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Unpinning triggers for superfluid vortex avalanches
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The pinning and collective unpinning of superfluid vortices in a decelerating container is a key element of the
canonical model of neutron star glitches and laboratory spin-down experiments with helium II. Here the dynamics
of vortex (un-)pinning is explored using numerical Gross-Pitaevskii calculations, with a view to understanding
the triggers for catastrophic unpinning events (vortex avalanches) that lead to rotational glitches. We explicitly
identify three triggers: rotational shear between the bulk condensate and the pinned vortices, a vortex proximity
effect driven by the repulsive vortex-vortex interaction, and sound waves emitted by moving and repinning
vortices. So long as dissipation is low, sound waves emitted by a repinning vortex are found to be sufficiently
strong to unpin a nearby vortex. For both ballistic and forced vortex motion, the maximum inter-vortex separation
required to unpin scales inversely with pinning strength.
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I. INTRODUCTION

Superfluid vortices carrying quanta of circulation are
pinned by lattice-scale impurities1–6 and/or macroscopic
container defects,7,8 because it is energetically favorable to
superpose the empty vortex core and the condensate-excluding
impurity. In a neutron star, vortex pinning prevents the
superfluid core from imitating the smooth electromagnetic
deceleration of the crust (its container). The rotational shear
that accumulates, thus, is corrected in discrete, randomly timed
events, known as glitches.9–12 Similar spasmodic spin-up
events have also been observed in laboratory experiments with
helium II in vessels of varying geometry and constitution.13,14

The statistics of neutron star glitches suggest that the
underlying physics is a collective, self-organizing process,12

akin to grain avalanches in sand pile experiments15–17 and
flux-tube avalanches in type II superconductors18,19 exposed
to a variable applied magnetic field. A small number of
unpinnings is not sufficient, however, to cause a glitch in
the above systems. For example, in a neutron star glitch,
anywhere from 107 to 1014 vortices (out of ∼1018 in total)
unpin simultaneously. As the events are driven by global shear
and threshold triggered in the canonical model, it is surprising
that they are neither periodic in time nor equal in magnitude. In
fact, the probability distribution function (pdf) of glitch sizes
has been shown to follow a power law, and the waiting-time
pdf is well represented by an exponential.12,20 Such statistical
distributions are characteristic of a self-organized critical
system.15 In addition to unpinning collectively, in order to
explain the observed glitch sizes the vortices must pass over
many (∼106) nuclear lattice pinning sites as they move radially
out before repinning. This behavior is not understood.

In order to catalyze an avalanche of simultaneous unpin-
nings, leading to abrupt acceleration of the container, the
unpinning of a single vortex must raise the probability of other
vortices (near or distant neighbors) unpinning. In this paper,
we identify two such knock-on mechanisms, which operate
in conjunction with the stochastic, noncooperative unpinning
driven by the global shear: (i) radiation of sound waves, when
a vortex moves and repins, and (ii) a vortex proximity effect,
when unpinned vortices approach adjacent pinned vortices.

Certain local aspects of the unpinning dynamics have been
studied by other authors, but not the collective phenomenon
of vortex avalanches. The transition of a vortex lattice from an
Abrikosov to a pinning-dominated configuration was studied
in detail by Sato et al.21 and Yasunaga and Tsubota22 using the
lattice energy as a diagnostic of the extent to which the vortices
are pinned. These authors did not discuss unpinning under
global shear or track individual vortex dynamics. Experiments
reported in Hakonen et al.,23 Varoquax et al.,24 and Varoquaux
et al.25 quantify the velocity shear without contemplating
knock-on. In the neutron star context, Link26 calculated the
critical unpinning flow using the vortex-line equation of
motion (Schwarz’s equation) with and without dissipation in a
random pinning potential. Vortex-vortex interactions are built
in via the Magnus force; acoustic radiation is not considered.
The spiral trajectory of a repinning vortex was also described
hydrodynamically by Sedrakian.27

In this paper we perform a set of numerical experiments,
based on solutions of the time-dependent Gross-Pitaevskii
equation (GPE), aimed at demonstrating the ability of sound
waves, vortex-vortex proximity, and global velocity shear to
unpin vortices. The outcomes of these investigations will be
employed in a future paper to inform the microscopic rules
of an automaton model of neutron star glitches. Section II
briefly describes the numerics. In Sec. III we measure the
persistence of pinning in a velocity shear growing at a constant
rate. We study the energetics of the unpinning process and
find evidence of acoustic radiation from the unpinned vortex.
Maintaining the same geometry, we then study the unpinning
capacity of sound pulses in Sec. IV. First, we artificially
generate a pulse (Sec. IV A), which unpins a nearby vortex. We
then measure the acoustic radiation from a repinning vortex
(Sec. IV B), which is then harnessed to unpin another nearby
vortex (Sec. IV C). Section V documents a series of exper-
iments designed to assess the role of vortex proximity in
unpinning. Proximity between vortices is, first, arranged by
forcibly dragging one vortex toward another, pinned, vortex
(Sec. V A). We then describe the unpinning of a vortex
resulting from the ballistic (i.e., free) approach of another,
recently unpinned, vortex (Sec. V B). We relate our findings
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in Secs. III–V to possible triggers for vortex avalanches in
neutron star glitches in the concluding section (Sec. VI).

II. EXPERIMENTAL SETUP

We begin by describing the numerical framework. We
employ the time-dependent, two-dimensional GPE to model
a zero-temperature condensate inside a rotating, circular con-
tainer. The condensate order parameter ψ(x,t), in a potential
V (x), with chemical potential μ, observed in a reference frame
rotating with angular velocity �, obeys the dimensionless GPE

(i − γ )
dψ

dt
= −∇2ψ − (μ − V − |ψ |2)ψ − �L̂zψ, (1)

where the sound speed is cs = (n0g/m)1/2, the healing length
(defined as the characteristic length scale) is ξ = h̄/(mn0g)1/2,
the characteristic time scale is h̄/(n0g), the energy scale is n0g,
g is the self-interaction strength, m is the mass of each boson
(twice the neutron mass), and n0 is the particle density. L̂z =
−i∂/∂θ is the antisymmetric angular-momentum operator.

The presence of a thermal cloud also gives rise to a
mutual friction force, which is self-consistently modelled in
hydrodynamic treatments using the Hall-Vinen-Bekarevich-
Khalatnikov equations28 or, alternatively, by solving Eq. (1)
simultaneously with a similar equation describing the quantum
mechanics of the excited states.29 Practically, the consequence
of neglecting mutual friction in our treatment is that we cannot
expect to correctly capture behavior stemming from the drag
between the inviscid and viscous components.

We also note that Eq. (1) applies to weakly interact-
ing systems such as dilute atomic Bose gases, in which
short-range, two-body interactions dominate.30 For a more
strongly correlated superfluid, which experiences drag from
the noncondensed portion, a nonlocal interaction potential is
more appropriate, which leads to a phonon-roton spectrum.31

We are, therefore, cautious in relating our results to superfluid
flow in laboratory experiments and in neutron stars.

