ〉. The last term in Eq. (2.28) may be interpreted as
the mean-field contribution of the superfluid current. The
fluctuating term of the superfluid current (2.24) is proportional
to the temperature-parameter gradient ∇�r0. For this reason,
the fluctuating term is integrated into the first term of Eq. (2.28)
and hence contributes to the normal-fluid term. Similarly,
in Eq. (2.27) the mean-field contribution of the condensate
density is put on the right-hand side while the fluctuating
contribution is put on the left-hand side of the equation.

III. LOCAL RENORMALIZATION-GROUP THEORY
FOR PARTIAL DIFFERENTIAL EQUATIONS

The liquid 4He is considered in the critical regime for
temperatures T close to the superfluid transition at Tλ. In
order to treat the critical fluctuations correctly, we must
renormalize the equations of the previous section and apply the
renormalization-group (RG) theory. Since we consider local
physical quantities which are functions of space and time,
the RG flow parameter will be local and depend on space
and time. The derivatives with respect to space and time in
the model-F equations are in conflict with a local RG flow
parameter because they do not commute with this parameter.
For this reason, the development of the local RG theory for the
model-F equations which are partial differential equations is
a very challenging task.

A. Renormalization

We start with the renormalization of the average order
parameter 〈ψ〉, the temperature parameters �r0, r0, and the
coupling constant u0. Following Ref. 7 we have

〈ψ〉 = Z
1/2
φ 〈ψren〉, (3.1)

�r0 = Zr �r, (3.2)
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r0 − r0c = Zr r, (3.3)

u0 = ZuZ
−2
φ (με/Ad ) u. (3.4)

In these and the following renormalization equations we use
the convention that the bare quantities are always on the left-
hand side while renormalized quantities are always on the
right-hand side. The Z factors are the renormalization factors.
In the Hartree approximation, which we use in the present
paper and in our previous paper,14 these Z factors are

Zφ = 1, Zr = Zu = 1/[1 − 8u/ε], (3.5)

where it is r0c = 0. The modified temperature parameter r1 is
not renormalized. We apply the renormalizations to Eq. (2.27),
multiply both sides with the inverse factor Z−1

r , and reorder
the terms. Without any further approximation we obtain

r1

{
1+8u

ε

[
�−1+ε/2(X)

(
r1

μ2

)−ε/2

−1

]}
= r + 4u

με

Ad

|〈ψ〉|2.
(3.6)

The average entropy density 〈m〉, the entropy current
density q, and the remaining model-F parameters are renor-
malized by7

〈m〉 = (χ0Zm)1/2 〈mren〉, (3.7)

q = (χ0Zm)1/2 qren, (3.8)

χ0γ0 = (χ0Zm)1/2Zr (με/Ad )1/2 γ, (3.9)

g0 = (χ0Zm)1/2(με/Ad )1/2 g, (3.10)

λ0/χ0 = Z−1
λ λ, (3.11)

	0 = Z−1
	 	. (3.12)

The dimensionless renormalized parameters are defined by the
ratios

w = 	/λ, (3.13)

F = g/λ, (3.14)

f = F 2/w′ = g2/λ	′. (3.15)

We note that 	 = 	′ + i	′′ and w = w′ + iw′′ are complex
parameters. The Z factors, which we need explicitly in our
calculation, are given in Hartree approximation14 by

ZmZλ = 1/[1 − f/2ε], Z	 = 1. (3.16)

The factor χ0Zm will cancel out in all our equations. Hence
this latter factor is not needed explicitly. Applying the
renormalizations to Eq. (2.28) we obtain the renormalized heat
current

qren = − λ

2γ

(
Ad

με

)1/2{
1 + f

2ε

[(
1 − ε

2

)

×�ε/2(X)

(
r1

μ2

)−ε/2

− 1

]}
∇�r

− g

(
με

Ad

)1/2

Im[〈ψ∗
ren〉∇〈ψren〉]. (3.17)

Again no further approximation is made when reordering
the terms. In order to evaluate the function �α(X) we need
the argument X expressed in terms of the dimensionless
renormalized parameters. From Eq. (2.26) we obtain

X = 1

12 r3
1

[
(∇r1)2 + 2

w′′

w′

(
F

4γw′ ∇�r

)
· ∇r1

−
(

F

4γw′ ∇�r

)2]
. (3.18)

The renormalization of the model-F equations is straightfor-
ward. From Eqs. (2.17) and (2.18) we obtain

∂〈ψren〉
∂t

= −	[r1 − ∇2]〈ψren〉 + i
g

2γ
�r〈ψren〉, (3.19)

∂〈mren〉
∂t

= −∇qren. (3.20)

We furthermore need a relation between the entropy density
〈mren〉 and the temperature parameters r or �r in renormalized
form. We solve Eq. (2.15) with respect to the entropy density
〈m〉, eliminate the condensate density ns by Eq. (2.16),
and then perform the renormalization. As a result we
obtain

〈mren〉 = mc,ren +
(

Ad

με

)1/2
r

2γ

{
1 + γ 2

2u

[
1 − r1

r

]}
. (3.21)

We have separated the constant value mc,ren, which is the
entropy at the critical point with temperature T = Tλ, zero
heat current Q = 0, and zero gravity g = 0. We need not know
this constant value explicitly. Another useful quantity is the
derivative of 〈mren〉 with respect to the temperature parameter
r . It is related to the renormalized specific heat7 according
to

Cren = 2γ

(
με

Ad

)1/2
∂〈mren〉

∂r
= 1 + γ 2

2u

[
1 − ∂r1

∂r

]
. (3.22)

In this way, the time derivative of the renormalized entropy
density can be expressed in terms of a time derivative of a
temperature parameter. We find

∂〈mren〉
∂t

= Cren

2γ

(
Ad

με

)1/2
∂r

∂t
= Cren

2γ

(
Ad

με

)1/2
∂�r

∂t
. (3.23)

Since the critical temperature Tλ(z) does not depend on the
time, the two temperature parameters r and �r differ by a
time-independent value. For this reason, the time derivatives
of r and �r are equal. In the present paper we prefer the
latter time derivative. In this way, we reformulate the second
model-F equation (3.20) as

Cren

2γ

(
Ad

με

)1/2
∂�r

∂t
= −∇qren. (3.24)

In the renormalized specific heat (3.22) the remaining deriva-
tive ∂r1/∂r may be obtained as the proportionality factor of
the gradients ∇r1 and ∇r according to

∇r1 = ∂r1

∂r
∇r. (3.25)
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In order to find a relation between the two gradients we apply
the nabla operator ∇ to Eq. (3.6). Thus we find

(∇r1)

{
1 + 8u

ε

[(
1 − ε

2

)
�ε/2(X)

(
r1

μ2

)−ε/2

− 1

]}

= ∇r + 4u
με

Ad

∇|〈ψren〉|2. (3.26)

In this result the derivative has increased the index α of the
function �α(X) by 1. Furthermore, the function is multiplied
by a factor (1 − ε/2). These facts are well known from the
calculations in our previous paper.14 By comparing Eqs. (3.25)
and (3.26) we extract ∂r1/∂r . Since we consider the space
dependence only in one dimension z, which is the altitude,
we obtain a unique result. We conclude that in this subsection
we have derived all equations in renormalized form, which
are needed for a numerical calculation to solve the model-F
equations as partial differential equations with respect to space
and time.

B. Dimensionless renormalized quantities

In the renormalization equations (3.1)–(3.4) and (3.7)–
(3.12) the new arbitrary parameter μ occurs, which has the
unit of an inverse length scale. Consequently, this parameter
may be used to fix the length scale. On the other hand, in the
renormalized model-F equations (3.19) and (3.24) together
with Eq. (3.17) the dynamic parameters 	 = 	′ + i	′′, λ,
and g all have the unit of a diffusion constant, i.e., length
square divided by time. Hence these parameters multiplied
by μ2 may be used to fix the time scale. The dimensionless
ratios (3.13)–(3.15) imply that only one of these parameters is
needed. Thus we will use gμ2 to fix the time scale.

We rewrite the renormalized model-F equations and the re-
lated renormalized variables and parameters in a dimensionless
form using μ and gμ2 for the scales. Following our previous
paper14 we define the dimensionless temperature parameters

�ρ = �r/μ2 = τ−1 (T − T0)/Tλ, (3.27)

ρ = r/μ2 = τ−1 (T − Tλ)/Tλ, (3.28)

ρ1 = r1/μ
2. (3.29)

The last equality sign in Eqs. (3.27) and (3.28) is obtained
by renormalizing the bare equations (2.20) and (2.21). The
renormalization factors are combined into the dimensionless
parameter

τ =
(

Adμ
d

χ0Zm

)1/2 1

2γ
, (3.30)

which may be viewed as a renormalization-group (RG) flow
parameter. A change of the length scale by replacing μ → μ�

causes a change of τ . While � is the conventional RG flow
parameter related to the length scale, τ = τ (�) is a RG flow
parameter related to the temperature scale. In the literature on
the dynamic RG theory for liquid 4He both flow parameters
have been used.7,8,13,14,20 For the dimensionless coupling
parameters of model F the notations u(�), γ (�), etc., and u[τ ],
γ [τ ], etc., have been used. In the present paper we will use τ

as the RG flow parameter.

We define the dimensionless renormalized order parameter
Y and the dimensionless renormalized heat current q̃ by

Y = 〈ψren〉/μ(d−2)/2, (3.31)

q̃ =
(

Ad

με

)1/2 qren

g

1

μd−1
= q

g0

1

μd−1
, (3.32)

respectively. For convenience of the notation, following
Ref. 14 we define the dimensionless amplitudes

A = ε−1
[
�−1+ε/2(X) ρ

−ε/2
1 − 1

]
, (3.33)

A1 = ε−1
[
(1 − ε/2)�ε/2(X) ρ

−ε/2
1 − 1

]
. (3.34)

Consequently, the renormalized heat current (3.17) can be
rewritten in the dimensionless simple form

q̃ = 1

μ

[
− Ad

2γF

{
1 + f

2
A1

}
∇�ρ − Im[Y ∗∇Y ]

]
. (3.35)

The overall factor 1/μ is needed to keep the nabla operators
dimensionless. We note that Ad is a geometrical factor related
to surface of the d-dimensional unit sphere.7 It should not be
confused with the amplitudes A and A1. In an analogous way
Eqs. (3.6) and (3.26) for the modified temperature parameter
ρ1 and its derivative ∇ρ1 can be written in a dimensionless
form. We obtain

ρ1{1 + 8uA} = ρ + (4u/Ad ) |Y |2, (3.36)

(∇ρ1){1 + 8uA1} = ∇ρ + (4u/Ad ) ∇|Y |2, (3.37)

where the second equation should be multiplied by an overall
factor 1/μ to make the nabla operators dimensionless. Finally,
the renormalized specific heat Cren defined in Eq. (3.22) and the
parameter X defined in Eq. (3.18) are already dimensionless,
so that we can keep them unchanged. We must only insert the
dimensionless temperature parameters (3.27)–(3.29) and use
the dimensionless nabla operator μ−1∇.

Now, all variables and parameters are expressed in a dimen-
sionless form. Thus we are ready to rewrite the renormalized
model-F equations in dimensionless forms. From Eqs. (3.19)
and (3.24) we obtain

1

gμ2

∂Y

∂t
= −w

F
[ρ1 − μ−2∇2]Y + i

2γ
�ρ Y, (3.38)

Cren

2γ

Ad

gμ2

∂�ρ

∂t
= −μ−1∇q̃, (3.39)

where w = w′ + iw′′ is a complex parameter. In these
equations we clearly see that μ defines the length scale
and gμ2 defines the time scale. We may interpret μ−1∇
as a dimensionless nabla operator and (gμ2)−1∂/∂t as a
dimensionless time derivative.

