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Monte Carlo and Gutzwiller approximation study
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We carry out the variational Monte Carlo calculation to examine spatially inhomogeneous states in hole- and
electron-doped cuprates. By using Gutzwiller approximation, we consider the excitations, arising from charge
density, spin density, and pair field, of the mean-field ground state of the t-J model. It leads to the stripe patterns we
have found numerically in a generalized t-J -type model including mass renormalization from the electron-phonon
coupling. In the hole-doped side, a robust d-wave superconducting order results in the formation of the half-doped
antiferromagnetic resonating-valence-bond (AF-RVB) stripes shown by the well-known Yamada plot. On the
other hand, due to a long-range AF order in electron-doped materials, a stripe structure with the “in-phase”
magnetic domain (IPMD) is obtained in the underdoped regime instead of the AF-RVB stripe. The IPMD stripe
with the largest period permitted by lattice size is stabilized near the underdoped region and it excludes the
Yamada plot from electron-doped cases. Based on finite lattice size to which we can reach, the existence of IPMD
stripes may imply an electronic phase separation into an electron-rich and an insulating half-filled AF long-range
ordered domains in electron-doped compounds.
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I. INTRODUCTION

Since the discovery of high-temperature superconductivity
in the layered cuprate materials, there have been many
evidences for stripe structures in several families of the
hole-doped cuprates, e.g., La2−δSrδCuO4.1,2 One of the many
puzzles of the stripes is the doping dependence of the
incommensurate magnetic peaks associated with the stripes
measured by neutron-scattering experiments, which obeys the
so-called Yamada plot.3 It represents the existence of the half-
doped stripe with average of 1/2 hole in one charge modulation
period at 1/8 hole density and below. There have been many
early theoretical works attempting to explain the Yamada
plot.4–6 One possible scenario for such correlation is that ten-
dency for charges toward phase separation can lead to various
structures including stripes, puddles,7,8 or even cluster glasses
with randomly oriented stripe domains recently observed
by scanning tunneling spectroscopy (STS).9,10 Recently, we
have used a variational Monte Carlo (VMC) technique11 to
successfully establish the half-doped stripes in the extended
t-J -type Hamiltonian by including a mass-renormalization
effect due to a weak electron-phonon coupling.

So far, the experimental situation in electron-doped
materials is much less clear.12 There are several indirect
evidences for a homogeneous state in electron-doped
compounds coming from measurements of neutron
scattering and core-level photoemission spectra.13,14 Yamada
et al. have reported only commensurate spin fluctuations
observed by neutron scattering in the superconducting (SC)
Nd1.85Ce0.15CuO4.15 It is different from the incommensurate
peaks observed in hole-doped cuprates, which are considered
as the hall mark of the “out-of-phase” stripe domains with a π -
phase-shifted staggered magnetic moment. Instead of stripes,
the short-range spatial inhomogeneity of the antiferromagnetic
(AF) correlations was recently reported for the electron-doped
superconductor Pr0.88LaCe0.12CuO4−δ by using STS and
neutron scattering.16 In addition, there are also evidences
to support inhomogeneous states from measurements of

muon spin rotation (μSR),17,18 nuclear magnetic resonance,19

magnetoresistance,20 and thermal conductivity.21 Whether
inhomogeneity in electron-doped compounds is intrinsic
or induced by the cerium doping or oxygen defects was
discussed by two recent works.22,23 All these results suggest
that the possibility of phase separation and inhomogeneity is
an unresolved issue in electron-doped cuprates.

On the theoretical side, there are some numerical evidences
that Hubbard models produce stripes in the electron-doped
system. Within an unrestricted Hartree-Fock approach, the
occurrence of the diagonal filled stripes having average of one
doped electron per stripe site has been demonstrated earlier.24

Later, the vertical “in-phase” stripe domains without π -
phase-shifted staggered magnetic moment in the t-t ′ Hubbard
model have been found in the electron-doped regime.25 The
unusual doping evolution of the Fermi surface detected by
angle-resolved photoemission spectroscopy26 was explained
by assuming the inhomogeneous in-phase stripe phases27

but without including strong correlations. Since the strong
correlation makes the difference in energies between uniform
states and various hole-doped stripe states very small which has
been shown recently,11,28 it is beyond the accuracy of Hartree-
Fock method to address this kind of difference. Therefore a
careful variational approach is needed to examine the stability
of the electron-doped stripe states.