Equation (2) demonstrates clearly that the system is
governed by four variables: γ , μ, V , and �. Dissipation32–34

is controlled by γ . Experiments on damped oscillations
in trapped atomic Bose-Einstein condensates performed by
Mewes et al.35 and modelled by Choi et al.32 imply γ ≈
0.03. In our simulations, we set γ = 0.05. Its inclusion in
Eq. (1) is equivalent to propagating the system in imaginary
time, accelerating numerical convergence, as sound waves are
quickly damped, and ensuring that ψ can adjust in time to
nonadiabatic changes in V and �. Dissipation arises when
atoms are exchanged between the thermal cloud and the
condensate,29,36,37 a process not modelled directly in this paper.
The dissipative term drives particle loss, as the normalization
of ψ decays with time. To correct for this artificial side effect,
at each time step we advance μ according to a prescription
used widely in the literature34

μ(t + �t) = μ(t) + 1

�t
ln

[∫ |ψ(t + �t)|2d3x∫ |ψ(t)|2d3x

]
. (2)

Using a fourth-order Runge-Kutta algorithm in time, and a
fourth-order finite difference scheme in space, we solve Eq. (1)
in the corotating frame on a 100 × 100 square grid. Unless

stated otherwise, the time step is �t = 0.005 and the spatial
grid resolution is �x = 0.02 in dimensionless units.

The trapping potential is circularly symmetric, with a
radial profile defined by Vtrap(r) = Vmax{1 + tanh[2(r − R)]},
with Vmax = 200 for the experiments described in this paper.
A circularly symmetric potential alone does not nucleate
vortices; a nonaxisymmetric component (like the pinning grid)
is needed to transfer angular momentum to the condensate.
Each site in the pinning grid, which is stationary in the
corotating frame, takes the form

Vi,pin(r) = Vi[1 + tanh |�(r − Ri)|], (3)

where Ri is the position of the center of the spike, V0 controls
the pinning strength, and � = 4 parametrizes the width, with
V = Vtrap + Vi,pin.

Given the unitary evolution inherent in Eq. (1), it is not
strictly correct to describe vortex unpinning as a binary on-off
process. Semiclassical treatments23 describe the unpinning
rate of a vortex, pinned by a potential of strength Vi by
the Arrhenius formula 	 = 	0e

−Vi,pin/(kT ) s−1, where 	0 is the
zero-point attack rate against the pinning barrier and T is the
temperature.

In this paper we track the evolution of |ψ |2, the expectation
value of the condensate density. This mean-field approach
describes the average behavior of a vortex, without quantum
fluctuations.

III. SHEAR DRIVEN UNPINNING

In this section we study how a vortex unpins when the
surrounding condensate flows past it in bulk, in situations
where the relative motion is forced by global, mean-field
shear (between the bulk condensate and the pinning array)
rather than local shear induced by neighboring vortices.
In analogy with laminar flow past a whirlpool, a vortex
experiences a Magnus force when it moves relative to the
ambient condensate.38 The force is transverse to the direction
of differential motion; for a pinned vortex line with velocity
v moving through a condensate with velocity vS , the Magnus
force per unit length is

FM = ρκ × (v − vS), (4)

where κ is the circulation vector (out of the plane in two
dimensions, magnitude 4π in dimensionless units). For a
vortex pinned at radius b to a container rotating with angular
velocity �, in a bulk condensate approximating rigid-body
rotation with angular velocity �S , we have |FM | ≈ ρκb(� −
�S). An important corollary of Eq. (4) is that, in the absence
of pinning, a vortex revolves around the center of the trap
with the condensate (v = vS). We refer to v = vS in Sec. V B
as ballistic, unforced motion. In order to relate FM to the
pinning potential that appears in Eq. (1), we must specify a
characteristic length scale, ξ , over which the pinning potential
acts, with FM � Vi/ξ

2 for the vortex to remain pinned.
The initial conditions of the numerical experiment are

created by imposing a rectangular pinning array to nucleate
and pin vortices. The trapping potential (i.e., the container) is
stationary in the rotating frame and takes the form

Vtrap(r) = Vmax[1 + tanh(2r)], (5)

104503-2



UNPINNING TRIGGERS FOR SUPERFLUID VORTEX . . . PHYSICAL REVIEW B 85, 104503 (2012)

FIG. 1. (Color online) (Top) Density snapshots tracking the unpinning of a vortex due to global differential rotation, with � = �0 + �̇t ,
�0 = 0.0, and �̇ = −10−3. The pinning site is at (1.7,1.7) and R = 8.5. The color plots of condensate density |ψ |2 are snapshots taken at
� = −0.660 (top left), −0.663 (top center) and −0.667 (top right) for a pinning site of strength Vi = 2V0 (V0 = 60). The range of densities
represented in the color plots is 0.8|ψ |2max to |ψ |2max, to make low-amplitude sound waves visible. The black circles at the center of each snapshot
indicate the region in which kinetic energy is calculated in Fig. 2. (Bottom) Total potential energy

∫
V |ψ |2d2x versus � for pinning sites with

strength Vi = 1.5V0,2.0V0, and 2.5V0 (dotted, solid, and dashed curves), respectively.

where Vmax (=200 in all simulations described in this paper)
defines the maximum potential and R is the cylindrical radius
of the container.39 An axisymmetric potential like Eq. (5)
does not nucleate vortices; a nonaxisymmetric component, for
example, a pinning grid, is essential to catalyze the formation
of a vortex lattice. Once a vortex array is nucleated, all but one
of the pinning sites are removed instantaneously. In response,
all but one of the vortices move to new positions in a modified
(to account for the still-pinned vortex) Abrikosov lattice; one
vortex remains pinned, as shown in the left contour plot in the
top row of Fig. 1. Finally, the angular velocity of the container
is decreased, causing the unpinned vortices to move radially
outward and eventually annihilate at the container wall.

In these experiments, we deliberately ignore the compli-
cations arising from multiple vortices embedded in a pinning
grid. In particular, in the absence of other vortices, the bulk
condensate velocity exactly equals the self-induced velocity
field, which does not contribute to the Magnus force.

The aim of this experiment is to track changes in the energy
of the system when a vortex unpins, as a function of the strength
of the potential that pins the vortex. We are also interested
in how and where the energy released during unpinning is
transported. To these ends, we want to start with a clean initial
state with one off-axis vortex. The total energy per unit vertical
length of the condensate is calculated using

E =
∫

d2x

(
ψ∗�L̂zψ + |∇ψ |2 + V |ψ |2 + 1

2
|ψ |4

)
, (6)