C. Evaluation of the perturbative amplitudes

The amplitudes A and A1, defined in Eqs. (3.33) and (3.34),
respectively, represent the contributions of the perturbation
series expansion, which in our case is the Hartree term. In
order to solve the model-F equations as partial differential
equations we must have explicit expression to evaluate these
amplitudes. The nontrivial contribution in the amplitudes is the
function �α(X) together with its variable X, which are defined
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in Eqs. (2.25) and (3.18). This function was first derived in
Ref. 11. Unfortunately, the function is a divergent infinite series
so that it is not well defined in this form. However, in thermal
equilibrium at zero heat current Q = 0 and zero gravity g = 0
this function can be omitted because it is just unity. In this
case all temperature gradients are zero, so that the variable X

is zero, which implies φα(X = 0) = 1. Hence the amplitudes
reduce to

A = ε−1[ρ−ε/2
1 − 1

]
, (3.40)

A1 = ε−1[(1 − ε/2)ρ−ε/2
1 − 1

]
. (3.41)

Since ρ1 ∼ ρ ∼ (T − Tλ) must be positive, these amplitudes
are valid for the normal-fluid equilibrium state only and agree
with former results.7

In the nonequilibrium state the variable X is nonzero. In
this case the infinite series (2.25) must be resummed to obtain
a well-defined expression which can be evaluated numerically.
Following our previous papers11,14 we write

�α(X) = [	(α)]−1 ζ α Fα(ζ ), (3.42)

where ζ = (−X)−1/3 and

Fα(ζ ) =
∫ ∞

0
dv vα−1 exp(−v3 − vζ ). (3.43)

The integral is well defined for α > 0 and obtained by
analytical continuation for α < 0. The new variable ζ is
defined by a third root. Consequently, ζ is not unique a priori
and may be complex. We must specify the root which should be
taken. For this purpose we define the dimensionless parameter

σ = − 1

12 μ2

[
(∇ρ1)2 + 2

w′′

w′

(
F

4γw′ ∇�ρ

)
· ∇ρ1

−
(

F

4γw′ ∇�ρ

)2]
, (3.44)

so that X = −σ/ρ3
1 . Hence the new variable can be written in

the form ζ = ρ1/σ
1/3.

The transition from normal-fluid to superfluid 4He is related
to a change of sign of ρ1 ∼ ρ ∼ (T − Tλ). Consequently, also
the new variable ζ changes sign. The nontrivial third root to
be evaluated is σ 1/3. For this reason, we must distinguish two
cases which are related to the two possible signs of σ . This
distinction has important physical consequences. There will
be two kinds of nonequilibrium superfluid phases of liquid
4He which are related to the two regimes where either the heat
current Q or the gravity g is the dominating external influence.
We discuss these two cases in the following.

1. Heat current dominated regime: σ > 0

The self-organized critical state observed in the experiment
by Moeur et al.15 implies linear temperature profiles T (z)
and Tλ(z) as function of the altitude z. The temperature
difference T (z) − Tλ(z) = �T is constant over a large range
of the altitude. Consequently, the related gradient parameters
∇ρ1 ∼ ∇ρ ∼ ∇(T − Tλ) are zero. On the other hand the heat
current Q causes a nonzero constant gradient ∇�ρ ∼ ∇T .
Thus in the formula (3.44) only the last term is nonzero, which
yields a positive result for σ . Hence for the self-organized

critical state the dimensionless parameter σ is always constant
and positive.

For the inhomogeneous nonequilibrium state we may
conclude that σ is also positive whenever the heat current Q
and hence the related gradient ∇�ρ is large compared to the
effects of gravity. In our previous paper14 we confirm σ > 0
for heat transport in liquid 4He on earth for heat currents
Q � 70 nW/cm2. Moreover, for an experiment in zero gravity
conditions in space, σ is positive for all heat currents.

Whenever σ is positive, the root σ 1/3 is straightforward.
We just take the real positive root. Consequently, the variable
ζ is real and changes sign at the superfluid transition. We find
ζ > 0 in the normal-fluid regime and ζ < 0 is the superfluid
regime. The function (3.42) and the integral (3.43) can be
evaluated directly. As a result we obtain the amplitudes

A = 1

ε

[
σ−ε/6

	(−1 + ε/2)
ζ−1F−1+ε/2(ζ ) − 1

]
, (3.45)

A1 = 1

ε

[
− σ−ε/6

	(−1 + ε/2)
Fε/2(ζ ) − 1

]
, (3.46)

which we have derived and used in our previous paper.14

We investigate the asymptotic behaviors of the function
Fα(ζ ) and find

Fα(ζ ) ≈ 	(α) ζ−α (3.47)

for ζ � +1 in the normal-fluid regime and

Fα(ζ ) ≈ (π/3)1/2 (−ζ/3)α/2−3/4 exp{2(−ζ/3)3/2} (3.48)

for ζ � −1 in the superfluid regime, respectively.14 In the
first asymptotic case (3.47) we recover the amplitudes (3.40)
and (3.41) of the normal-fluid equilibrium state. In the
second asymptotic case (3.48) we obtain exponentially large
amplitudes A and A1 for the nonequilibrium superfluid state.

The latter asymptotic case has an important physical
consequence. We consider Eq. (3.36), which is a constraint
to define ρ1. In the original form related to Eq. (2.16) this
equation is rewritten as

ρ1 = ρ − 8uAρ1 + (4u/Ad ) |Y |2. (3.49)

The last term is the contribution of the renormalized complex
order parameter Y , which is nonzero only in the superfluid
state. However, in the superfluid regime the second term
may be a competing term because the amplitude A may
be exponentially large. Thus in the nonequilibrium system
there may be two competing superfluid phases which have
different physical properties. In Eq. (2.22) we have split the
order-parameter Green function into two terms: a mean-field
term and a fluctuating term. The third and the second term
in Eq. (3.49) refer to these two terms of the Green function,
respectively.

The complex order parameter Y may be decomposed into
a modulus η and a phase ϕ according to Y = η eiϕ . In our
previous papers13,14 we argue that in the superfluid regime
the modulus η and hence the average order parameter Y

is zero because of large fluctuations of the phase ϕ. These
large phase fluctuations are related to vortices and quantum
turbulence. In the present paper we consider a nonzero
average order parameter Y in the superfluid regime and solve
the renormalized model-F equations numerically as partial
differential equations. We find a competition between the
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mean-field superfluid phase, described by the average order
parameter Y , and the fluctuating superfluid phase, described
by the exponentially large amplitude A.

2. Gravity dominated regime: σ < 0

In thermal equilibrium for zero heat currents Q = 0
the temperature T is constant. Consequently, the gradient
∇�ρ ∼ ∇T is zero. On the other hand, gravity on earth
implies a nonzero gradient of the critical temperature ∇Tλ.
Hence the other gradients ∇ρ1 ∼ ∇ρ ∼ ∇(T − Tλ) = −∇Tλ

are nonzero. In Eq. (3.44) only the first term is nonzero, which
implies a negative dimensionless parameter σ . A small heat
current Q will not change the situation. In our numerical
calculations we find σ < 0 for Q � 20 nW/cm2.

An exception is the self-organized critical state, which
always implies σ > 0 and which exists for arbitrary small heat
currents Q where the temperature difference T (z) − Tλ(z) =
�T is constant. Nevertheless, for small heat currents �T is
positive so that the system is normal fluid and the sign of σ is
irrelevant.

For negative σ the third root is always complex. We find
σ 1/3 = e∓iπ/3(−σ )1/3, so that the variable of the function
(3.43) is complex, i.e., ζ = e±iπ/3ρ1/(−σ )1/3. For conve-
nience we introduce the new real parameter ζ̄ = ρ1/(−σ )1/3,
which is related to the old parameter via ζ = e±iπ/3ζ̄ . We
furthermore define the new complex function

Gα(ζ̄ ) = e±iαπ/3 Fα(ζ ) = e±iαπ/3 Fα(e±iπ/3ζ̄ ), (3.50)

which can be decomposed into real and imaginary parts
according to Gα(ζ̄ ) = G ′

α(ζ̄ ) ± i G ′′
α(ζ̄ ). The new complex

function is not uniquely defined because there are two complex
roots which can be chosen. This fact causes two possible signs
for the imaginary part. However, we choose the so called
principal part, which is obtained as the average of the two
cases so that the imaginary part cancels. Thus we simply omit
the imaginary part G ′′

α(ζ̄ ). In the normal-fluid region ζ̄ > 0 this
assumption is plausible because the imaginary part converges
to zero exponentially for increasing ζ̄ . As a result, we rewrite
the amplitudes (3.45) and (3.46) in terms of the new function
(3.50) as

A = 1

ε

[
(−σ )−ε/6

	(−1 + ε/2)
ζ̄−1G ′

−1+ε/2(ζ̄ ) − 1

]
, (3.51)

A1 = 1

ε

[
− (−σ )−ε/6

	(−1 + ε/2)
G ′

ε/2(ζ̄ ) − 1

]
. (3.52)

Once again, we consider the asymptotic behaviors of the
function G ′

α(ζ̄ ). We find

G ′
α(ζ̄ ) ≈ 	(α) ζ̄−α (3.53)

for ζ̄ � +1 in the normal-fluid regime and

G ′
α(ζ̄ ) ≈ (π/3)1/2 (−ζ̄ /3)α/2−3/4

× cos{2(−ζ̄ /3)3/2 + (π/4)(2α − 1)} (3.54)

for ζ̄ � −1 in the superfluid regime. In the first asymptotic
case (3.53) we recover the amplitudes (3.40) and (3.41) of
the normal-fluid equilibrium state. Since here the amplitudes
do not depend on the dimensionless parameter σ at all, in
the normal-fluid regime the sign of σ is irrelevant. In the

second asymptotic case (3.54) the function Gα(ζ̄ ) and hence
the amplitudes A and A1 oscillate but remain of order unity.

Again, the latter asymptotic case has an important physical
consequence. In Eq. (3.49) the second term is always small
because the amplitude A never becomes large. Hence the
superfluid phase is unique. It is the mean-field superfluid phase
where the average order parameter Y is nonzero. Vortices due
to fluctuations effects and a fluctuating superfluid phase do not
exist for σ < 0.

D. Renormalization-group theory and flow parameter condition

In the renormalization procedure the parameter μ is intro-
duced, which fixes the length scale. This parameter generates
a transformation group which is known as the renormalization
group. Following Ref. 7 it can be changed by the substitution
μ → μ�, where the dimensionless parameter � is called the
renormalization-group (RG) flow parameter.7 However, for
simplicity and consistency of the following calculations, in
this paper we do not use the above substitution. We avoid the
use of the flow parameter � and thus change the length scale
parameter μ directly. We use the alternative dimensionless RG
flow parameter τ , which is defined in Eq. (3.30). All quantities
of the renormalized theory can be expressed in terms of this
RG flow parameter. The dimensionless coupling parameters
are u[τ ], γ [τ ], w[τ ] = w′[τ ] + iw′′[τ ], F [τ ], and f [τ ]. This
is a notation which was defined in Refs. 7 and 8.