In this paper, we shall first demonstrate that the particular
spatial patterns of modulations of charge density, spin density,
and pair field could be derived by considering the excitations
of the mean-field ground state of the extended t-J model using
Gutzwiller approximation. Once the relations between charge,
spin, and pair field are revealed, we then explicitly construct
the stripe wave functions. As a comparison with what we have
done previously for the hole-doped cases,11 we shall add an
electron-phonon interaction to the model before carrying out
the numerical calculations. Just as before, we will not consider
the full effect of electron-phonon coupling but only examine
the simplest effect of mass renormalization of charges due to
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phonon couplings. The renormalization effect depending on
the local carrier density is treated self-consistently in the VMC
method taking into account the strong correlation exactly.11

We find that half-doped stripes obtained in the hole-doped
systems are no longer stable in the electron-doped cases for
a range of electron-phonon interaction strength. Instead, the
system is very likely to have an electronic phase separation.
The different results between hole-doped and electron-doped
systems is mainly due to the strong AF long-range order in the
latter system. The effect of t ′/t will be also discussed.

II. THEORY

We consider the extended t-J Hamiltonian on a square
lattice given by

H = −
∑
i,j,σ

tij (c̃†iσ c̃jσ + H.c.) + J
∑
〈i,j〉

Si · Sj , (1)

where the hopping tij = t , t ′, and t ′′ for sites i and j

being the nearest, second-nearest, and third-nearest neighbors,
respectively. Other notations are standard. In the following,
the bare parameters t ′′ and J in the Hamiltonian are set
to be (t ′′,J )/t = (−t ′/2,0.3). Since doubly occupied sites
in electron-doped materials play the same role as holes in
hole-doped cases, we treat the hole- and electron-doped cases
in the same manner except t ′/t → −t ′/t and t ′′/t → −t ′′/t .29

t ′/t < 0 (>0) corresponds to the hole-doped (electron-doped)
regions. In this paper, we primarily study the hole- and
electron-doped phase diagrams for different t ′/t .

In a generalized mean-field theory, to consider the possibil-
ity of spatially nonuniform solutions, we define the local carrier
density ρi , the local AF order mi , and the nearest-neighbor pair
field �ij . The mean-field Hamiltonian is simply given by

ĤMF = (c†i↑ ci↓ )

(
Hij↑ Dij

D∗
ji −Hji↓

)(
cj↑
c
†
j↓

)
, (2)

where the matrix elements

Hijσ = −δj,i+1̂ − t ′vδj,i+2̂ − t ′′v δj,i+3̂

+ ρi + σmi(−1)xi+yi − μv,

Dij = �ij δj,i+1̂. (3)

Here, 1̂, 2̂, and 3̂ correspond to the nearest, second-nearest, and
third-nearest neighbors, respectively, and σ = ↑(1) or ↓ (−1).

Once the variational parameters ρi , mi , and �ij are given,
we can diagonalize Eq. (2) to obtain N positive and N

negative eigenvalues with corresponding eigenvectors (un
i ,v

n
i )

and (ūn
i ,v̄

n
i ), given by(

γn

γ̄n

)
=

(
un

i vn
i

ūn
i v̄n

i

)(
ci↑
c
†
i↓

)
. (4)

Here, N is the lattice size. We can formulate the trial wave
function fixing the number of electrons Ne with the Gutzwiller
projector PG and the hole-hole repulsive Jastrow factor PJ

(see the details of Ref. 28),

|�〉 = PGPJ PNe

∏
n

γnγ̄
†
n |0〉

∝ PGPJ PNe

∏
n

∑
i

(
un

i f
†
i + vn

i d
†
i

)|0̃〉. (5)

To avoid the divergent determinant because of the presence
of nodes in the RVB-type wave functions with periodic
boundary condition, a particle-hole transformation,33,34 c

†
i↑ →

fi and c
†
i↓ → d

†
i , has been introduced in Eq. (5). Here,

|0̃〉 ≡ ∏
i fi |0〉.