Chiefly, we track changes in the lattice energy, Elatt =∫
V |ψ |2d2x, and the kinetic energy, Ekin = ∫ |∇ψ |2d2x, as

a vortex unpins and moves.
To unpin the sole pinned vortex in the initial state, we ramp

the angular velocity of the container (�̇ = −10−3). Negative
values of � indicate rotation in the opposite sense to the flow
induced by the vortex. In Figs. 1 and 2, we present three
cases: Vi = 1.5V0, 2.0V0, and 2.5V0 (dotted, solid, and dashed
curves, respectively; V0 = 60). The top panel of Fig. 1 shows
three snapshots of the condensate density |ψ |2: before the
vortex unpins (left), as it moves toward the edge (center), and
as it annihilates against the wall (right). The range of densities
indicated by the color scale corresponds to ∼20% of the full
range, to emphasize the low-amplitude sound waves emitted
by the moving and annihilating vortex in the center and right
snapshots, respectively. The scale runs from low (dark) to high
(light) density. The curves shown in the top panel of Fig. 2
graph Elatt as a function of the angular velocity of the container.
For Vi = 2.0V0, at � ≈ −0.661 the vortex begins to unpin
and Elatt simultaneously increases, as |ψ |2 increases at the
pinning site where previously there was a density minimum.
We observe oscillations in Elatt for −0.661 < � < −0.670
as the sound waves emitted by the moving vortex pass over
the pinning site and/or collide with the wall (see ripples
emanating from the left side of the right contour plot). In
all three cases, there is a net decrease in Elatt when the vortex
unpins and annihilates, demonstrating that the pinned state
is a local energy minimum (i.e., metastable), instead of a
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FIG. 2. Kinetic energy
∫ |∇ψ |2d2x in a unit disk centered at (0,0) (depicted in the top panels of Fig. 1), for pinning sites with strength

Vi = 1.5V0, 2.0V0, and 2.5V0 (dotted, solid, and dashed curves, respectively) for the experiment described by Fig. 1. The inset zooms in on the
region −0.675 � � � −0.65 (indicated by the vertical gray lines) for Vi = 2.0V0.

true ground state. The threshold shear for unpinning scales
as ��crit ≈ −0.33Vi .

In Fig. 2 we plot the contribution to Ekin from a unit
disk at the origin. The ∼1% variation in the preunpinning
value of Ekin between the three different pinning scenarios
arises because a strongly pinned vortex is dragged through the
condensate faster than a weakly pinned vortex (i.e., �� ∝ Vi).
Compared to the change in Ekin when the vortex unpins
(∼40%), however, this difference is negligible. Once the vortex
unpins, it moves radially outward, away from the unit disk; the
vortex-induced velocity at the origin is inversely proportional
to the distance to the vortex. The jump in Ekin (�Ekin/Ekin ≈
1.27) when the vortex finally annihilates against the wall is
followed by acoustic oscillations (�Ekin/Ekin ≈ 0.5), which
are visible in the right contour plot in the top row of
Fig. 1.

In the context of neutron star glitches, the results of many
experiments like these confirm that a vortex always unpins
at some ��crit in a global shear and always changes Elatt

by some fixed amount. By contrast, pulsar glitches have
a power-law spread of event energies and trigger waiting
times (see Sec. I). In the following sections, we investigate
how global shear unpinning can trigger subsequent multiple
unpinnings through acoustic radiation and vortex proximity
effects, producing overall stochasticity through cooperative
processes. The effects of acoustic and proximity knock-on are
studied below in the context of a single pair of vortices, where
it is easier to track what is happening than in a vortex array. An
abridged discussion of the many-vortex behavior is presented
for completeness in the Appendix.

IV. ACOUSTIC KNOCK-ON

One possible trigger for an unpinning avalanche is the
emission of sound waves by a moving vortex. In this section,
we demonstrate that sound waves can indeed unpin vortices. In
the first instance, we unpin a vortex using artificially generated
sound waves. We then demonstrate that sound waves generated
by a spontaneous repinning event are sufficient to unpin a
nearby vortex.

A. Artificially generated sound waves

The initial setup of the numerical experiments described in
this subsection is similar to the setup in Fig. 1. A vortex is
pinned at (1.7,1.7) (region B in the left color plot in Fig. 3) by
a pinning site with Vi = 2.0V0. The container and pinning site
rotate at � = −0.65 (in the opposite sense to the flow induced
by the vortex), so the metastable pinned state is “stressed”
as it is not the energy minimum. At t = 0.5, a pinning spike
[centered at (0,0) in region A] with functional form given by
Eq. (3) is instantaneously raised to Vi = 4.0V0. This launches
a circular acoustic pulse with wavelength ≈5 and phase speed
cs ≈ 2. When the pulse passes over the pinned vortex, it
successfully unpins it. The vortex then moves outward along
a spiral trajectory.

In the bottom panel of Fig. 3, we plot the partial con-
tributions to Ekin from four nonoverlapping regions: unit
disks centered at (0.0,0.0), (1.7,1.7), (1.7,−1.7), and (0.0,3.4)
(hereafter regions A–D, respectively, graphed as solid, dotted,
dashed, and dot-dashed curves, respectively). Regions A and
B sit over the origin of the acoustic pulse and the site of the
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FIG. 3. (Color online) (Top) Snapshots of the condensate density |ψ |2 (color; dark/light represents low/high density) at times t = 0.005,
0.780, 6.500, and 12.995 (left to right). A vortex initially pinned (with strength 2V0) at (1.7,1.7) is unpinned by an acoustic pulse launched by
an impulsive spike in the potential of strength 4V0 at (0.0,0.0) at t = 0.5. (Bottom) Kinetic energy Ekin integrated within the four unit disks in
the top panels, which we label (clockwise from left) as regions A–D. Note that the vertical axis in the bottom panel is logarithmic. The vertical
gray line at t = 5.49 marks the time of the snapshot in Fig. 4 below. Simulation parameters: R = 12.5, � = −0.65, Vtrap = 200, and γ = 0.02.

pinned vortex, respectively. When the pulse is launched at
t = 0.5, Ekin jumps in region A (solid curve). As the acoustic
front moves radially outward, it passes through regions B and
C approximately 0.125 time units later, accompanied by jumps
in Ekin. The progress of the unpinned vortex toward the wall
of the container can also be tracked by monitoring Ekin, which
decreases in region B as the vortex moves away. The vortex
inhabits region C in the interval 2.5 � t � 3.0, accompanied
by a broad peak in the dashed curve. The annihilation of the
vortex against the wall of the container registers in all four
regions as a ∼10% oscillation in Ekin.

The color plot of condensate density in the right panel of
Fig. 4 is a snapshot of |ψ |2 taken at t = 5.475, when the vortex
is traveling toward the wall. The sound waves are accentuated

by restricting the plotted contours to 100 � |ψ |2 � 150.
The curves in the left panel of Fig. 4 are cross sections
along vertical (solid curve) and horizontal (dotted curve)
diameters at t = 5.475. The moving vortex generates density
fluctuations with peak-to-peak amplitude �2% of the mean
density.