A differential relation between the flow parameter τ and
the length-scale parameter μ can be obtained by a logarithmic
differentiation of Eq. (3.30), which reads

d ln τ =
[

1

2

(
d + ∂ ln Z−1

m

∂ ln μ

)
− ∂ ln γ

∂ ln μ

]
d ln μ. (3.55)

Using the definitions of the RG ζ functions,7

ζφ = ∂ ln Z−1
φ

/
∂ ln μ, (3.56)

ζr = ∂ ln Z−1
r

/
∂ ln μ, (3.57)

ζm = ∂ ln Z−1
m

/
∂ ln μ, (3.58)

using the RG equation for the parameter γ ,7

∂ ln γ /∂ ln μ = [−ε + 2ζr + ζm]/2, (3.59)

and using ε = 4 − d, Eq. (3.55) can be simplified into

d ln τ = [2 − ζr ] d ln μ. (3.60)

The ζ function ζr = ζr (u) is explicitly available as a function
of u = u[τ ].21 Thus Eq. (3.60) enables an explicit numerical
calculation of τ as a function of μ and vice versa.

Since the renormalization procedure implies a reordering
of the perturbation series, the RG flow parameter τ should be
chosen in an optimum way so that the convergence behavior
of the series is optimized. To do this we choose the constraint
condition

3 ρ1 − 2 ρ + 3(4u/Ad )fY (∇Y/μ)2 + f�ρ(∇�ρ/μ)2 = 1.

(3.61)

The modified temperature parameter ρ1 is defined in Eq. (3.36),
which may be viewed as a second constraint equation. The
first two terms on the left-hand side of Eq. (3.61) guarantee
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the standard flow parameter conditions of normal-fluid and
superfluid 4He in thermal equilibrium and zero gravity, which
have been formulated in Ref. 7. The latter two terms are
gradient terms which stabilize the intermediate region of the
superfluid/normal-fluid interface. The two parameters fY and
f�ρ are dimensionless and control the influence of the gradient
terms. In our calculations we have used fY = 5 and f�ρ = 1
as an optimum choice.

In thermal equilibrium and zero gravity all quantities and
parameters are constant in space and time. An exception is
the renormalized order parameter Y = Y (t) = η eiϕ(t) together
with the constant modulus η and the time-dependent phase
ϕ(t) = −ωt + ϕ0. Since all gradient terms are zero, the model-
F equations (3.38), (3.39) and the flow-parameter equation
(3.61) reduce to

ω = −gμ2(2γ )−1 �ρ, (3.62)

ρ1 Y = 0, (3.63)

3 ρ1 − 2 ρ = 1. (3.64)

The first equation is always satisfied because it defines the
order-parameter frequency ω in terms of the dimensionless
renormalized temperature difference �ρ where the time scale
is ruled by the parameter combination gμ2.

In the normal-fluid state, the second equation (3.63) implies
the zero order parameter Y = 0, where ρ1 may be nonzero. The
flow-parameter equation (3.64) together with the constraint
(3.36) and the amplitudes (3.40) and (3.41) imply ρ = ρ1 = 1,
A = 0, and A1 = −1/2. These results are compatible with the
equilibrium theory of Ref. 7. The resulting flow parameter
condition is ρ = 1, which in the notation of Ref. 7 reads
r(l)/(μ�)2 = 1. Consequently, from Eq. (3.28) we obtain the
flow parameter τ = (T − Tλ)/Tλ, which just is the reduced
temperature as known from earlier work.7

In the superfluid state, Eq. (3.63) implies ρ1 = 0 where
the order parameter Y is nonzero. Consequently, Eq. (3.64)
yields the flow-parameter condition ρ = −1/2 which is well
known from Ref. 7 in the notation r(�)/(μ�)2 = −1/2. Again,
Eq. (3.28) relates the flow parameter to the reduced temper-
ature according to τ = 2(Tλ − T )/Tλ. From the constraint
(3.36) we obtain the modulus of the order parameter η = |Y |.
Since the left-hand side is zero, we obtain η = (Ad/8u)1/2.

The above investigation of the normal-fluid and superfluid
equilibrium states in zero gravity shows that in our numerical
calculations for the superfluid/normal-fluid interface the di-
mensionless renormalized temperature variables ρ, ρ1, and the
modulus of the dimensionless renormalized order parameter
η = |Y | must approach constant asymptotic values on both
sides far away from the interface. In the intermediate region
near the interface, the variables will interpolate the asymptotic
values. The RG flow-parameter condition (3.61) guarantees
the asymptotic values and yields an appropriate interpolation
in the intermediate interface region. The gradient terms in this
condition will stabilize the interpolation.

The RG flow-parameter condition (3.61) is designed for
the superfluid/normal-fluid interface at small heat currents
where gravity is the dominating external influence and where
in the superfluid phase the order parameter Y is nonzero. In
our classification of Sec. III C this superfluid phase is the
mean-field superfluid phase. The other case is the fluctuating

superfluid phase where the order parameter Y is zero and
vortices are present. This latter case has been investigated in
our previous publications13,14 where the RG flow-parameter
condition is given by Eqs. (11) and (4.39) of Refs. 13 and
14, respectively. This latter flow parameter condition can be
compared with our present condition (3.61) if ρ is eliminated
by using the second constraint (3.36) and if we use ρ1 = σ 1/2ζ .
Then, the first and second term of our present condition (3.61)
are identified with the second and third term in Eqs. (11) and
(4.39) of Refs. 13 and 14. The gradient terms of Eq. (3.61)
are replaced by the first term in Eqs. (11) and (4.39) of
Refs. 13 and 14, which is also a gradient term because σ

is depends on the gradients following (3.44). We note that the
RG flow-parameter condition of Refs. 13 and 14 is designed
for the fluctuating superfluid phase where the order parameter
Y is zero and vortices are present.

E. Covariant derivatives

The flow parameter equation (3.61) and the constraint
condition (3.36) are local equations. Consequently, the flow
parameter τ , the renormalization Z factors, and the dimen-
sionless coupling parameters are local and depend on space
and time. This fact will affect the space and time derivatives
in the renormalized equations. We must replace the partial
differential operators by covariant derivatives. To do this, we
write the renormalization equations in a form like Eqs. (3.1)–
(3.3), so that the bare quantities are on the left-hand side
and all renormalized quantities are on the right-hand side.
Then we apply the differential operator. We start with the
renormalization of the temperature (3.27), which is equivalent
to Eq. (3.2). We apply the nabla operator and obtain

∇[(T − T0)/Tλ] = ∇[τ�ρ] = τ [∇ + (∇ ln τ )]�ρ = τD�ρ.

(3.65)

The last equality sign defines the covariant derivative. We
continue with the temperature difference (3.28), which is
equivalent to Eq. (3.3), and proceed in the same way. As a
result we obtain the covariant derivatives

D�ρ = [∇ + (∇ ln τ )]�ρ, (3.66)

Dρ = [∇ + (∇ ln τ )]ρ. (3.67)

The covariant derivative of ρ1 is more complicated. General-
izing Eq. (3.37) we obtain

(Dρ1){1 + 8uA1} = Dρ + (4u/Ad ) D|Y |2, (3.68)

which can be resolved with respect to Dρ1.
Next we consider the renormalization of the order parame-

ter (3.1). We write this equation in terms of the dimensionless
renormalized order parameter Y by using Eq. (3.31), apply the
nabla operator, use Eq. (3.56), and obtain

∇〈ψ〉 = ∇[
Z

1/2
φ μ(d−2)/2 Y

]

= Z
1/2
φ μ(d−2)/2

[
∇ + 1

2
(d − 2 − ζφ)(∇ ln μ)

]
Y

= Z
1/2
φ μ(d−2)/2

[
∇ + 1

2

d − 2 − ζφ

2 − ζr

(∇ ln τ )

]
Y

= Z
1/2
φ μ(d−2)/2 DY. (3.69)
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Again, the last equality sign defines the covariant derivative.
We define the running critical exponents21

ν = 1/(2 − ζr ), (3.70)

η = −ζφ, (3.71)

β = ν(d − 2 + η)/2. (3.72)

These exponents are called running exponents because they
depend on the RG flow parameter τ via the ζ functions and
thus carry all the Wegner corrections. In the asymptotic limit
τ → 0 they converge to the universal critical exponents. Then
from Eq. (3.69) we obtain the covariant derivative of the
dimensionless renormalized order parameter

DY = [∇ + β(∇ ln τ )]Y. (3.73)

We note that β is the running critical exponent of the order
parameter. This result makes clear what the general structure of
a covariant derivative of a dimensionless renormalized quantity
looks like: It is the partial derivative of the quantity plus the
critical exponent times the partial derivative of ln τ times the
quantity. In the model-F equations we also need the second
covariant derivative of the order parameter. It is obtained by
applying the operator twice, i.e.,

D2Y = [∇ + β(∇ ln τ )]2Y. (3.74)

Furthermore, we consider the renormalization of the heat
current (3.32). Applying the nabla operator we obtain

∇[Q/g0kBTλ] = ∇[μd−1 q̃] = μd−1 [∇ + (d − 1)(∇ ln μ)] q̃

= μd−1 [∇ + (d − 1)ν(∇ ln τ )] q̃ = μd−1 Dq̃.

(3.75)

Thus we find the covariant derivative of the dimensionless
renormalized heat current

Dq̃ = [∇ + (d − 1)ν(∇ ln τ )]q̃. (3.76)

We identify (d − 1)ν as the running critical exponent of the
heat current. The inverse exponent x = 1/[(d − 1)ν] is known
from the depression of the critical temperature Tλ by a nonzero
heat current Q.3,12 We note that the covariant derivatives
(3.66)–(3.68) and (3.73) and (3.74) have been derived already
in our previous unpublished approach16 for the interface in
thermal equilibrium at zero heat current.

Above, we have defined the covariant derivatives with
respect to the space coordinates D. We also need the covariant
derivatives with respect to time Dt . To obtain them we replace
the nabla operator by the partial time derivative ∂t = ∂/∂t .
Thus as results we obtain, e.g.,

DtY = [∂t + β(∂t ln τ )]Y, (3.77)

Dt�ρ = [∂t + (∂t ln τ )]�ρ. (3.78)

Now, we are ready to rewrite the model-F equations in
terms of covariant derivatives. From Eqs. (3.38) and (3.39) we
obtain

1

2γ τ

1

g0
DtY = −w

F
[ρ1 − ξ 2D2]Y + i

2γ
�ρ Y, (3.79)

Cren

(2γ )2τ

Ad

g0
Dt�ρ = −ξ Dq̃. (3.80)

In these equations we have performed some further substitu-
tions which are known from our previous paper,14 i.e.,

μ = ξ−1, gμ2 = g0 2γ τ. (3.81)

Here ξ = ξ [τ ] is the correlation length. Close to criticality
it has the asymptotic form ξ = ξ0 τ−ν . The identification
μ = ξ−1 is correct in our Hartree approximation, which is
a self-consistent one-loop approximation. Corrections appear
in higher orders.21 The renormalized time-scale parameter
gμ2 is expressed in terms of the bare parameter g0 by
using the renormalization equation (3.10) where χ0Zm has
been eliminated in favor of τ by Eq. (3.30). As a result
the renormalized model-F equations (3.79) and (3.80) are
dimensionless equations for the dimensionless quantities.
There are two parameters which control the scales of space
and time. They are ξ0 and g0, respectively.