In principle, ρi , mi , and �ij could be determined vari-
ationally. In practice, it is very difficult to optimize the
energy of such multivariable problems. If we postulate that
the inhomogeneous states are actually fluctuations beyond the
uniform mean-field solution, then a more efficient method
to find the most probable solutions is to use Gutzwiller
approximation.30 In this approximation, the total energy 〈H 〉
with respect to the Gutzwiller-projected wave function can be
written as

−
∑

〈i,j〉,σ
tij g

σ
t (i)gσ

t (j )
(
χσ

ij + H.c.
)

−J
∑
〈i,j〉

gs(i)gs(j )

[
3

8
(χijχ

∗
ij + �ij�

∗
ij ) − mimj

]
, (6)

where the Gutzwiller factors gσ
t (j ) and gs(i) are known to be31

gσ
t (i) =

√
ni(1 − ni)(1 − niσ̄ )

(1 − niσ )(ni − 2ni↑ni↓)
,

(7)
gs(i) = ni

ni − 2ni↑ni↓
.

Here, ni =
∑

σ niσ = 1−δi and niσ = 1−δi

2 +σmi . χij (=∑
σ

χσ
ij = ∑

σ 〈c†iσ cjσ 〉0), mi(=〈Sz
i 〉0), and �ij (=〈ci↓cj↑ −

ci↑cj↓〉0) is the bond order parameter, staggered magnetization,
and pair field with respect to the nonprojected wave function,
respectively. For a usual mean-field theory, these parameters
are assumed to be constant and the same for all sites or
bonds. Here, we shall go one step further by examining the
fluctuations beyond the constant mean-field values as given
by

δi → δ̄ + dδi,

mi → m̄ + dmi, (8)

�ij → �̄ + d�ij .

Here, d(. . .) means the small fluctuation away from the average
value (. . .). By substituting Eq. (8) into Eq. (6), we obtain
several coupled terms with the form dδidm2

i , �̄dδid�ij ,
m̄dδidmi , and dδid�2

ij . There are also noncoupled terms of
the form dm2

i , dδidδj , and d�2
ij . We neglect the fluctuation of

bond order and also skip the derivation of all the terms as they
are irrelevant for our calculations below.

In the hole-doped side, at finite doping there is no long-
range AF order (m̄ = 0) but with a nonzero d-wave SC order
parameter (�̄ �= 0). Thus, according to the discussion above,
the relevant fluctuation terms to couple the charge, spin, and
pair fields are dδidm2

i and �̄dδid�ij . The Fourier transform of
these two terms are dδqdm2

−q/2 and �̄dδqd�−q , respectively.
Hence the modulation period of charge density, ac, should
equal to the period of pair field, ap, but is only half the period
of the spin density, as , i.e., ac = ap = as/2. More precisely,
the wave functions to include these fluctuations can have order
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parameters of the form:

ρi = ρv cos

[
2π

ac

(
yi − 1

2

)]
,

mi = mM
v sin

[
2π

as

(
yi − 1

2

)]
,

(9)

�i,i+x̂ = �M
v cos

[
2π

ap

(
yi − 1

2

)]
− �C

v ,

�i,i+ŷ = −�M
v cos

(
2π

ap

yi

)
+ �C

v .

Here, ac = ap = as/2. The variational parameters are indi-
cated by subscript “v.” Here, the stripe extends uniformly
along x̂ direction. The bond-average �i,j is determined by the
constant �C

v . The average charge density is determined by the
chemical potential not included in ρi . This is exactly the wave
function called the AF resonating-valence-bond (AF-RVB)
stripe state by us in Ref. 28. There we had shown that the
variational energy of the uniform d-wave RVB (d-RVB) state
(ρv = mM

v = �M
v = 0) is considered as the reference energy.

Furthermore, if we add a weak electron-phonon interaction to
the extended t-J model, as shown in Ref. 11, the half-doped
AF-RVB stripes have lower energy than the d-RVB state. This
AF-RVB stripe pattern is in good agreement with experiments
as well.1,32

The electron-phonon interaction is introduced by assuming
the hopping terms tij in Eq. (1) modified due to the spatial
variation in carrier density in the sense that the sites with
larger carrier density in the modulated charge pattern have
larger tij .11 Then, we assume a linear relation between the
electron-phonon coupling strength λ and doping density δ,
λ(δ)/λ(0) = 1 − 3δ ≡ f (δ). Now tij can be renormalized to

t∗ij = tij

{
1 − �

2

[
f

(
ni

δ

) + f
(
n

j

δ

)]}
, (10)

where ni
δ is the carrier density at site i and � the bare

parameter in the Hamiltonian. The details are given in Ref. 11.
In what follows, we will use a notation “t∗-J ′′ to stand for this
Hamiltonian.