B. Sound waves from spontaneous vortex repinning

Let us now repeat the experiment described in Sec. IV A by
adding a pinning site in the prospective path of the unpinned
vortex to give it a place to repin. The basic setup is discernible
in the first of four contour plots at the top of Fig. 5. Once again
we start with a pinned vortex (Vi = 1.97V0) in region B and a

FIG. 4. (Color online) (Left) Cross sections of the condensate density |ψ |2 taken vertically (solid curve) and horizontally (dotted curve)
through a snapshot at t = 5.49 from the simulation in Fig. 3. (Right) Contours of |ψ |2 (color; dark/light represents low/high density).
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FIG. 5. (Color online) (Top) Snapshots of the condensate density |ψ |2 (color; dark/light represents low/high density) at times t = 0.005,
0.750, 2.495, and 4.985 (left to right, respectively). A vortex is that is initially pinned (with strength 1.97V0) in region B is unpinned by an
impulsive acoustic pulse of strength 4V0 and launched in region A and then repins at a pinning site in region C (Vi = 6V0). The snapshots are
taken before the initial sound pulse (left), as the wavefront from the sound pulse impacts on the pinned vortex (second from left), as the vortex
travels between the two pinning sites (third from left), and once the vortex has repinned at C (right). (Bottom) Kinetic energy Ekin integrated
within the four unit disks in the top panels, labeled regions A–D. Note that the vertical axis in the bottom panel is logarithmic. The vertical
gray line at t = 3.29 marks the time of the snapshot in Fig. 6 below. Simulation parameters: R = 12.5, � = −0.65, Vtrap = 200, and γ = 0.02.
The gray curves correspond to a control experiment, in which the initial pulse (amplitude 2V0) is too weak to unpin the vortex.

sound pulse launched from region A. The additional pinning
site sits inside region C (Vi = 6V0). We are obliged to choose
Vi,C > Vi,B for two reasons: (i) the Magnus force is linearly
proportional to r and (ii) if a vortex represents a local (not
global) minimum in E, then once the vortex unpins it exits the
condensate by annihilating against the wall. In other words, it
is more difficult to repin a moving vortex than it is to keep a
stationary vortex pinned.26

The four contour plots in Fig. 5 are snapshots of the
condensate density at times chosen to illustrate the process
of vortex unpinning and repinning. The second snapshot is
taken 0.25 time units after the sound pulse is launched, when
the wave front impacts on the pinned vortex in region B.
The vortex begins to unpin at t = 2.3. The delay (�t ≈ 1.5)
between the sound pulse arriving and the vortex leaving the
pinning site is routinely observed in these simulations. In the
third snapshot, the vortex is halfway between the two pinning
sites. In the final snapshot, the vortex pins to the pinning site
in region C. Repinning is accompanied by the generation of
sound waves, which modulate |ψ |2 by up to 15% (cf. 2%
in Fig. 4). This occurs as the vortex spirals into the pinning
center27 in a manner akin to a basketball circling the rim of
a hoop. Repinning occurs ∼7.5 times faster than unpinning,
hence, the stronger burst of radiation.

Having already observed the unpinning event in the previ-
ous experiment (Sec. IV A), this study is primarily concerned

with the emission resulting from repinning. Once again, we
track changes in Ekin in four nonoverlapping regions A–D as
functions of time, as shown in the bottom panel of Fig. 5. The
gray curves correspond to a control experiment, in which the
initial pulse (amplitude 2V0) is too weak to unpin the vortex.
The vertical line indicates the final stage of repinning, when
the snapshot in Fig. 6 is taken. In this snapshot, a spiral tail
drags behind the newly pinned vortex; acoustic radiation from
the repinning process is not axisymmetric. The tail is recorded
in |ψ |2 in the left panel of Fig. 6 as a large fluctuation in the
horizontal (dotted curve) but not the vertical (solid curve) cross
section. Evidence for the tail is also found in the contributions
to Ekin from regions A–D, e.g., a tripling in region D at t = 3.3.

The kinetic energy tracks the condensate density flux
through each unit disk, which in turn tracks distance to the
vortex. For example, as the vortex moves closer to region D,
Ekin in region D increases. Conversely, there is a net decrease
in region B, from where the vortex unpins and moves away.

C. Knock-on

Finally, we construct an experiment that aims to demon-
strate that the sound waves emitted by a moving vortex can
unpin a nearby vortex. In this example the initial pinning
site has strength Vi = 2.9V0, the repinning site has strength
Vi = 6.75V0, and there is a second vortex pinned in region
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FIG. 6. (Color online) (Left) Cross sections of the condensate density |ψ |2 taken vertically (solid curve) and horizontally (dotted curve)
through a snapshot at t = 3.29 from the simulation in Fig. 5. (Right) Contours of |ψ |2 (color; dark/light represents low/high density).

D (Vi = 2.205V0). The initial, artificially generated sound
pulse is launched from (0.0,1.7) with amplitude V0. It is
necessary to move the origin of the pulse away from region
A to simultaneously unpin the second vortex with the initial
disturbance. As in Sec. IV B, the sound pulse unpins the vortex
from region B, which then emits sound waves as it spirals in
toward the pinning site in region C.

When performed with the same level of dissipation as in the
previous experiments (i.e., γ = 0.02), the radiation emitted
during the basketball-in-a-hoop repinning process in region
C is insufficient to unpin the vortex from region D. When
acoustic damping is reduced eightfold (γ = 0.0025), however,
the vortex unpins from region D, triggered by repinning in
region C. This is an important result for the understanding

of the vortex dynamics leading to neutron star glitches, as
it demonstrates the viability of unpinning avalanches arising
from local acoustic triggers as well as global shear.

The four contour plots at the top of Fig. 7 are snapshots
of the condensate density at representative times during the
experiment in this section. The noisy ripples in Fig. 7 are not
present in Fig. 5, because acoustic disturbances are damped out
by dissipation. The contour plot in the right panel of Fig. 8 is a
snapshot taken at t = 3.51, when the second vortex is moving
toward the left. Cross sections along vertical and horizontal
cuts are represented in the left panel, from which it can be seen
that |ψ |2 fluctuations pervade the condensate and are consis-
tently above 10% of the mean (cf. ∼2% from a moving vortex
in Fig. 4). Extensive experimentation, not reported here for

FIG. 7. (Color online) (Top) Snapshots of the condensate density |ψ |2 (color; dark/light represents low/high density) at times t = 0.001,
0.296, 1.849, 3.697. A vortex that is initially pinned (with strength 2.9V0) in region B is unpinned by an impulsive acoustic pulse of strength
4V0, launched from (0.0,1.7) and then repins at a pinning site in region C (Vi = 6.75V0). The sound waves emitted by the repinning vortex
then strike and unpin a vortex pinned at D (Vi = 2.205V0). The snapshots are taken before the initial sound pulse (left), as the wavefront from
the sound pulse strikes the pinned vortex (second from left), as the vortex travels between the two pinning sites (third from left), and once the
vortex in region D has unpinned and is traveling to the left of the container (right). (Bottom) Kinetic energy Ekin integrated within the four unit
disks in the top panels, labeled regions A–D. Note that the vertical axis in the bottom panel is logarithmic. The vertical gray line at t = 3.29
marks the time of the snapshot in Fig. 8 below. Simulation parameters: R = 12.5, � = −0.65, Vtrap = 200, and γ = 0.0025.
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FIG. 8. (Color online) (Left) Cross section of the condensate density (shown in the contour plot at right) taken vertically (solid) and
horizontally (dotted) through a snapshot at t = 3.51 for the experiment shown in Fig. 7, when the bottom vortex has unpinned and is traveling
away from region D. (Right) Contours of |ψ |2 (color; dark/light represents low/high density).

brevity, confirms that unpinning can be caused by individual
pulses and/or persistent acoustic noise. Although it is difficult
to differentiate between the pulse emanating from the repin-
ning site and the turbulent sea of sound waves fed by the orig-
inal pulse and the subsequent vortex motion from B to C, the
knock-on event at D likely results from a combination of both.