The model-F equations (3.79) and (3.80) are supple-
mented by some further equations including the dimensionless
renormalized entropy current (3.35) and the two constraint
conditions (3.36) and (3.61) where all nabla operators ∇ are
replaced by respective covariant derivatives D. Thus we obtain
the dimensionless renormalized entropy current

q̃ = − Ad

2γF

{
1 + f

2
A1

}
ξ D�ρ − Im[Y ∗ξ DY ], (3.82)

the constraints

K1 = 3 ρ1 − 2 ρ + 3(4u/Ad )fY (ξ DY )2

+ f�ρ(ξ D�ρ)2 − 1 = 0, (3.83)

K2 = ρ1{1 + 8uA} − [ρ + (4u/Ad ) |Y |2] = 0, (3.84)

and furthermore the dimensionless variables

σ = − 1

12

[
(ξ Dρ1)2 + 2

w′′

w′

(
F

4γw′ ξ D�ρ

)
· (ξ Dρ1)

−
(

F

4γw′ ξ D�ρ

)2]
, (3.85)

and ζ = ρ1/σ
1/3 or ζ̄ = ρ1/(−σ )1/3, which are needed to

calculate the dimensionless amplitudes (3.45) and (3.46) or
(3.51) and (3.52).

F. Numerical algorithm

The numerical algorithm for solving the renormalized
model-F equations (3.79) and (3.80) together with the con-
straints (3.83) and (3.84) is implemented by two iterations.
First on the left-hand sides of the model-F equations the partial
time derivatives within the covariant derivatives are replaced
by discrete forward differences

∂tY → [Y (r,t + �t) − Y (r,t)]/�t, (3.86)

∂t�ρ → [�ρ(r,t + �t) − �ρ(r,t)]/�t. (3.87)

Second, the constraints are solved by a Newton method. The
two iterations are performed in parallel, i.e., alternatively one
time step and one Newton step. In this way starting with
appropriate initial functions at an initial time the dimensionless
renormalized quantities Y (r,t), �ρ(r,t) and ρ1(r,t), ln τ (r,t)
are obtained as functions of space and time. All the other
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dimensionless renormalized quantities which are needed on
the right and sides of the iteration equations can be calculated
from the four quantities by formulas we have derived above.
The covariant derivatives DY , D2Y , D�ρ, Dρ, and Dq̃ are
calculated with discrete nabla and Laplace operators on an
equidistant grid of the space-coordinates r. The covariant
derivatives of further quantities can by related to those five
by equations like Eq. (3.68).

For the Newton-iteration step we need the derivatives of the
constraint functions K1 and K2 with respect to ρ1 and ln τ . We
use the derivatives

∂K1/∂ρ1 = 3, (3.88)

∂K2/∂ρ1 = 1 + 8uA1, (3.89)

∂K1/∂ ln τ ≈ −{−2ρ + 3(4u/Ad )fY (ξ DY )22(β + ν)

+ f�ρ(ξ D�ρ)22(1 + ν)}, (3.90)

∂K2/∂ ln τ ≈ −{8uE1 2(1 + ν) − [ρ + (4u/Ad )Y 22β]}
(3.91)

together with the amplitude

E1 = (ρ1/6)[(2 − ε)A − 2A1 − 1]. (3.92)

The latter two derivatives are approximations, because we
omitted the weak dependence of the dimensionless coupling
parameters u[τ ], γ [τ ], etc., on the logarithmic RG flow
parameter ln τ . Nevertheless, our numerical calculation works.
There is no significant influence of this approximation.

Our numerical calculations are performed very close to
criticality where τ < 10−5. Consequently, for the running
exponents we can use the universal critical exponents as a good
approximation. We use the experimental value ν = 0.671 of
Lipa et al.22,23 and the theoretical value η = 0.038 of Schloms
and Dohm.21 The exponent β = 0.348 is calculated from the
scaling relation (3.72), where the dimension of space is d = 3.
Finally, we can use the asymptotic formula for the correlation
length ξ = ξ0 τ−ν as a good approximation.

Our numerical calculations show that the iterations are
stable for small heat currents Q = |Q| � 20 nW/cm2 where
the gravity is the dominating external force and the dimen-
sionless parameter σ defined in Eq. (3.85) is always negative.
For lager heat currents the parameter σ will have a sign
change locally in space, which causes numerical troubles. We
can stabilize the calculations up to a maximum heat current
Qmax = 160 nW/cm2 by adding a small imaginary constant
to the right-hand side of Eq. (3.85). However, for larger heat
currents where the heat flow is the major and the gravity is
the minor external influence the iteration is unstable so that no
results can be obtained.

IV. NUMERICAL RESULTS

Most experiments with liquid 4He close to the superfluid
transition are performed at saturated vapor pressure. The
temperature T is varied in the region near Tλ where the
pressure is kept at the value of the liquid-gas transition. In this
case the critical temperature is Tλ = 2.172 K. The parameters
which specify the scales of length and time are ξ0 = 1.44 ×

10−8 cm and g0 = 2.164 × 1011 s−1, respectively.10,22,23 The
dimensionless renormalized coupling parameters u[τ ], γ [τ ],
w[τ ] = w′[τ ] + iw′′[τ ], F [τ ], and f [τ ] as functions of the
RG flow parameter τ are taken from Ref. 8.

We perform the numerical calculations for liquid 4He in
d = 3 dimensions. The system is assumed to be homogeneous
in the two horizontal directions x and y. Thus all quantities
and functions depend only on the altitude coordinate z and the
time t . The model-F equations reduce to partial differential
equations with the two variables z and t . The size of the
experimental cells which contain the liquid 4He is usually some
millimeters in the z direction. We use a cell length L = 2.0 mm
and discretize the z coordinate into 500 points. Consequently,
the discretization is �z = 4.0 μm in the altitude coordinate.

The discretization of the time �t in the partial derivatives
(3.86) and (3.87) must be sufficiently small so that the iteration
converges. On the other hand �t should be sufficiently large,
so that the calculation time on the computer is not too long.
We find �t = 4.0 × 10−6 s as an optimum choice. Starting
the calculations in any nonequilibrium state, we first observe
space- and time-dependent oscillations which are related to
second sound. These oscillations relax on a time scale of about
one second. After a time interval δt = 2.0 s the system reaches
a stationary state with a constant homogeneous heat current
Q where all oscillations have disappeared. This means we
need 5 × 105 iteration steps on the computer until the system
converges to the steady state.

For a heat flow in the z direction there must be a heat source
and a heat sink at the boundaries of the cell z1 = −L/2 =
−1.0 mm and z2 = +L/2 = +1.0 mm, respectively. Thus a
source and sink term must be added to the heat transport
equation of model F (2.2) which is given by

W (r,t) = 2 [Q1 δ(z − z1) − Q2 δ(z − z2)]. (4.1)

In dimensionless renormalized form the source and sink term
is

w̃(r,t) = 2 [q̃1 δ([z − z1]/ξ ) − q̃2 δ([z − z2]/ξ )]. (4.2)

This latter term must be added to the dimensionless renor-
malized model-F equation (3.80) on the right-hand side. The
relation between the dimensionless renormalized heat currents
q̃ and the physical heat currents Q is obtained from the
renormalization equations (3.8), (3.10), and (3.32). We obtain

q̃ = q

g0
ξd−1 = Qξd−1

g0kBTλ

, (4.3)

which should be applied to both heat currents in Eqs. (4.1)
and (4.2). It is important to note that the RG flow parameter
τ = τ (r,t) and hence the correlation length ξ = ξ [τ ] depend
on space and time. This fact is important for Eqs. (4.1) and
(4.2).

We perform the calculations in the following way. First
the system is stabilized in the thermal equilibrium. Then at
time t = t0 the external heat source and sink (4.1) or (4.2)
is switched on where we chose equal values Q1 = Q2 = Q.
Then after a time interval δt = 2.0 s all oscillations are relaxed
and the system reaches a steady state. The local heat current
Q(r,t) = Q ez will be homogenous in space, constant in time,
and directed vertically along the z axis.
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The boundary conditions at z1 and z2 are important for the
stability of the iterations. There should be no boundaries at
all. This means we need periodic boundary conditions. The
system can be made periodic in the following way. We mirror
the cell at one of the boundaries. Then we obtain a periodic
structure of length 2L. Furthermore, for the discretization the
δ functions in Eqs. (4.1) and (4.2) must be replaced by smooth
peaks of a small width δz. We choose δz = 3 �z which is a
few discretization lengths. From the heat source at z = z1 the
heat current Q1 will flow away in both directions, where on the
other hand a heat current Q2 will flow from both directions to
the heat sink at z2. This fact explains the factor 2 in Eqs. (4.1)
and (4.2).

A. Dimensionless renormalized quantities

The direct results of the numerical calculation are the
dimensionless renormalized temperature parameters �ρ, ρ,
ρ1, and the dimensionless renormalized order parameter Y as
functions of the altitude coordinate z and the time t . In Fig. 1
the results are shown for the superfluid/normal-fluid interface
of liquid 4He at zero heat current Q = 0 in thermal equilib-
rium. The interface is induced by the gravitational acceleration
g = 9.81 m/s2 on earth. Since in thermal equilibrium the
temperature is constant we may choose it equal to the reference
temperature so that T = T0. Hence Eq. (3.27) implies �ρ = 0.
This is a trivial result, which is shown by the black dotted
line. The parameter ρ is related to the temperature difference
T − Tλ by Eq. (3.28) and shown as the green solid line. The
modified temperature parameter ρ1 is defined in Eq. (3.36)
and shown as the blue dashed line. Finally, the modulus of the
dimensionless renormalized order parameter η = |Y | is shown
as the red dash-dotted line.

In Fig. 1 we observe three different regions. For low
altitudes z � −100 μm we find the asymptotic values ρ → 1,
ρ1 → 1, and η = |Y | → 0. Hence in this region the 4He is
normal fluid. We recover the related flow parameter condition
ρ = 1 of Ref. 7 in the asymptotic limit z → −∞. For high
altitudes z � +100 μm we find the asymptotic values ρ →
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FIG. 1. (Color online) The dimensionless renormalized temper-
ature parameters ρ (green solid line), ρ1 (blue dashed line), and the
modulus of the order parameter η = |Y | (red dash-dotted line) for the
superfluid/normal-fluid interface.

−1/2, ρ1 → 0, and η = |Y | → (Ad/8u)1/2 where Ad = 1/4π

for d = 3. Hence in this latter region the order parameter
is nonzero and the 4He is superfluid. Again, we recover
the related flow parameter condition ρ = −1/2 of Ref. 7
in the asymptotic limit z → +∞. The third region is the
interface region −100 μm � z � +100 μm. Here the curves
interpolate between the asymptotic values. We clearly see
that the interface induced by gravity has a thickness of about
�zI,g ≈ 200 μm.

Since the system is constant with respect to the horizontal
coordinates x, y, and with respect to the time t , the covariant
derivatives of the dimensionless renormalized quantities are
nonzero only for the altitude coordinate z. In most cases these
covariant derivatives are calculated by numerical differentia-
tion using the formulas derived in Sec. III E. An exception
is ξDzρ1, which is expressed in terms of other covariant
derivatives by formula (3.68). The result is shown in Fig. 2
by the blue dashed line. Alternatively, we apply Eq. (3.67)
to the modified temperature parameter ρ1 and calculate the
covariant derivative directly by numerical differentiation. This
latter procedure is not correct in the interface region where
the renormalization factors depend on the altitude coordinate
because ρ1 is not renormalized as ρ. Nevertheless, in Fig. 2
the result is shown by the blue solid line. Surprisingly, the
two blue lines, the solid one and the dashed one, are close to
each other. Hence Eq. (3.67) is not that bad for calculating the
covariant derivative ξDzρ1.