In the electron-doped side, it had been shown35 that there is a
robust long-range AF order (m̄ �= 0) in the underdoped regime
in contrast to hole-doped systems. Based on our previous
discussion of fluctuations using the Gutzwiller approximation,
the important contributions in Eq. (6) will be m̄dδidmi and
�̄dδid�ij . Hence, the magnetic modulation has the same
period as charge and pair field, that is, ac = ap = as . This
pattern is very different from the AF-RVB stripe states
discussed above for hole-doped systems. The wave function
to describe such a new pattern is called the in-phase magnetic
domains (IPMD). The IPMD stripe state has the same function
of ρi and �ij as Eq. (9), only the magnetic modulation is now
changed to

mi = −mM
v cos

[
2π

as

(
yi − 1

2

)]
+ mC

v , (11)

where a finite staggered magnetic moment mC
v is included. Due

to the presence of long-range AF order for electron-doped
systems, we have four variational states to be considered.
These are the pure d-RVB uniform SC, the AF-RVB stripe, the
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FIG. 1. (Color online) The doping dependence of the optimized
energy difference in terms of percentage for several trial states
denoted in the figure. The reference ground state is the uniform
d-RVB state. The positive (negative) doping density δ means the
hole-doped (electron-doped) cases. Note that the AF-RVB stripe
states with different magnetic periods are indicated. The lattice size
N is 24 × 24. Here, � = 0.25 and |t ′/t | = 0.1.

IPMD stripe, and the uniform states with the coexistence of
long-range AF and SC orders (AF + SC).35 The AF + SC state
can be simply constructed by setting ρv = mM

v = �M
v = 0 in

Eqs. (9) and (11).

III. RESULTS

Figure 1 shows the percentage of energy change with
respect to the d-RVB state for three other trial wave functions
in the extended t∗-J model with smaller |t ′/t |(= 0.1) for hole-
and electron-doped phase diagrams. In the hole-doped case, the
half-doped AF-RVB stripe is still observed like our previous
studies for t ′/t(= −0.2).11 In fact, the half-doped AF-RVB
stripe can be always found for all |t ′/t | we have investigated
in the hole-doped region as shown in Figs. 3(a) and 3(b). In
other words, the Fermi surface topology seems not to affect
the stability of the half-doped stripe obtained in the extended
t∗-J model.

In the left panel of Fig. 1, we find the IPMD stripe states
are stabilized for electron-doping less than 0.1. For doping
greater than 0.1, the AF-RVB stripe state with the largest
magnetic period has the lowest energy (24a0 is the largest
size we have studied here). The magnetic period does not
change with the doping density as the half-doped stripes. We
also examine the IPMD stripe states with different periods
in addition to 24a0. The results are not shown here, but the
most stable IPMD stripe has the largest magnetic period as
lattice size. The difference between the AF-RVB and IPMD
stripes for the maximum magnetic period of 24a0 is actually
negligible. Since the IPMD state has much lower energy for
doping less than 0.1, it appears that the t∗-J Hamiltonian
does not prefer to break the system into many π -phase-shift
magnetic domains. In Figs. 2(a) and 2(b), for 1/12 electron
density, the spatial variation of charge density and staggered
magnetization along the direction of modulation are shown
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FIG. 2. (Color online) The profile of carrier density nδ and
staggered magnetization 〈M〉 for the optimized states: (a) the AF-
RVB and (b) the IPMD stripes with 24a0 magnetic periodicity at
1/12 electron-doping in the extended t∗-J Hamiltonian. The bare
parameters � = 0.25 and |t ′/t | = 0.1. All quantities are calculated
in a 24 × 24 lattice.

for the AF-RVB and IPMD stripes, respectively. For both
states, there is almost no doped carriers in the region with
the strongest staggered magnetization. It is essentially a phase
separated state with an electron-rich region and an insulating
half-filled AF long-range ordered region. The IPMD stripe
state has staggered magnetization |〈M〉| = 0.265, which is
close to the homogeneous AF + SC state (|〈M〉| = 0.269).
Here, M = 1

N

∑
i e

i �Q· �Ri Sz
i and �Q = (π,π ). This is consistent

with the commensurate short-range spin correlations detected
by neutron scattering.15