D. Dissipation

The numerical experiments described in Secs. IV A–IV C
are not conducted in the presence of a grid of pinning sites,
cf. laboratory and astrophysical systems. In order to evaluate
the impact of introducing a pinning grid, in Fig. 9 we plot Elatt

as a function of time for a pulse of strength 4V0 generated at
(0.85,0.85) in a vortex-free condensate, at t = 5.0 without (top
panel) and with (bottom panel) a pinning grid. We find that the
time scale on which the sound pulse decays is not affected by
the pinning grid. Conversely, when we repeat the experiment
for three different levels of dissipation [γ = 0.01, 0.02, and
0.05 (increasing dissipation)], we find that dissipation shortens
the sound pulse decay time scale irrespective of pinning. We
emphasize that unlike the damping of sound waves, vortex
motion responds dramatically to a pinning grid; pinning sites
either pin the vortex or reroute it around the site.

The presence of other vortices is also pivotal in determining
if a vortex unpins, and its ballistic trajectory. Vortices in a
uniform lattice are harder to unpin than isolated vortices for
two reasons: a vortex lattice lessens the differential rotation at
each vortex, and, if another vortex is pinned radially beyond
the vortex in question, vortex-vortex repulsion pushes a vortex
back onto its pinning site. These effects are explored further
indirectly in the Appendix.

V. PROXIMITY KNOCK-ON

Inthis section, we explore the possibility of knock-on when
an unpinned vortex approaches close to another while moving
through a pinning grid before repinning. When the distance
between two vortices decreases from the Feynman spacing d0

to d0 − �d, the Magnus force per unit length FM increases
from FM0 by

�FM = ρκ2

2π

�d

(d0 − �d)d0
= FM0�d

d0 − �d
. (7)

We refer to the increase in Magnus force as the vortex
proximity effect. The vortex proximity effect unpins a vortex
pinned by a potential Vi if FM + �FM � ξ−2Vi , where ξ is the

FIG. 9. (Top) Total kinetic energy Ekin as a function of time t

for a condensate in a stationary container of radius 8.5. At t = 5.0
a pulse of height 4V0 at (0.85,0.85) is generated. The curves show
three different levels of dissipation [γ = 0.01, 0.02, and 0.05 (solid,
dotted, and dashed curves, respectively)]. The inset shows a contour
plot of the condensate density at t = 10. (Bottom) As for top but with
an 11 × 11 pinning grid [Vi = 0.5V0, 1.0V0, and 2.0V0 (gray, black,
and light gray curves, respectively)]. The 0.5V0 and 2.0V0 curves
have been shifted up and down, respectively, so that the initial value
of Ekin agrees with that of the 1.0V0 curve.

104503-8



UNPINNING TRIGGERS FOR SUPERFLUID VORTEX . . . PHYSICAL REVIEW B 85, 104503 (2012)

FIG. 10. (Color online) Snapshots of the condensate density in a container of radius R = 8.5 containing an 11 × 11 pinning grid, as a
pinned vortex (Vi = 4.0V0), initially in region A, is dragged toward another, more weakly pinned, vortex (Vi = 1.5V0) in region B. The initial
positions of the two vortices are indicated by black circles. The container, including the pinning grid, rotates with angular velocity � = −0.5,
in the opposite sense to the velocity field generated by the vortex. The top vortex is dragged with unit dimensionless speed directly down toward
the bottom vortex, unpinning it when the separation is 2.0.

condensate coherence length. This allows vortices to remain
marginally pinned while they are approximately in a Feynman
lattice (FM < ξ−2Vi), but they readily unpin in avalanches
when a neighbor unpins and moves a little bit (FM + �FM >

ξ−2Vi , with �FM � FM0). The coherence length and
Coulomb lattice constant are comparable in a neutron star,
creating an environment in which pinning by monovacancies
and intrinsic pinning in a polycrystalline structure are
favorable.2

The numerical experiments described below demonstrate
the vortex proximity effect in two ways: (i) by dragging a
vortex toward a pinned vortex and (ii) by allowing an unpinned
vortex to move ballistically past other vortices as it travels
freely toward the wall of the container.

A. Forced vortex motion

Initial conditions are created by rotating a grid of pinning
sites on which vortices nucleate and pin (see Sec. III). All
but two of the sites are then removed and the container is
brought to a halt adiabatically, making the unpinned vortices
annihilate at the wall. All but one of the pinning sites are then
reinstated, as depicted in the left contour plot in Fig. 10. The
missing site is deliberately situated between the two pinned
vortices to let them be dragged toward each other. The initial
position of each vortex is indicated by a black circle; the upper
(region A) and lower (region B) sites have Vi = 4V0 and Vi =
1.5V0, respectively.

We drag the upper vortex directly downward by slowly
moving its pinning site downward with speed 1 (in dimen-
sionless units, compared to a time step �t = 0.001). The total
distance traversed by the dragged vortex is 1.275, which is
∼1.5dpin (dpin is the spacing between pinning sites). We find
that the lower vortex unpins (at a distance dunpin from its
nearest neighbor) when the approaching vortex gets within
one pinning grid spacing dunpin ≈ dpin.

We repeat this experiment for five values of Vi in region
B ranging from 1.25V0 to 2.25V0. Figure 11 plots Elatt as
a function of time for each experiment. As Vi increases,
the unpinning event, indicated by the sharp drop in Elatt,
is delayed. We also use movies of the |ψ |2 to measure
dunpin. The top horizontal axis in Fig. 11 gives the separation
of the two vortices in dimensionless units; time is plotted
on the bottom horizontal axis. Figure 12 plots the inverse of the

intervortex separation when the lower vortex unpins (1/dunpin)
as a function of the strength of the pinning site from which
it unpins. According to Eq. (4) and Eq. (7), 1/dunpin depends
linearly on the pinning force, parametrized by Vi ; the data in
Fig. 12 are overlaid with a linear fit (slope = 0.825) and show
good agreement.

B. Ballistic, unforced vortex motion

In this subsection, we demonstrate that the vortex proximity
effect is also effective when a vortex moves “naturally” along
a flow-induced trajectory, i.e., when it is carried ballistically
by the condensate along a trajectory satisfying Schwarz’s
equation.40 We contrive an experiment in which a vortex
unpins (due to an increase in the global shear) and moves
toward the container wall ballistically. As the unpinned vortex
approaches a second vortex, which is pinned at a larger radius,
the second vortex also unpins and annihilates against the wall
of the container.

FIG. 11. Lattice energy, Elatt within a unit disk centered on the
lower pinned vortex in Fig. 10, as a function of time (bottom axis)
and vortex separation (top axis, d0 is the initial vortex separation and
�d is the distance traversed by the moving vortex). The five curves
correspond to five different pinning strengths for the lower vortex
(see legend for Vi values). When the lower vortex unpins, Elatt drops
sharply.
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FIG. 12. Reciprocal of vortex separation 1/dunpin when the lower
vortex in Figs. 10 and 11 unpins, as a function of the potential it
unpins from Vi . The data points are overlaid by a linear regression,
as predicted from Eq. (4), with slope 0.825.