The blue lines in Fig. 2 represent the covariant derivative
of the blue dashed line in Fig. 1. However, the latter line
represents ρ1 = ρ1(z) and shows a negative minimum value
ρ1,min < 0 at the position zmin ≈ 60 μm. Consequently for
ξDzρ1 we expect a zero at this position related to a sign change.
In Fig. 2 the solid blue line does show this zero and sign change
but the dashed blue line does not. In this way, the apparently
incorrect formula (3.67) for ρ1 appears to be more realistic
than the generic formula (3.68).
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FIG. 2. (Color online) The blue lines show the dimensionless
covariant derivative ξDzρ1 calculated in two ways: by numerical
differentiation (blue solid line) and by formula (3.68) (blue dashed
line). Furthermore the parameter σ defined in Eq. (3.85) and
multiplied by a factor 12 is shown as the orange dash-dotted line.
Finally, the argument of the function (3.50) ζ̄ is shown as the magenta
double-dash-dotted line.

104518-12



RENORMALIZATION-GROUP CALCULATION OF THE . . . PHYSICAL REVIEW B 85, 104518 (2012)

The existence of the sign change is supported by the
following argument. In a small z interval close to the interface
we may modify the renormalization-group theory by choosing
a constant flow parameter τ . In this case the covariant
derivatives reduce to the partial derivatives so that Eqs. (3.67)
and (3.68) would yield identical results for ξDzρ1 = ξ∂zρ1

and the two blue lines in Fig. 2 would collapse to a single
line. As a result the sign change would be found at zmin if we
evaluate the partial derivative explicitly by differentiation of
the blue dashed line in Fig. 1.

However, the sign change of the solid blue line in Fig. 2
would have a dramatic consequence for the numerical pro-
cedure when calculating σ and the amplitudes A and A1. In
thermal equilibrium we have �ρ = 0 so that Eq. (3.85) reduces
to σ = −(ξDzρ1)2/12. Consequently, σ will be negative
everywhere except at a point close to zmin. At this point we
have σ = 0 so that the formulas for the amplitudes A and
A1 reduce to Eqs. (3.40) and (3.41), respectively. However,
close to the minimum position zmin the modified temperature
parameter ρ1 is negative, which implies an imaginary result
for ρ

−ε/2
1 in Eqs. (3.40) and (3.41) where ε = 4 − d = 1 for

d = 3. Hence the amplitudes A and A1 are not well defined if
the solid line in Fig. 2 and the formula (3.67) is used.

The problem arises due to the fact that we evaluate
the Green function (2.22), the condensate density ns, the
superfluid current Js, and hence the amplitudes A and A1

in an approximation where only the covariant gradients of the
temperature parameters ρ1 and �ρ are taken into account. If we
could do the calculation for the full space dependence all these
quantities would be well defined. In the unpublished work16

we extended the calculation by including also the curvatures
of the temperature parameters. While the problem at zmin

was abolished, the calculation was much more complicated
and restricted to the thermal equilibrium at zero heat current.
Moreover, other mathematical difficulties appeared. Hence this
more sophisticated calculation could not be realized in practice
for our purpose.

However, our fortune is a small inaccuracy of the approxi-
mation in our numerical calculation in practice, which implies
that the blue dashed line in Fig. 2 is completely negative and
does not show a zero and a sign change for the covariant
derivative ξDzρ1. The related parameter σ = −(ξDzρ1)2/12
is shown in Fig. 2 as the orange dash-dotted line where it has
been enhanced by a factor 12. Clearly, this curve is negative
and never zero for all altitudes z in the interface region. For
this reason we can apply our formulas (3.51) and (3.52) for
the amplitudes A and A1 without a problem if we use the
generic formula (3.68) for the dimensionless gradient ξDzρ1.
We obtain smooth and stable results which are within the
accuracy of our approximation.

In order to evaluate the amplitudes A and A1 we need
the function (3.50) and its argument ζ̄ = ρ1/(−σ )1/3. Con-
sequently, from the dashed blue line in Fig. 1 and the
orange dash-dotted line in Fig. 2 we obtain the dimensionless
variable ζ̄ as a function of the altitude coordinate z, which
is shown in Fig. 2 by the magenta double-dash-dotted line.
In the normal-fluid region for z < 0 the variable ζ̄ increases
quickly for decreasing altitude z. Consequently, in this case the
asymptotic formula (3.53) can be used so that the amplitudes A

and A1 reduce to the simple formulas (3.40) and (3.41) of the

normal-fluid equilibrium state. In the superfluid region near
the interface the variable ζ̄ is negative. However, it is bounded
from below by the value −1. Consequently, the asymptotic
formula (3.54) is not needed. This means that the variable ζ̄

never comes in the large negative region where the function
(3.50) oscillates and possesses a significant imaginary part.
This observation is very important for the consistency of our
theory because the oscillations would be unphysical and the
imaginary part would be related to an instability.

B. Temperature profiles

Until now, the calculations are restricted to the thermal
equilibrium at zero heat current Q = 0. Here the phase of
the order parameter Y = η eiϕ is constant, so that we can
choose ϕ = 0. We have extended our numerical calculations to
small nonzero heat currents Q in the interval −70 nW/cm2 �
Q � +160 nW/cm2. In this latter case the phase of the
order parameter ϕ = ϕ(z,t) will be a nontrivial function of
the altitude coordinate z and the time t . A positive heat
current Q > 0 means a heat flow Q = Q ez in the z direction,
which means that the heat current flows upward from bottom
to top. The original experiment by Duncan et al.24 and
succeeding experiments investigating the superfluid/normal-
fluid interface induced by a heat current Q were performed in
this configuration. On the other hand a negative heat current
Q < 0 means a downward heat flow from top to bottom.
This latter configuration was investigated much later in the
experiment by Moeur et al.15

In the nonequilibrium system with a nonzero heat flow
the dimensionless renormalized temperature parameter �ρ

will be nonzero. Once the local space- and time-dependent
RG flow parameter τ = τ (z,t) is known, the space- and
time-dependent temperature profile T = T (z,t) is calculated
from �ρ by Eq. (3.27). Furthermore, the local space- and
time-dependent heat current Q = Q(z,t) is calculated from
the dimensionless renormalized heat current q̃ by Eq. (4.3).
After a time difference of about δt = 2 s the system will relax
in a stationary state where all quantities are constant in time.
If in Eq. (4.1) the source and sink parameters Q1 = Q2 = Q

are chosen, a vertical heat current Q will be found in the
whole system, which is constant in the space variable z.
Consequently, the different temperature profiles we obtain in
our numerical calculations can be labeled by this constant heat
current.

Our numerical results are shown in Fig. 3. The temperature
profile T (z) is shown by the colored solid lines for several
values of the heat current Q, which are specified in the caption
of the figure. On the other hand, the superfluid transition
temperature Tλ(z) as a function of the altitude coordinate z

is shown by the straight black dashed line. The slope of this
latter line is the effect of the gravity on earth.

The altitude z0 at which the temperature profiles T (z)
and Tλ(z) intersect each other so that T (z0) = Tλ(z0) may be
viewed as a reference altitude to specify the position of the
superfluid/normal-fluid interface. We realize that the system is
translation invariant in the sense that we can move the curves
parallel along the straight dashed line. Thus for convenience
and simplicity we select a coordinate system so that all curves
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FIG. 3. (Color online) The temperature profiles T (z) of the
superfluid/normal-fluid interface of liquid 4He in gravity are shown
for several heat currents Q as colored solid lines. The solid lines
on the left-hand (normal-fluid) side are ordered from top to bottom
with respect to decreasing heat currents Q = 160, 130, 100, 70, 40,
20, 0, −20, −40, −60, −70 nW/cm2. On the right-hand (superfluid)
side they are ordered from bottom to top. The horizontal black solid
line represents the temperature in thermal equilibrium for Q = 0.
The straight black dashed line represents the superfluid transition
temperature Tλ(z).

intersect at the same altitude z = z0 = 0. This choice is no
physical restriction and has been applied in Fig. 3.

On the left-hand side for low altitudes z � −100 μm the
system is normal fluid. Here the heat transport equation Q =
−λT ∂zT implies that the temperature gradient ∂zT is negative
for positive heat currents Q and positive for negative heat
currents. The values of the gradients are considerably large. On
the right-hand side for high altitudes z � +100 μm the system
is superfluid. Here the heat is transported convectively follow-
ing the two-fluid model so that the temperatures T (z) are nearly
constant and the gradients are nearly zero. The intermediate
region −100 μm � z � +100 μm is the superfluid/normal-
fluid interface. Here the temperature profiles interpolate the
two outer regions.

For positive heat currents Q > 0 (heat flow upward) the
slope of the temperature curve T (z) increases without a limit
on the normal-fluid side for z → −∞. However, for negative
heat currents Q < 0 (heat flow downward) the slope increases
up to a limiting value which is the slope of Tλ(z) so that in
the limit z → −∞ the temperature profile T (z) approaches
a straight line parallel to the straight dashed line Tλ(z). This
latter fact is clearly observed in the lower left part of Fig. 3. It
represents the self-organized critical state predicted by Onuki4

and discovered in the experiment by Moeur et al.15

While Figs. 1 and 2 are calculated for the thermal
equilibrium at zero heat current Q = 0, we have calculated
the related curves also for the nonequilibrium state at the
nonzero heat currents of Fig. 3. Most curves do not change
very much; the characteristic forms remain qualitatively. An
exception is the parameter σ defined in Eq. (3.85) and shown
as the orange dash-dotted line in Fig. 2. This parameter is
negative in the whole system only for small heat currents in
the interval −10 nW/cm2 � Q � +20 nW/cm2. For larger

heat currents outside this interval the parameter σ will change
the sign from negative to positive at specific altitudes z. For
even larger negative heat currents Q � −20 nW/cm2 and even
larger positive heat currents Q � +40 nW/cm2 the parameter
σ is positive in the whole system.

C. Order parameter

The order parameter in physical units 〈ψ〉 is calculated
from the dimensionless renormalized order parameter Y via
the renormalization formulas (3.1) and (3.31). Putting these
equations together and replacing μ → ξ−1 we obtain

〈ψ〉 = Z
1/2
φ Y ξ−(d−2)/2. (4.4)

Integrating the defining equation (3.56) for the ζ function ζφ ,
we obtain an integral representation for the renormalization
factor,

Zφ = exp

{ ∫ ∞

μ

ζφ

dμ′

μ′

}
= exp

{
−

∫ ∞

τ

νη
dτ ′

τ ′

}
. (4.5)

The second equality sign is implied by the flow-parameter
transformation (3.60) together with the running exponents ν

and η, defined in Eqs. (3.70) and (3.71). The upper infinite
integration boundaries guarantee Zφ = 1 in the limits μ → ∞
and τ → ∞, which represent the mean-field or Gaussian
fix point of the RG flow. If we use the correlation length
ξ = ξ0 τ−ν we obtain the asymptotic formula for the order
parameter 〈ψ〉 ∼ τ ν(d−2+η)/2 = τβ with the correct critical
exponent β defined in Eq. (3.72).