For larger t ′/t , we expect robust AF correlations should
persist to the higher doping in electron-doped cases. Figure 3
shows this common feature for the uniform AF + SC and
the IPMD stripe states. In Fig. 3(a), while the homogeneous
AF + SC state has much lower energy than the d-RVB state, the
IPMD stripe state is still the best candidate for electron-doping
δ < 0.1. It is worth pointing out that for electron doping
δ > 0.1 the IPMD stripe state begins to gain energy to compete
with the AF-RVB stripe state in the case of t ′/t = 0.2.
Interestingly, as increasing t ′/t(=0.3) further, the AF-RVB
stripe states entirely disappear in the electron-doped phase
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FIG. 3. (Color online) The same descriptions are presented in the
caption of Fig. 1 except (a) |t ′/t | = 0.2 and (b) |t ′/t | = 0.3.

diagram possibly due to its π -phase-shift domains in the
spin modulation, as shown in Fig. 3(b). Except the higher
electron-doping region (δ > 0.15) where the homogeneous
AF + SC state still exists, the IPMD stripe state is dominant
within the wider doping range (0 < δ < 0.15). In addition
to these stripe states shown in the phase diagram, we have
also examined other trial wave functions with different shapes
and periods for stripes, such as glassy stripes with randomly
oriented 8 × 8 magnetic patches, IPMD stripes with other
periods, and the diagonal stripe with the largest magnetic
period (12

√
2a0). However, none of them can be stabilized

for all t ′/t in electron-doped cases (not shown).
To complete the discussion on the VMC results, we study

the effect of the electron-phonon coupling strength � on
the phase diagrams. Since the IPMD stripe state has much
lower energy near 1/12 electron doping, we only show �

dependence of the optimized energy difference for several
trial wave functions including IPMD stripes with different
magnetic periods at 1/12 doping in Fig. 4. As we expected, the
stability of the uniform AF + SC state is almost independent
of � as � � 0.2. If the electron-phonon coupling strength is
smaller (� < 0.125), the AF + SC state would be still a good
candidate for the ground state near the underdoped region in
the electron-doped side. However, once � becomes larger,
IPMD stripe states begin to be stabilized. Notably, the best
one for � = 0.25 is either the IPMD stripe state with the
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FIG. 4. (Color online) � dependence of the optimized energy
difference in terms of percentage for several trial states denoted in
the figure at 1/12 doping. Here, N = 24 × 24 and t ′/t = 0.3.

largest magnetic period or the phase-separated state. Unlike
hole-doped cases, there is no place for AF-RVB stripe states
at this doping in electron-doped phase diagrams.

Although the lowest energy solutions of electron-doped
systems for the extended t∗-J Hamiltonian are IPMD stripes
and not AF-RVB stripes as the hole-doped systems, the
particular patterns of modulation periods of charge density,
spin density, and pair field for both stripes are derived from
the fluctuations of the order parameters used in the mean
field theory as shown by using the Gutzwiller approximation.
The inhomogeneous states like stripes or phase separation are
really due to excitations or fluctuations of order parameters of
the ground states of the strongly correlated t-J model. When
electron-phonon interaction is introduced to renormalize the
mass of carriers, these inhomogeneous solutions then become
stable.

IV. CONCLUSIONS

In conclusion, following the same approach, we have used
to study stripes for hole-doped systems,11,28 we have further
studied the possibilities of having nonuniform ground states
for the electron-doped cases using the VMC method. By using

the Gutzwiller approximation to examine the fluctuations of
order parameters used to obtain the d-RVB ground states, we
have found that the period of modulation of charge density,
staggered moment, and pair field are correlated. For hole-
doped systems, the lowest energy stripes, the AF-RVB stripe
states, have the period of staggered moment twice of that of
charge and pair field. These stripes with half a carrier per
charge domain become the ground states after we include the
weak electron-phonon coupling. However, similar approach
for electron-doped cases has turned out to be a different stripe
pattern. The lowest-energy stripes, the IPMD stripe states,
now have the period of staggered moment same as that of
charge and pair field. One of the main reasons is that for a
large electron doping range, the ground state has long-range
AF order. The numerical results show that at low doping,
the IPMD stripe state with the largest magnetic period same
as lattice size is composed of an electron-rich region and an
insulating half-filled long-range AF ordered region. We believe
that it may indicate a phase separated state in electron-doped
compounds. This statement requires the numerical calculation
with large lattice size that is left for our future study.