The initial conditions for this experiment are established
by accelerating an 11 × 11 pinning grid from rest to � = 2.0
instantaneously, such that 15 vortices nucleate and are pinned
by the array. We then reduce � to 0.075 adiabatically, causing
all but six vortices to unpin and annihilate. We focus on two
vortices, both in the top right quadrant of the container, as
shown in the color plots in the top panel of Fig. 13, that

remain pinned within regions A and B. The pinning in region
A is then reduced to Vi = 0.4V0 and � is reduced to 0.05.
The vortex in region A unpins and moves radially outward
(toward region B), causing the vortex in region B to unpin,
when the intervortex separation is approximately 2.5 units.
The bottom panel of Fig. 13 plots Elatt in regions A (solid
curve) and B (dashed curve) as a function of time. The initial
unpinning event in region A registers as a ∼23% increase
in Elatt in that region; the second unpinning event in region B
registers as a ∼13% increase in Elatt in that region. It is unlikely
that the knock-on event is caused by sound waves emitted by
the traveling vortex, as we find from previous experiments
(Sec. IV) that the acoustic radiation from a vortex traveling
with unit speed is insufficient to unpin vortices pinned with
these characteristic strengths (∼V0). We, therefore, conclude
that the knock-on event in Fig. 13 is triggered by the vortex
proximity effect.

The significance of this experiment lies in two key
properties. First, by using a ballistic, uncontrived vortex
trajectory (cf. Sec. V A), we confirm that vortex-vortex
repulsion is not so strong that vortices routinely self-avoid
without unpinning each other. Second, by including additional
bystander vortices (absent from Sec. V A), we allow for the
vortex lattice to stabilize the pinned state, as small adjustments
in the position of pinned vortices with respect to their pinning
sites can reduce the differential rotation at the site of another
vortex. Despite such stabilization, we still find that proximity
knock-on occurs. This result is crucial in the many-vortex
context of neutron star glitches.

FIG. 13. (Color online) (Top) A series of snapshots of the top right quadrant of the condensate density in a container of radius R = 8.5
with a lattice of 11 × 11 pinning sites of strength V0. Two pinned vortices are visible, as indicated by the solid (region A) and dashed (region
B) circles (pinning strength 0.4V0 and V0, respectively). Four additional vortices are pinned in the other three quadrants. At t = 0 the angular
velocity of the container is reduced from � = 0.075 to � = 0.05. The vortex in region A unpins at t ≈ 0.4 and travels toward region B. When
the intervortex separation is approximately 2.5 units, the vortex in region B unpins. (Bottom) Contributions to Elatt (in dimensionless units)
from region A (solid, plotted against the left-hand vertical axis) and region B (dashed, plotted against the right-hand vertical axis). The sharp
increase in each curve (at t = 0 and t = 1.65, respectively) marks the unpinning event.
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Ideally, the acoustic experiments described in Sec. IV
would also be corroborated by repetition within a many-vortex
lattice. Unfortunately, at the time of writing, this has proved
impossible, because of the fine tuning of pinning strengths and
global shear required.

VI. CONCLUSIONS

The simulations presented above demonstrate that several
mechanisms contribute to vortex unpinning, including the
global velocity shear, sound waves (directed pulses or acoustic
noise), and a vortex proximity effect due to intervortex
repulsion. The first mechanism is deterministic and predictable
if the angular acceleration of the container is known. The
second and third mechanisms potentially lead to stochastic
avalanche dynamics through knock-on. The extent and timing
of knock-on depend unpredictably on the exact history and
configuration of the vortex lattice relative to the pinning grid.
We emphasize that we observe a single generation of knock-on
at most; our simulated systems are, at present, too small to see
large avalanches. Remedying this is a crucial avenue of future
work.

As discussed in Sec. I, a robust condensate vortex model
of neutron star glitches requires a mechanism for triggering
unpinning cascades if it is to explain the observed statistics
and scale invariance successfully.12 We propose that global
shear is responsible for triggering such cascades, while the
avalanche propagates via a combination of the two knock-on
effects studied above. Acoustic knock-on depends on the wave
damping rate (which in turn depends on the temperature).
Proximity knock-on depends only on the intervortex separation
(a function of � and the pinning strength).

The results of this paper suggest that proximity knock-on
alone is insufficient to catalyze pulsar glitch avalanches, most
notably because it is highly localized; the “unpinning front”
quickly peters out when it hits regions of strong pinning. In
contrast, sound waves propagate throughout the system; even
though the amplitude of the acoustic pulse from any given
unpinning event falls away with distance from the source,
it adds to the turbulent sea of acoustic noise in the system,
which is perfectly capable of unpinning vortices, as we show
in Sec. IV C.

Previously published models of the collective physics of
neutron star glitches have successfully incorporated either
one of these two effects.20 presented an avalanche model,
based around nearest-neighbor interactions of the proximity
type, in which long-range spatial correlations and power-law
events sizes arise naturally. The model predicts statistics
consistent with astronomical data and a self-organized critical
process. The same authors41 separately constructed a spatially
homogeneous model in which each vortex experiences the
same unpinning force, analogous to a homogeneous bath of
sound waves. In this coherent-noise model, pinning centers
have random strengths and avalanches occur because the
strength distribution of occupied pinning sites is excavated
at its lower end over time in a stochastic, history-dependent
way.42

Finally, it is instructive to make a rough quantitative
comparison of the strength of acoustic and proximity knock-on
in the neutron star context. Consider a neutron star with the

TABLE I. Fiducial neutron star parameters.

Quantity Value Units

R 104 m
� 102 Hz
ρ 1017 kg m s−1

κ 10−8 m2 s−1

Fpin 1012 Nm−1

d0 10−5 m
dpin 10−5 m
�� 10−3 Hz

fiducial parameters listed in Table I, in which a single vortex
unpins and travels a distance d0 (the typical spacing between
vortices), passing within d0/2 of a nearby pinned vortex. The
additional Magnus force due to proximity of the moving vortex
to the pinned vortex is �FM = ρκ2/(2πd0). We can convert
this to an effective change in lattice energy per unit length
using ξ 2 ≈ 10−12 m2, obtaining �Elatt ≈ 10−7 J m−1.

By treating a condensate as a (2 + 1)-dimensional electro-
dynamic system, the acoustic power carried by sound waves is
equivalent to an effective Poynting flux.43 GPE simulations of
a vortex precessing around a pinning site at a distance b give44

P = ρκ2b2ω3
v

8c2
s

, (8)

where ωv is the precession frequency. Qualitative evidence
for acoustic radiation is found in the center and right contour
plots in Fig. 1, as well as all figures in Sec. IV. Previous
studies45 found good agreement between Eq. (8) and numerical
simulations of a vortex precessing around a central impurity by
comparing Ekin before and after sound waves are erased from
a snapshot (by evolving in imaginary time). Using Eq. (8),
and assuming that a vortex is traveling at speed R��, the
total energy per unit length emitted by the moving vortex as it
traverses a distance d0 is

�Esound = ρκ2R2�3

8c2
s

d0

R��
. (9)

For the fiducial parameters in Table I, we find �Esound ≈
10−12 J m−1. This estimate is based on a vortex moving
between pinning sites rather than during the faster, basketball-
like repinning that we know produces stronger sound pulses
(see Secs. IV B and IV C). These back-of-the-envelope calcu-
lations support our findings that the vortex proximity effect
is considerably stronger than the acoustic radiation from a
single moving vortex. But, of course, there are many moving
vortices radiating simultaneously in a large system, and their
combined emission adds to the general level of acoustic noise.
A careful calculation of the radiation damping time and, hence,
the steady-state noise level is needed to resolve the issue of
which knock-on process dominates.