Equations (4.4) and (4.5) are suited for a numerical calcula-
tion once the dimensionless renormalized order parameter Y ,
the RG flow parameter τ , and the running exponents (3.70)–
(3.72) are known. We have calculated the order parameter
〈ψ〉 = M eiϕ in the stationary state for all those heat currents
Q for which we have calculated the temperature profiles in the
previous subsection. We obtain the modulus M and the phase
ϕ of the order parameter. Our results for the modulus M are
shown in Fig. 4 for positive heat currents Q � 0 (heat flow
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FIG. 4. (Color online) The modulus of the order parameter M =
|〈ψ〉| as a function of the temperature difference T − Tλ for the
superfluid/normal-fluid interface in gravity. The colored solid lines
from left to right represent the heat currents Q = 160, 130, 100, 70,
40, 20, 0 nW/cm2.
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upward). The colors of the solid lines correspond to those in
Fig. 3. Here and in the following figures we omit the lines for
negative heat currents Q < 0 (heat flow downward) because
they make the figures complicated and involved but do not
show new physics.

Close to criticality T = Tλ the curves are smooth. This
is an effect of gravity and related to the superfluid/normal-
fluid interface. The width of the smooth region is �TI,g =
25 nK, which corresponds to the thickness of the interface
�zI,g = 200 μm. The ratio is approximately the gradient
of the superfluid transition temperature, i.e., �TI,g/�zI,g ≈
∂Tλ/∂z = 1.273 μK/cm. For increasing heat currents Q the
smooth curves are shifted to the left to lower temperatures. This
fact is related to the depression of the superfluid transition to
lower temperatures by a heat current which has been observed
and investigated in the experiment by Duncan, Ahlers, and
Steinberg.24

Away from criticality for lower temperatures T − Tλ �
−30 nK the curves approach asymptotically a single line
which corresponds to the singular order parameter M =
|〈ψ〉| ∼ (Tλ − T )β for T < Tλ in thermal equilibrium and zero
gravity. In Fig. 4 the asymptotic curves do not fall perfectly
on a single line. This observation is a numerical error in our
calculation. In order to stabilize the numerical iterations we
must add an imaginary part to the parameter σ defined in
Eq. (3.85). This imaginary part increases with increasing heat
current Q and influences slightly the curves on the superfluid
side.

The physical units cm−1/2 of the order parameter arising
from the formula (4.4) for d = 3 dimensions appear to be
artificial and unphysical. However, since the order parameter
can not be observed in physical experiments, this artifact is not
important and no matter of concern.

The phase of the order parameter ϕ is dimensionless. Its
gradient is related to the superfluid velocity vs = (h̄/m4)∇ϕ.
For nonzero heat currents Q we find nontrivial results for
the superfluid velocity vs. If we approach the interface from
the superfluid side, vs increases monotonically. However, on
the normal-fluid side, the phase ϕ and the superfluid velocity
vs are irrelevant because the modulus M approaches zero.

D. Correlation length

The correlation length ξ has been calculated by Schloms
and Dohm21 in thermal equilibrium and zero gravity. In
the renormalized perturbation theory up to two-loop order
they obtain ξ−2 = μ2Aξ with an amplitude function Aξ =
1 + O(u2). However, since our Hartree approximation is first
order in u we may approximate Aξ ≈ 1, so that the correlation
length is just ξ = μ−1. This quantity is provided by our
numerical calculation. Our results are shown in Fig. 5 by the
colored solid lines for the same positive heat currents as in
the previous figures. In the interface region close to criticality
T = Tλ the colored solid curves are smooth. The correlation
length has a maximum value ξg ≈ 50 μm, which is implied
by the gravity acceleration g = 9.81 m/s2 on earth. The effect
of a small nonzero heat current Q is weak. For increasing heat
currents Q the position of the maximum of the correlation
length is shifted slightly to lower temperatures. We note that
our maximum correlation length ξg is of the same order of
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FIG. 5. (Color online) The correlation length ξ as a function of
the temperature difference T − Tλ for the superfluid/normal-fluid
interface in gravity. The colored solid lines from left to right represent
the heat currents Q = 160, 130, 100, 70, 40, 20, 0 nW/cm2. As a
reference the black dashed line shows the singular correlation length
in thermal equilibrium and zero gravity.

magnitude as the characteristic length lg = 67 μm, which was
used by Ginzburg and Sobyanin2 within their ψ theory.

From Fig. 1 we have inferred the interface thickness
�zI,g = 200 μm. Thus we calculate the ratio �zI,g/ξg ≈ 4,
which means that the interface thickness is four times the
maximum of the correlation length. While in a nonequilibrium
and/or gravity environment the correlation length ξ is finite and
a smooth function, in equilibrium and zero gravity it shows the
well-known singular behavior ξ ∼ |T − Tλ|−ν near criticality
for T → Tλ with an exponent ν = 0.671. This latter singular
correlation length is shown by the black dashed line, which
diverges at T = Tλ. Far away from criticality, which means far
away from the interface, all solid lines converge to a single line,
which is identical with the black dashed line. Thus far away
from the interface the gravity g and the heat current Q do not
have an influence on the correlation length ξ . Finally, here we
do not see an influence of the imaginary part of the parameter
σ we introduce in our calculation in order to stabilize the
numerical iterations.

E. Specific heat

There are two possibilities to calculate the specific
heat. First, we may calculate the entropy S within our
renormalization-group theory and then calculate the derivative
CX = T (∂S/∂T )X numerically where any quantity X may be
kept constant. This has been done in our previous paper14

where X = Q or X = ∇T . The entropy S is given by
Eqs. (8.10) or (8.12) of Ref. 14. Second, we calculate
the specific heat directly by C = kBχ0ZmCren where the
renormalized specific heat Cren is defined in Eq. (3.22) and the
renormalization factor χ0Zm is defined implicitly in Eq. (3.30).
Thus we obtain

CX = kB
Ad

4τ 2ξd

{
1

γ 2
+ 1

2u

[
1 −

(
∂ρ1

∂ρ

)
X

]}
, (4.6)
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a formula which should be compared with the entropy (8.10) in
Ref. 14. The formula can be simplified if we use the asymptotic
formulas for the correlation length ξ = ξ0 τ−ν and for the
coupling parameter γ −2 = (4ν/α)(1 − bτα) where ν = 0.671
and α = 2 − dν = −0.013 are critical exponents and b is a
known constant. As a result we obtain the specific heat

CX = B + Ã{(4ν/α) + FX[u]}τ−α (4.7)

together with the amplitude

FX[u] = 1

2u

[
1 −

(
∂ρ1

∂ρ

)
X

]
. (4.8)

This formula should be compared with the entropy (8.12) in
our previous paper14 together with Eqs. (8.13)–(8.16). Here Ã

and B are nonuniversal constants which can be expressed in
the forms Ã = kBAd/4ξd

0 and B = Ã(−4ν/α)b. Alternatively,
these constants can be obtained by fitting the formula to the
experimental data for liquid 4He in a microgravity environment
in space.22,23 In this way we obtain Ã = 2.22 J/mol K and B =
456 J/mol K where the constants are multiplied additionally
by the molar volume of liquid 4He at saturated vapor pressure10

Vλ = 27.38 cm3/mol.
The amplitude FX[u] can be compared directly with the

amplitudes F±[u] of Dohm,7 if we consider the asymptotic
limits far away from the interface. The temperature parameters
ρ and ρ1 are related to each other by Eq. (3.36). In the normal-
fluid region far away from the interface the renormalized order
parameter is Y = 0 and the amplitudes A and A1 are given by
Eqs. (3.40) and (3.41). The partial derivative can be performed
easily so that we obtain ∂ρ/∂ρ1 = 1 + 8uA1 = 1 − 4u, which
does not depend on the variable X that is kept constant. Thus
we obtain the amplitude

F+[u] = (2u)−1[1 − 1/(1 − 4u)] = −2 + O(u). (4.9)

In the superfluid region ρ1 approaches 0 more rapidly than ρ

approaches −1/2. Consequently, in the superfluid region far
away from the interface the partial derivative is ∂ρ1/∂ρ = 0,
which again does not depend on the variable X that is kept
constant. Thus we obtain the amplitude F−[u] = (2u)−1. If we
compare our results for F±[u] with those of Dohm7 we find
agreement for the leading terms in powers of u in both cases
+ and −, respectively.

We have calculated the specific heat numerically with
both methods described above using the entropy formula
(8.12) of our previous paper14 and the specific-heat formula
(4.7) of the present paper. The results agree with each other
within the accuracy of our Hartree approximation, which is
a self-consistent one-loop approximation combined with the
renormalization-group theory. This agreement is a test for
the validity and the accuracy of our method presented in
this paper. While in the previous paper we have used the
first method, in this paper we prefer the second method, i.e.,
formula (4.7) together with Eq. (4.8). The reason is that in the
present calculation the second method provides curves looking
smoother and more nice.

Our results are shown in Fig. 6 by the colored solid
lines for the same heat currents as in the previous figures.
We have calculated the specific heat CQ where the heat
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FIG. 6. (Color online) The specific heat CQ as a function of
the temperature difference T − Tλ for the superfluid/normal-fluid
interface in gravity. The colored solid lines from left to right represent
the heat currents Q = 160, 130, 100, 70, 40, 20, 0 nW/cm2. The
black dashed line represents the singular specific heat in microgravity
fitted to the data of the experiment by Lipa and co-workers (Refs. 22
and 23). The black crosses show the experimental data for zero heat
current in gravity on earth by Lipa (Ref. 26) where the black dotted
line is the related theoretical curve for the average specific heat C̄Q.

current Q and the gravity acceleration g = 9.81 cm/s2 are
kept constant. Clearly, in the interface region near criticality
we find smooth curves. The specific heat has a maximum
slightly below the critical temperature. For increasing heat
currents Q this maximum is shifted to lower temperatures
which is related to the depression of the superfluid transition
temperature observed in the experiment by Duncan, Ahlers,
and Steinberg.24 Furthermore, the maximum of the specific
heat is strongly enhanced for increasing heat currents Q.
This enhancement is an effect of the constant heat current
Q when calculating the specific heat CQ. It has been observed
already in our previous paper,14 where CQ has been calculated
for the much higher heat current Q = 42.9 μW/cm2 where
gravity effects are negligible. The strong enhancement of the
maximum is also compatible with experimental measurements
of CQ by Harter et al.25

Far away from criticality and the interface on both sides the
colored solid curves converge to a single line, respectively.
These single lines represent the asymptotic specific heat
C = B + (A±/α)|t |−α where t = (T − Tλ)/Tλ is the reduced
temperature and α is the critical exponent. On the normal-fluid
side the single line is perfect. However, on the superfluid side
it is slightly influenced by the imaginary part of the parameter
σ , which we must add in our numerical calculation in order
to have stable iterations. This fact is related to the similar
observation in our results for the order parameter shown in
Fig. 4.

The smooth colored solid lines in Fig. 6 show that the
critical singularity is rounded by the gravity g and the
heat current Q. The temperature scale for this rounding is
�Tg,I = 25 nK if gravity is the dominating effect. We have
obtained this value from the thickness of the interface �zI,g =
200 μm. Consequently, the asymptotic critical behavior of the
specific heat and all other singular quantities can be observed
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only for temperatures |T − Tλ| � �Tg,I = 25 nK away from
criticality. Hence the gravity implies that on earth the critical
point can never be reached. For this reason, experiments to
measure the asymptotic behavior closer to the critical point
must be performed in a microgravity environment in space.