Our result that the electron-doped systems should not have
the half-doped stripes observed in hole-doped systems is
consistent with the neutron scattering results for cuprates that
Yamada plot is only observed for hole-doped cuprates3 but
not for electron doped.16 The evidence on magnetic inhomo-
geneity that we have found numerically, has been indirectly
observed in the electron-doped cuprates Pr2−δCeδCuO4 and
Pr0.88LaCe0.12CuO4−δ by using μSR and STS experiments,
respectively.16,18 The fact that for electron doping, we predict
possible phase separation that is also a hotly debated issue by
experiments on cuprates, is quite interesting. We look forward
to possible resolution of this issue in the near future.

ACKNOWLEDGMENTS

This work was supported by the National Science Council
in Taiwan with Grant No. 98-2112-M-001-017-MY3. The
calculations are performed in the National Center for High-
performance Computing and the PC Cluster III of Academia
Sinica Computing Center in Taiwan.

1J. Tranquada et al., Nature (London) 375, 561 (1995).
2A. Kivelson et al., Rev. Mod. Phys. 75, 1201 (2003).
3K. Yamada, C. H. Lee, K. Kurahashi, J. Wada, S. Wakimoto, S. Ueki,
H. Kimura, Y. Endoh, S. Hosoya, G. Shirane, R. J. Birgeneau,
M. Greven, M. A. Kastner, and Y. J. Kim, Phys. Rev. B 57, 6165
(1998).

4G. B. Martins, C. Gazza, J. C. Xavier, A. Feiguin, and E. Dagotto,
Phys. Rev. Lett. 84, 5844 (2000).

5S. R. White and D. J. Scalapino, Phys. Rev. Lett. 81, 3227 (1998).
6E. Arrigoni, A. P. Harju, W. Hanke, B. Brendel, and S. A. Kivelson,
Phys. Rev. B 65, 134503 (2002).

7J. Zaanen and O. Gunnarsson, Phys. Rev. B 40, 7391 (1989).
8V. J. Emery and S. A. Kivelson, Physica C 209, 597 (1993).
9Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien,
T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida,
and J. C. Davis, Science 315, 1380 (2007).

10C. V. Parker et al., Nature (London) 468, 677 (2010).
11Chung-Pin Chou and Ting-Kuo Lee, Phys. Rev. B 81, 060503(R)

(2010).
12N. P. Armitage, P. Fournier, and R. L. Greene, Rev. Mod. Phys. 82,

2421 (2010).
13N. Harima, J. Matsuno, A. Fujimori, Y. Onose, Y. Taguchi, and

Y. Tokura, Phys. Rev. B 64, 220507 (2001).
14E. M. Motoyama, P. K. Mang, D. Petitgrand, G. Yu, O. P. Vajk,

I. M. Vishik, and M. Greven, Phys. Rev. Lett. 96, 137002 (2006).
15K. Yamada, K. Kurahashi, T. Uefuji, M. Fujita, S. Park, S. H. Lee,

and Y. Endoh, Phys. Rev. Lett. 90, 137004 (2003).
16J. Zhao et al., Nat. Phys. 7, 719 (2011).
17J. E. Sonier, K. F. Poon, G. M. Luke, P. Kyriakou, R. I. Miller,

R. Liang, C. R. Wiebe, P. Fournier, and R. L. Greene, Phys. Rev.
Lett. 91, 147002 (2003).

18H.-H. Klauss, J. Phys. Condens. Matter 16, S4457 (2004).

104511-5

http://dx.doi.org/10.1038/375561a0
http://dx.doi.org/10.1103/RevModPhys.75.1201
http://dx.doi.org/10.1103/PhysRevB.57.6165
http://dx.doi.org/10.1103/PhysRevB.57.6165
http://dx.doi.org/10.1103/PhysRevLett.84.5844
http://dx.doi.org/10.1103/PhysRevLett.81.3227
http://dx.doi.org/10.1103/PhysRevB.65.134503
http://dx.doi.org/10.1103/PhysRevB.40.7391
http://dx.doi.org/10.1016/0921-4534(93)90581-A
http://dx.doi.org/10.1126/science.1138584
http://dx.doi.org/10.1038/nature09597
http://dx.doi.org/10.1103/PhysRevB.81.060503
http://dx.doi.org/10.1103/PhysRevB.81.060503
http://dx.doi.org/10.1103/RevModPhys.82.2421
http://dx.doi.org/10.1103/RevModPhys.82.2421
http://dx.doi.org/10.1103/PhysRevB.64.220507
http://dx.doi.org/10.1103/PhysRevLett.96.137002
http://dx.doi.org/10.1103/PhysRevLett.90.137004
http://dx.doi.org/10.1038/nphys2006
http://dx.doi.org/10.1103/PhysRevLett.91.147002
http://dx.doi.org/10.1103/PhysRevLett.91.147002
http://dx.doi.org/10.1088/0953-8984/16/40/004