In conclusion, we confirm the viability of three independent
mechanisms by which vortices unpin. GPE simulations estab-
lish a qualitative microscopic basis on which a robust quantum
mechanical theory of the collective physics of neutron star
glitches may be constructed.
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APPENDIX

In this Appendix, we summarize the vortex unpinning
dynamics observed in large Gross-Pitaevskii simulations, in
which multiple vortices interact with a large-scale grid of
pinning sites, and a feedback torque acts on the container.
The knock-on processes studied in Secs. IV and V involving
individual vortices occur repeatedly in a vortex array, but it
is hard to isolate individual events, as their local environ-
ment is more complex. Consequently, we track the angular-
momentum-conserving response of the container to changes in
the vortex distribution. Both the laboratory experiments cited
in Sec. I and the neutron star problem involve �104 vortices.

Numerical simulations by Sato et al.,21 Yasunaga and
Tsubota,22 and Goldbaum and mueller46 studied how a vortex
lattice is distorted by a pinning grid (e.g., an optical lattice)
for fixed �. The authors Fourier transformed the condensate
density to disentangle and compare the geometry of the vortex
lattice and pinning grid. They found that the transition from
an Abrikosov lattice (the equilibrium configuration)47 to a
pinning-grid-like lattice is accompanied by a sharp decrease
in the potential energy of the condensate. The stronger the
pinning, the more closely the vortex lattice resembles the
pinning grid and, hence, the lower the potential energy.

In this Appendix, we build on previous work by including
the self-consistent acceleration of the container in response
to external and internal torques to study the distortion of
the vortex lattice by pinning as a function of �. We do
so by enforcing a simple conservation rule, which assumes
that any change in 〈L̂z〉 is communicated instantaneously to
the container. This approximation is valid, for example, if
the torque is communicated by Kelvin waves, whose system
crossing time is much shorter than the spin-down time scale.
We also impose a constant, external spin-down torque Nc

(electromagnetic in a pulsar, friction between the container
and its supporting spindle in helium II experiments). Hence,
the angular velocity �, evolves according to the equation

Ic

d�

dt
= −d〈L̂z〉

dt
− Nc, (A1)

where Ic is the moment of inertia of the container and 〈L̂z〉 is
the expectation value of the condensate angular momentum in
the direction of the rotation axis. � is the same angular velocity
that appears in the GPE. We emphasize that the observed
nonglitch spin-down rate d�/dt is the sum of spin down due to
Nc and gradual decreases in 〈L̂z〉 caused by vortices migrating
to the outer edge of their pinning sites without unpinning. The
condensate does not rotate rigidly in general (especially when
the number of vortices is small and/or the vortex lattice is

significantly distorted by pinning), so we cannot attribute a
unique angular velocity to it.

1. Spasmodic spin down for small vortex number

We begin with a series of numerical experiments designed
to investigate how pinning leads to “jerky” spin down of
the coupled container-condensate system. We deal first with
systems containing few vortices. As a control experiment, we
impose an external torque (Nc = 10−3Ic) on a container in
which there are no pinning sites. We set up the experiment by
finding the ground state in a rotating reference frame with a
3 × 3 pinning grid; for � = 0.3 we obtain Nv = 4 vortices.
We then remove the pinning and evolve the system to a new
equilibrium, which also contains four vortices. Initially, we
switch off feedback, so the right-hand side of Eq. (A1) reduces
to the external torque only. Then 〈L̂z〉 (plotted as the solid
curve in Fig. 14) decreases stepwise as a function of time.
Four vortices are too few to form a uniform Abrikosov lattice,
which expands homologously as the condensate decelerates.
Instead, the lattice geometry, and, hence, 〈L̂z〉, change abruptly
as each vortex is lost. For example, when the first vortex is lost,
the lattice transforms from a square to a triangle.

Interestingly, rather than delaying deceleration by pre-
venting vortices from moving outward, pinning appears to
quicken the response of the condensate to the decelerating
container for small Nv . That is, the condensate “feels” the
deceleration of the container, because the pinning sites drag
through it. The stronger the pinning, the greater volume of
condensate is displaced by the sites as they rotate with respect
to the condensate, and, hence, the condensate responds more
quickly. The triple-dot-dashed, dot-dashed, and dashed curves
in Fig. 14 plot 〈L̂z〉(t) for weak, intermediate, and strong
pinning, respectively (Vi = 0.13, 1.3, and 2.7, respectively).
The loss of a vortex from the container is indicated by a steplike

FIG. 14. Total condensate angular momentum 〈L̂z〉 as a function
of container angular velocity � in the presence of zero (Vi = 0, solid
curve), weak (Vi = 0.13, triple-dot-dashed curve), intermediate (Vi =
1.3, dashed curve), and strong (Vi = 2.7, dot-dashed curve) pinning.
(Insets) Grayscale plots of condensate density at t = 90 for Vi = 0 to
Vi = 2.7 (left to right, top to bottom). The color table runs from dark
(low density) to light (high density). Simulation parameters: R = 8.5,
Vmax = 200, Nc = 10−3Ic.
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decrease in 〈L̂z〉. The figure shows that the first vortex is
lost earlier for larger Vi , demonstrating the counterintuitive
correlation described above.

In addition to discrete downward steps in 〈L̂z〉 in Fig. 14,
there is also a continuous decrease prior to the first unpinning
[�〈L̂z〉/〈L̂z〉 ≈ −0.077 from � = 0.30 to � = 0.24 for Vi =
1.3]. This occurs because pinned vortices migrate toward the
outer edge of their pinning sites as the global shear grows. If
we take the diameter of a pinning site to be 0.25 (cf. R = 8.5),
positioned 2.83 units from the rotation axis (as in the top right
inset of Fig. 14), the change in 〈L̂z〉 as a single vortex moves
from the b to b′ is

�〈L̂z〉/〈L̂z〉 = N (b2 − b′2)/(R2 − b2), (A2)

which gives −0.02 for b = 2.83 and b′ = 3.08. The net change
for all four original vortices is additive, i.e., �〈L̂z〉/〈L̂z〉 ≈
−0.08, in agreement with the simulation result.