Lipa and co-workers22,23 have performed a space exper-
iment which was called Lambda Point Experiment (LPE)
and which flew aboard the space shuttle Columbia (STS-52)
in 1992. They obtained data for the specific heat up to
|T − Tλ| = 1 nK. They fitted an asymptotic formula to the
data and determined the exponent α = −0.013, the amplitudes
A± and B, and some further parameters. The resulting fit
curve is shown in Fig. 6 by the black dashed line. This
curve shows the typical lambda of the specific heat with a
singularity at T = Tλ. Away from criticality on both sides
for |T − Tλ| � 50 nK the solid lines and the dashed line
come close to each other, which demonstrates the agreement
between theory and experiment. However, the agreement is
not perfect. There remains a small discrepancy which is due
to the amplitude ratio A+/A− because our theory provides an
approximate value for this amplitude ratio which can never be
identical to the experimental value.

We note that in our calculation the specific heat is defined
locally. It depends on the altitude z so that CQ = CQ(z). The
rounding of the critical singularity is caused by the gradient of
Tλ(z) and by the heat current only. However, in experiments
the 4He is in a cell of a finite extension. The cell is usually
confined by two horizontal plates at altitudes z1 and z2, where
the vertical height L = z2 − z1 is small and the horizontal
extensions are large. For this reason the experiment measures
an average specific heat which is defined by the integral C̄Q =
(z2 − z1)−1

∫ z2

z1
dz CQ(z). This average process smooths the

curve additionally. The maximum of the average specific heat
C̄Q will be broader than the maximum of the related local
specific heat CQ.

In order to minimize the averaging effects the cell height
L should be chosen as small as possible. However, it must
be considerably larger than the maximum correlation length
ξg = 50 μm because for small L finite-size effects occur which
again smooth and round the critical singularity. Consequently,
for the cell height L there will be an optimum range to obtain
best measurements on earth.

In Fig. 6 the black crosses represent the experimental data
of a measurement on earth at zero heat current performed by
Lipa.26 In this case the cell height is L = 0.38 mm, which
causes considerable average effects. The maximum of the
experimental data is much broader than the maximum of the
black solid line, which represents the local specific heat CQ for
Q = 0. We have calculated the related average specific heat
C̄Q for Q = 0 which is shown by the black dotted line. This
latter curve shows a much broader maximum at criticality
which agrees with the experimental data. Since the ratio
L/ξg = 7.6 is large, finite-size effects are small. However, the
Dirichlet boundary conditions of the order parameter at the
cell walls imply that nevertheless the finite-size effects cause
a depression of the data which is clearly observed in Fig. 6
because the experimental data (black crosses) are below the
theoretical curve (black dotted line). Thus we conclude that
the experimental data obtained in a measurement in gravity on
earth agree with our theory.

F. Thermal conductivity and resistivity

The thermal conductivity λT is defined locally by the heat
transport equation Q = −λT∇T . Resolving this equation we
obtain the thermal conductivity explicitly as λT = |Q|/|∇T |.
Next we insert the renormalization equations for the heat
current (4.3) and for the temperature gradient (3.65). Thus
we obtain

λT = g0kB

τ ξd−2

|q̃|
|ξD�ρ| . (4.10)

The dimensionless heat current q̃ and the dimensionless
renormalized gradient ξD�ρ are variables in our numerical
calculation. Hence Eq. (4.10) is well suited for an explicit
calculation of the thermal conductivity.

The dimensionless renormalized heat current is defined in
Eq. (3.82). Far away from the interface in the normal-fluid
region the order parameter Y and hence the last term of
Eq. (3.82) is zero. On the other hand, the amplitude A1 in
the first term of Eq. (3.82) reduces to A1 = −1/2 following
Eq. (3.41). Thus Eq. (4.10) provides the thermal conductivity

λT = g0kB

τ ξd−2

Ad

2γF

{
1 − f

4

}
(4.11)

in the normal-fluid region. This result is well known and agrees
with the linear-response calculation of Dohm.7 Since our result
is derived in Hartree approximation, the agreement is up to
one-loop order.

Far away from the interface in the superfluid region the
heat current Q is nonzero where the temperature gradient ∇T

is zero. Hence the thermal conductivity λT is infinite. This
fact is also seen in the formulas (3.82) and (4.10). A zero
dimensionless renormalized temperature gradient ξD�ρ = 0
implies a zero first term in Eq. (3.82) and a zero denominator
in Eq. (4.10). On the other hand, the second term in Eq. (3.82)
is minus the dimensionless renormalized superfluid current,
which is nonzero. Consequently, Eq. (4.10) provides an infinite
thermal conductivity once again in the superfluid region.

A related quantity is the thermal resistivity ρT = 1/λT,
which is the inverse of the thermal conductivity. In the
normal-fluid region the thermal resistivity ρT is finite. On
the other hand, in the superfluid region it is zero. For this
reason the thermal resistivity ρT is well suited for a graphical
representation. In Fig. 7 the results of our numerical calculation
are shown as colored solid lines for several positive values
of the heat current Q. These heat currents are the same as
those in the previous figures. Clearly, in the interface region
near criticality the colored solid curves are smooth lines. The
critical singularity at T = Tλ is smoothed by the nonzero
values of gravity g and the heat current Q. For increasing
heat currents Q the colored solid lines are shifted to lower
temperatures. This fact is again related to the depression of
the superfluid transition temperature by nonzero heat currents
following Duncan, Ahlers, and Steinberg.24

On both sides far away from criticality T = Tλ and from
the interface the colored curves asymptotically approach single
lines, respectively. In the normal-fluid region the asymptotic
thermal resistivity is given by Eq. (4.11), where in the
superfluid region it is just zero.

The local thermal resistivity ρT has been measured for the
superfluid/normal-fluid interface in the experiment by Day
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FIG. 7. (Color online) The thermal resistivity as a function of
the temperature difference T − Tλ for the superfluid/normal-fluid
interface in gravity. The colored solid lines from left to right represent
the heat currents Q = 160, 130, 100, 70, 40, 20, 0 nW/cm2. The data
points represent the experimental data by Day et al. (Ref. 27) taken
for the same heat currents except Q = 0. Related to the theoretical
curves the data are ordered from left to right.

et al.27 While gravity on earth is g = 9.81 m/s2, the heat
current is flowing upward from bottom to top so that Q is
positive. The values of heat current Q are the same as in our
calculation. For this reason, our colored solid lines can be
compared directly with the experimental data. In Fig. 7 the
experimental data for several heat currents Q are represented
by points of several symbol types. The data points can be
related to the solid curves by their color or alternatively by there
order from left to right. An exception is the black solid line for
zero heat current Q = 0. In this latter case no experimental
data are available. However, the black solid line is very
close to the red solid line for Q = 20 nW/cm2. Consequently
for Q � 20 nW/cm2 the effect of the heat current is very
small.

Qualitatively, the experimental data agree with the theoret-
ical solid lines. However, there are quantitative discrepancies.
First of all, in the normal-fluid region well above criticality
for temperature differences T − Tλ � 50 nK the thermal
resistivity converges to a single line represented by the formula
(4.11). We have multiplied the theoretical results with a
correction factor which slightly differs from unity. In this way
we achieve that far away from criticality the experimental
data are lying on top of the theoretical curves. This correction
factor is justified, because in Ref. 7 the model-F parameters
were adjusted for the theoretical specific heat and thermal
resistivity in two-loop order where in the present paper and also
in our previous papers13,14 the quantities were calculated in
the Hartree approximation, which is a self-consistent one-loop
approximation.

For larger heat currents Q and temperatures T slightly
below Tλ our solid lines show some bumps which are probably
artifacts of our approximation. The magnitude of the artifacts is
within the accuracy of our approach. In the superfluid region
well below criticality for temperature differences T − Tλ �
−50 nK the thermal resistivity ρT is very close to zero both

in theory and experiment. This fact represents the frictionless
heat transport by the superfluid/normal-fluid counterflow in
superfluid 4He. Vortices are not present in our calculation
presented here.

G. Second sound and time-dependent phenomena

Until now we have considered only stationary nonequilib-
rium states where a constant heat current Q = Q ez is flowing
vertically in the 4He and where all time-dependent phenomena
are relaxed. However, our numerical calculation solves the
time-dependent model-F equations so that time-dependent
phenomena can be treated explicitly. In this case the order
parameter 〈ψ(z,t)〉, the temperature T (z,t), and the heat
current density Q(z,t) = Q(z,t) ez are functions of altitude
z and time t . In superfluid 4He the most important dynamic
phenomenon is second sound. We can generate a second sound
pulse on the upper cell boundary z2 if in the external heat source
(4.1) we choose a time-dependent upper source function Q2(t).
Then the phase of the order parameter ϕ(z,t), the temperature
T (z,t), and the local heat current Q(z,t) show a pulse which
is traveling downwards toward the superfluid/normal-fluid
interface. Approaching gradually the interface the width of
the pulse increases. Once the interface is reached the pulse
disappears by broadening where nearly nothing is reflected. In
the end the second-sound pulse is absorbed nearly completely
by the interface.

A heat pulse can be generated also on the lower cell
boundary z1 if the lower source function Q1(t) is chosen
time dependent. However, in this case the response of
the system is less spectacular because on the normal-fluid
side the heat is transported diffusively. Nevertheless, our
time-dependent investigations yield an important result. All
time-dependent perturbations of the stationary states with a
constant heat flow relax and disappear. Thus we conclude
that the superfluid/normal-fluid interface in gravity and in
the presence of a vertical heat flow is a stable physical
configuration.

V. COMPARISON WITH OUR PREVIOUS APPROACH
FOR LARGE HEAT CURRENTS

A. Solutions

We have found two different solutions of the model-F
equations for superfluid 4He in the nonequilibrium state where
a heat current is flowing. In the first case the order parameter
〈ψ〉 = M eiϕ is nonzero and no vortices are present. The
heat is transported convectively without any friction by the
superfluid/normal-fluid counterflow so that the temperature
gradient is zero. This solution is investigated in the present
paper. In the second case the order parameter is zero due to
fluctuations of the phase ϕ by moving vortices and quantum
turbulence. Here the moving vortices imply a small thermal
resistivity which causes a small temperature gradient. This
latter solution was investigated in our previous papers.13,14

The two different solutions exist only in the superfluid and
interface region where a nonzero order parameter is possible.
In the normal-fluid region the solution is unique because here
the order parameter is always zero.
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The two solutions are controlled by the parameter σ defined
in Eq. (3.85). The first solution exists for negative and positive
values of σ where the second solution exists only for positive
σ . For the superfluid/normal-fluid interface in gravity on earth
this means that the first solution exist for small and large
heat currents. On the other hand the second solution exists
only for large heat currents |Q| � 70 nW/cm2 where the
heat current is the major and gravity is the minor influence.
However, the numerical calculations of our present paper show
that in practice the first solution is stable only for small heat
currents in the interval −70 nW/cm2 � Q � +160 nW/cm2.
For larger heat currents outside the interval we do not obtain
a stable solution. We do not know if this instability is a
property of our iteration procedure only which we describe in
Sec. III F. However, we guess that there is a physical instability
beyond a certain critical heat current. This means we expect a
discontinuous first-order like transition in the nonequilibrium
state near the heat current Q0 ≈ 70 nW/cm2, which separates
the gravity dominated regime (first solution) from the heat
current dominated regime (second solution). Nevertheless,
there will be an overlap region where both solutions exist.

B. Stability

The time-dependent nature of our numerical calculation
provides a test for the physical stability of our stationary
solutions. We may add a small perturbation to the solution
and then start the calculation. After a time difference δt ≈ 2 s
the perturbations relax and disappear so that the system returns
to the stationary state. We find this behavior for all stationary
solutions with a constant heat flow, which we have presented
in this paper. Thus we conclude that the first-type solutions are
stable, which describes physical states with a nonzero order
parameter and no vortices. This result is expected because
the order-parameter variation and second sound are damped.
We note that we have a numerical instability for larger heat
currents. However, this latter instability is unphysical and
has a completely different nature because it appears on the
short length scales �z of the discretization of the altitude
coordinate.