CHUNG-PIN CHOU AND TING-KUO LEE PHYSICAL REVIEW B 85, 104511 (2012)

19F. Zamborszky, G. Wu, J. Shinagawa, W. Yu, H. Balci, R. L. Greene,
W. G. Clark, and S. E. Brown, Phys. Rev. Lett. 92, 047003 (2004).

20P. Fournier, M. E. Gosselin, S. Savard, J. Renaud, I. Hetel,
P. Richard, and G. Riou, Phys. Rev. B 69, 220501(R) (2004).

21X. F. Sun, Y. Kurita, T. Suzuki, S. Komiya, and Y. Ando, Phys. Rev.
Lett. 92, 047001 (2004).

22Pengcheng Dai, H. J. Kang, H. A. Mook, M. Matsuura, J. W.
Lynn, Y. Kurita, Seiki Komiya, and Yoichi Ando, Phys. Rev. B
71, 100502(R) (2005).

23J. S. Higgins, Y. Dagan, M. C. Barr, B. D. Weaver, and R. L. Greene,
Phys. Rev. B 73, 104510 (2006).

24A. Sadori and M. Grilli, Phys. Rev. Lett. 84, 5375 (2000).
25B. Valenzuela, Phys. Rev. B 74, 045112 (2006).
26N. P. Armitage et al., Phys. Rev. Lett. 88, 257001 (2002).

27M. Granath, Phys. Rev. B 69, 214433 (2004).
28Chung-Pin Chou, Noboru Fukushima, and Ting-Kuo Lee, Phys.

Rev. B 78, 134530 (2008).
29T. K. Lee, Chang-Ming Ho, and Naoto Nagaosa, Phys. Rev. Lett.

90, 067001 (2003).
30Noboru Fukushima, Phys. Rev. B 78, 115105 (2008).
31Wing-Ho Ko, Cody P. Nave, and Patrick A. Lee, Phys. Rev. B 76,

245113 (2007).
32P. Abbamonte et al., Nat. Phys. 1, 155 (2005).
33H. Yokoyama and H. Shiba, J. Phys. Soc. Jpn. 57, 2482 (1988).
34C.-P. Chou, F. Yang, and T.-K. Lee, Phys. Rev. B 85, 054510

(2012).
35C. T. Shih, J. J. Wu, C. P. Chou, Y. C. Chen, and T. K. Lee, Chinese

J. Phys. 45, 207 (2007).

104511-6

http://dx.doi.org/10.1103/PhysRevLett.92.047003
http://dx.doi.org/10.1103/PhysRevB.69.220501
http://dx.doi.org/10.1103/PhysRevLett.92.047001
http://dx.doi.org/10.1103/PhysRevLett.92.047001
http://dx.doi.org/10.1103/PhysRevB.71.100502
http://dx.doi.org/10.1103/PhysRevB.71.100502
http://dx.doi.org/10.1103/PhysRevB.73.104510
http://dx.doi.org/10.1103/PhysRevLett.84.5375
http://dx.doi.org/10.1103/PhysRevB.74.045112
http://dx.doi.org/10.1103/PhysRevLett.88.257001
http://dx.doi.org/10.1103/PhysRevB.69.214433
http://dx.doi.org/10.1103/PhysRevB.78.115105
http://dx.doi.org/10.1103/PhysRevB.78.115105
http://dx.doi.org/10.1103/PhysRevLett.90.067001
http://dx.doi.org/10.1103/PhysRevLett.90.067001
http://dx.doi.org/10.1103/PhysRevB.78.115105
http://dx.doi.org/10.1103/PhysRevB.76.245113
http://dx.doi.org/10.1103/PhysRevB.76.245113
http://dx.doi.org/10.1038/nphys178
http://dx.doi.org/10.1143/JPSJ.57.2482
http://dx.doi.org/10.1103/PhysRevB.85.054510
http://dx.doi.org/10.1103/PhysRevB.85.054510