In our previous papers13,14 we did not prove the stability of
the second-type solutions which describe superfluid states with
vortices and a zero average order parameter. The reason is that
in our previous papers we did not solve the model-F equations
as partial differential equations. Consequently, we do this now
and provide the proof in the following. However, we note that
in this case the stability is nontrivial because the system is in a
superfluid state where the average order parameter is 〈ψ〉 = 0
and the temperature is T < Tλ. We solve the time-dependent
renormalized model-F equations for a second-type solution
with a small perturbation. For simplicity we consider a
self-organized critical state with a constant heat Q current
and constant temperature gradients ∇T = ∇Tλ because this
state is spatially homogeneous before the perturbation is
applied. Unfortunately, the state is not periodic because we
cannot require periodic boundary conditions for all quantities.
Exceptions are the temperatures T (z.t), Tλ(z) and the phase
of the order parameter ϕ(z,t). Nevertheless, we can generalize
the boundary conditions. For the latter three quantities we
require pseudoperiodic boundary conditions in the sense of the

impossible objects of the famous Dutch graphic artist M. C.
Escher,28 i.e.,

T (z + L,t) = T (z,t) + �TL, (5.1)

Tλ(z + L) = Tλ(z) + �TL, (5.2)

ϕ(z + L,t) = ϕ(z,t) + �ϕL(t). (5.3)

Since the critical temperature Tλ(z) is linear in z, from
Eq. (5.2) we obtain �TL = (∂zTλ)L. On the other hand from
Eq. (5.1) we obtain �TL = −(Q/λT)L where λT is the thermal
conductivity. We note that for the self-organized critical state
both results for the period constant �TL must be equal. This
fact implies Q = −λT(∂zTλ). The period constant of the order-
parameter phase �ϕL(t) can be determined by investigating
the renormalized model-F equation (3.79). On the right-hand
side we replace �ρ(z,t) in favor of the temperature T (z,t) by
inserting Eq. (3.27). We insert the complex order parameter
Y = η eiϕ and derive an equation for the order parameter phase
ϕ(z,t). We consider this equation for the altitudes z = z0 and
z = z0 + L and then subtract the resulting equations. Thus as
a result we obtain ∂t�ϕL(t) = g0(�TL/Tλ). We integrate this
equation and obtain the period constant

�ϕL(t) = �ϕL(t0) + g0(�TL/Tλ)(t − t0). (5.4)

Clearly, the period of the order-parameter phase depends
linearly on the time t . We conclude and find that for
the self-organized critical state with small perturbations the
renormalized model-F equations can be solved numerically
using Escher pseudoperiodic boundary conditions, which are
defined by Eqs. (5.1)–(5.3). Our numerical test provides the
following result. Any small perturbation of the self-organized
critical state relaxes and disappears after a time difference of
δt ≈ 2 s. Thus we conclude that the second-type solutions are
stable. This means that the nonequilibrium states considered
in the previous paper are stable.

A matter of special interest is the relaxation of the order
parameter. We start at time t0 with a small constant perturbation
Y (z,t0) = η0 eiϕ0 . This means η0 is small but nonzero, and ϕ0

is constant. We consider the renormalized model-F equation
(3.79), which describes the time evolution of the order
parameter Y (z,t) = η(z,t) eiϕ(z,t). Decomposing the equation
with respect to the modulus η(z,t) and the phase ϕ(z,t) from
the first term on the right-hand side we infer the damping for
the modulus

D = g0(2γ τ )(w′/F )[ρ1 + (ξ∇ϕ)2]. (5.5)

This damping is an inverse relaxation time. The solution of
the model-F equation is stable whenever this damping is
positive and unstable otherwise. The prefactors are always
positive so that the crucial quantity is the expression in
the square brackets. For times t shortly after the beginning
of the calculation t0 the phase is expected to be ϕ(z,t) ≈
ϕ0 so that ∇ϕ ≈ 0. Consequently, the main contribution is
the dimensionless modified temperature parameter ρ1. The
stability of the solution depends on its sign. In Fig. 1 ρ1 is
plotted as the blue dashed line for the superfluid/normal-fluid
interface. A similar curve is obtained for the self-organized
critical state if ρ1 is plotted as a function of the heat current Q.
While in the normal-fluid region ρ1 is positive, in the superfluid
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region it is negative. For the heat current Q = 170 nW/cm2

we find the minimum value ρ1,min = −0.39. Thus we conclude
that the solution is stable in the normal-fluid region but unstable
in the superfluid region.

However, the instability is true only for short times where
t − t0 is small. For longer times we must investigate the space
and time dependence of the order-parameter phase ϕ(z,t).
From Eq. (5.4) and from the renormalized model-F equation
(3.79) we infer

ϕ(z,t) = ϕ0 + �ϕL(t) (z − z0)/L

= ϕ0 + g0 (�TL/Tλ) (t − t0) (z − z0)/L. (5.6)

Here z0 is the altitude where the temperature equals the
reference temperature, i.e., T (z0,t0) = T0. For the last equality
sign we have used Eq. (5.4) realizing that in our case at the
beginning t = t0 the Escher period constant is �ϕL(t0) = 0.
Differentiating with respect to the altitude coordinate z and
multiplying by ξ we obtain the dimensionless gradient of the
order-parameter phase,

ξ∇ϕ = g0 (�TL/Tλ) (t − t0) (ξ/L) ez. (5.7)

Consequently, we find (ξ∇ϕ)2 ∼ (t − t0)2. This means that in
Eq. (5.5) the second term in the square bracket increases with
time. Even though at the beginning the square bracket may be
negative because of the first term, after a short time the second
term makes the square bracket positive. Thus we conclude:
Even though there may be an instability for short times, the
increase of the gradient of the phase (5.7) makes the damping
(5.5) finally positive so that the time evolution of the order
parameter is finally stable.

The stability of the second model-F equation (3.80) is
easily proven. We insert the dimensionless renormalized
heat current (3.82) and neglect its last term because it is
squared in the small nonzero order parameter. As a result
we obtain a diffusion equation for the dimensionless renor-
malized temperature parameter �ρ(z,t). Since the related
diffusion constant is positive, this equation is always stable.
The covariant derivatives in this equation do not affect the
stability.

We summarize that we have presented an explicit proof
for the stability of the self-organized critical state, which is a
spatially homogeneous second-type solution of the model-F
equations. We expect that also the more general second-type
solutions for spatially inhomogeneous systems are stable,
which describe the superfluid/normal-fluid interface in our
previous papers.13,14 Our numerical calculations of the present
paper support this expectation. However, we note that the
stability is nontrivial because the system is in a superfluid
state where the average order parameter is 〈ψ〉 = 0 and the
temperature is T < Tλ.

VI. DISCUSSION AND CONCLUSION

Onuki3,4 and and later Weichman and Miller29 have also
investigated the superfluid/normal-fluid interface within model
F . They obtain temperature profiles which agree qualitatively
with our results shown in Fig. 3. However, they did not use
the renormalization-group theory and the related coupling
parameters which have been determined by Dohm.8 For this
reason, it is not possible to compare the results quantitatively.

Weichman and Miller29 furthermore considered the self-
organized critical state for a heat current flowing downward.
While in the superfluid region usually the temperature profile
is flat, they obtain phase slips in the order parameter, which
produce a staircaselike temperature profile. In this way they
obtain a temperature gradient ∇T which on average equals
the gradient ∇Tλ as required for the self-organized critical
state. More recently Yabunaka and Onuki30 performed a
three-dimensional numerical simulation based on model F

in order to investigate the self-organized critical state and the
superfluid/normal-fluid interface. They observed the formation
and motion of vortices and phase slips, which produce a
nonzero temperature gradient ∇T on average in the superfluid
region which compensates ∇Tλ.

A sophisticated theory for mutual friction, quantum turbu-
lence, and the dynamics of vortices in superfluid 4He was
developed long time ago by Vinen.31 A measure for the
quantum turbulence is the density of the vortices, which is
defined as the total length of the vortex lines per volume. For
this vortex density a rate equation is derived. On the right-hand
side of this equation there is a term for the generation and a
term for the decay of vortices and quantum turbulence. Vortices
are usually generated by a nucleation process. This means that
an energy barrier must be overcome, which strongly reduces
the generation rate.

We believe that model-F includes the effects of vortices
and quantum turbulence correctly so that the Vinen theory
can be derived if the model-F equations can be solved exactly
without any approximation. However, our two solutions which
are derived within the Hartree approximation are idealized
solutions of model F . They describe the two phases of
a first-order nonequilibrium transition but do not include
metastability and the nucleation process.

For the check between theory and experiment an important
quantity is the thermal resistivity ρT in superfluid 4He for
T < Tλ and larger heat currents Q � 100 nW/cm2 induced
by the effect of vortices. In Fig. 3 of our previous paper14

we have compared the result of our second-type solution with
experimental data by Baddar et al.32 The experimental thermal
resistivity is lower by a factor of 20 than our theoretical
result. A plausible explanation for this discrepancy is the
following. In the experiment the heat current is flowing
upward from bottom to top. The related superfluid current
is flowing in the opposite direction, i.e., downward from
top to bottom. Consequently, the vortices are transported
together with the superfluid current downward. Since the order
parameter 〈ψ〉 increases and the vortex density decreases
with the altitude z, the downward transport of the vortices
together with the metastability of the nucleation process can
reduce the vortex density considerably. Since the hopping over
energy barriers in the nucleation process causes exponential
factors, a reduction of the thermal resistivity by a factor 20 is
plausible.

The situation is different for the self-organized critical state.
Here the system is spatially homogeneous because the heat
current Q and the temperature difference T (z) − Tλ(z) = �T

are constant and do not depend the altitude z. The nucleation
process reaches an equilibrium state, so that our theory will
predict the density of the vortices and the related thermal
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resistivity correctly. A first agreement with the theory was
found in the experiment by Moeur et al.15 Here the temperature
difference �T was measured as a function of the heat current
Q. The comparison with our theory is shown in Fig. 3 of our
previous paper.13 The agreement is encouraging. However, for
very large heat currents Q � 2 μW/cm2 deep in the superfluid
region a deviation was found. This deviation may be a problem
of the temperature measurement because the temperature T

is never measured in the bulk of the system but always on
the surface. In order to avoid the Kapitza resistance, which
implies a temperature jump on the surface, the temperature
is usually measured by thermometers on the side walls.
However, in cases where vortices are present, a superfluid
flow parallel along a side wall may cause a transverse Kapitza
resistance so that there is a temperature jump also on a side
wall.

In a recent experiment Chatto et al.17 performed an
experiment to measure the thermal conductivity/resistivity
indirectly where the explicit measurement of the temperature is

avoided. Instead they measured the velocity v of a propagating
thermal mode as a function of the heat current Q in the
interval 30 nW/cm2 � Q � 15 μW/cm2. On the other hand,
they derived a theoretical curve for the velocity v from our
theoretical results for the thermal conductivity.13,14 They find
very good agreement between theory and experiment in the
whole range of heat currents Q, even for the largest values
Q ≈ 15 μW/cm2 deep in the superfluid region. We conclude
that this experiment is an important verification of our theory.
This means our theory13,14 describes the effects of vortices,
mutual friction, and the thermal conductivity/resistivity cor-
rectly on a quantitative level for the self-organized critical
state.
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