2. Spasmodic spin down for large Nv

We now investigate the coupling of the condensate to its
container as a function of pinning strength for Nv 
 1. The
many-vortex regime is most relevant to both the laboratory and
astrophysical systems discussed in Sec. I.

a. Core-corona structure

According to the Feynman relation (number of vortices,
Nv = 2πR2�/κ), in the absence of pinning, the vortex lattice
is evenly distributed throughout the container and causes the
condensate to rotate rigidly. Figure 15 demonstrates that this
does not occur in general. In plots of the azimuthal condensate
velocity, vφ = −ics(ψ∇ψ∗ − ψ∗∇ψ)φ/|ψ |2 [cross-section
and grayscale plots (the dark to light color scale represents low
to high velocity) in the top and bottom panels, respectively,
of Fig. 15], two other factors modify the flow away from
rigid rotation (dotted curve) in addition to a noninfinite vortex
lattice. First, near vortex cores, the velocity is dominated by
the 1/r field generated by each vortex. Second, as can be seen
from the lower panel of Fig. 15 (see also inset in Fig. 16),
the vortex lattice does not fill the trap. This is a legacy of
initialization. As vortex nucleation is catalyzed by supercritical
condensate flow past nonaxisymmetries in the container, the
number of vortices nucleated in the presence of a pinning
array undershoots the Feynman prediction and is hysteretic,
i.e., history dependent. In results not shown here, we find that
the number of nucleated vortices for � = 1.35 is typically
50% smaller than the Feynman prediction.

In addition, the pinning grid perturbs the vortex lattice away
from its equilibrium configuration; the condensate velocity at
the trap boundary differs from the value it would take with the
same number of vortices in an Abrikosov lattice. Therefore,
in order for the condensate and container rotation to match
at the wall, the vortices must cluster toward the center of
the container. In the lower panel of Fig. 15, vortices are
clearly identifiable as singularities in the velocity field. The
vortex array occupies a central region 0 < r < Rc, leaving an
unpopulated corona in the range Rc < r < R. For this vortex
configuration, the condensate angular momentum, 〈L̂z〉, can be

FIG. 15. Formation of a history-dependent core-corona structure
in a vortex lattice that does not fill the condensate. (Top) Azimuthal
velocity vφ from simulation output (solid curve), rigid-body model
(vφ = �r , � = 1.0) (dotted curve), and “giant” vortex model (vφ =
�R2

c /r) (dashed curve). (Bottom) Grayscale plot of azimuthal
velocity (dark to light indicates low to high velocity); it increases
smoothly with distance from the center, punctuated by vortices.
Simulation parameters: R = 12.5, Vi = 0.0, Vmax = 200.

written as the sum of the contribution from the central, vortex-
filled region [where the condensate rotates approximately as a
rigid body, with vφ = �r (dotted curve)] and the vortex-free
corona [where the condensate velocity field is the same as
outside a single “giant” vortex, with vφ = �R2

c /r (dashed
curve)]. Assuming that the vortices in the central region are
evenly spaced, Feynman’s rule gives

R2
c = κNv

2π�
, (A3)

leading to49

〈L̂z〉 = PQ

(
1 − Q

2�R2

)
, (A4)

with P = Nm, where N is the total number of particles, and
Q = κNv/(2π ), where ρ is the mean mass density (assumed
uniform in these formulas).

Solving Eqs. (A1) and (A4), with �t=0 = �0, we derive the
following expression for the container angular velocity while
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FIG. 16. Angular momentum 〈L̂z〉 as a function of time t for
spin-down experiments with pinning strengths Vi = 0.0, 8.3, 16.6,
and 33.3 (solid, dotted, dashed, and dot-dashed curves, respectively).
Also shown is the Vi = 0.0 case with no feedback (triple-dot-dashed).
Overplotted are analytic predictions for the Vi = 0 case with (solid
gray) and without (triple-dot-dashed gray) feedback. The curves are
rescaled vertically to intersect at t = 0 to correct for the fact that
the initial 〈L̂z〉 varies with Vi even when � is held constant, due to
pinning hysteresis. The grayscale plots (top) show the condensate
density at t = 1000 (Vi = 0.0 to Vi = 33.3, left to right). (Inset) The
initial state for Vi = 0, showing the vortex-free corona described in
the text (see Sec. A 2 a). Simulation parameters: R = 12.5, Vmax =
200.

a vortex-free corona is present and feedback is included,

�(t) = 1

2
�lin(t) − PQ2

4IcR2�0

+
{[

1

2
�lin(t) − PQ2

4IcR2�0

]2

+ PQ2

2IcR2

}1/2

, (A5)

where we define �lin(t) = �0 − tNc/Ic. Once the vortex
lattice fills the container, condensate spin-down is assumed
to mimic that of a rigid body. It should be noted that
the approximation leading to Eq. (A5) assumes that |ψ |2
is uniform throughout the trap. We compare this result to
simulation output in what follows.

b. Angular-momentum transport without pinning

In this section we study 〈L̂z〉(t) and �(t) for a range of Vi .
The experiment is conducted on a square 200 × 200 simulation
grid (|ψ |2 = 0 outside the trap, so the simulation appears
circular), with 9 × 9 pinning sites (all Vi equal, R = 12.5).
Each simulation is run for 1000 time units using approximately
36 500 particles. The initial condition for each simulation is a
steady-state solution for a 9 × 9 pinning grid with Vi = 16.6.
By way of comparison, we also present a simulation in which
feedback is ignored (i.e., where changes in 〈L̂z〉 are not
communicated to the container). The results presented here are
an important reminder that pinning is essential in explaining
jerky condensate dynamics.

In Fig. 16 we plot 〈L̂z〉(t) for Nc = 10−3Ic. The solid black
curve describes zero pinning. As expected, 〈L̂z〉 decreases
smoothly, as the vortices spread out unhindered. The triple-

dot-dashed black curve repeats the zero pinning experiment
but without feedback. We observe that the condensate spins
down faster without feedback, responding only to Nc without
the spin-up torque from the decelerating condensate.

The simulation output agrees well with the analytic predic-
tion in the absence of feedback [Eq. (A4)] (triple-dot-dashed
gray curve in Fig. 16) after shifting the curves to agree at t = 0
(to correct for hysteresis in the initial vortex configuration).
When feedback is added, including the vortex-free corona,
agreement between the simulation and analytic prediction
(solid gray curve) remains excellent (better than one part in
106) for t < 750, at which time Eq. (A5) begins to overestimate
〈L̂z〉. This overestimate can be understood by noting that, when
a vortex is about to annihilate against the wall, it accelerates
radially in the region where dV/dr is large and 〈L̂z〉 drops
off correspondingly quickly. Both with and without feedback,
the analytic 〈L̂z〉 curves track two stages of vortex motion: an
initial stage when the vortex-free corona is present, followed
by a stage during which the vortices fill the container.

c. Angular-momentum transport with pinning

The strength of pinning determines the rate at which
the condensate as a whole can decelerate: the stronger the
pinning, the larger the differential rotation necessary to unpin
vortices. In the presence of a pinning lattice (Vi > 0), the
angular momentum as a function of time shows discrete
downward steps. The top row of images in Fig. 16 shows the
final condensate density for pinning grids with 9 × 9 pinning
sites and Vi = 0, 8.3, 16.6, and 33.3 (solid, dotted, dashed,
and dot-dashed, respectively). The smaller low-density (dark)
spots are unoccupied pinning sites, whereas the larger dark
spots are vortices, of which there are Nv = 18, 17, 20, and
19 visible in the four images (left to right, respectively). It
should be noted that, although Nv for Vi = 16.6 exceeds Nv

for Vi = 33.3, the total angular momentum in the latter case
is greater because the vortices lie closer to the rotation axis
because they adhere more strongly to the pinning grid.

The vortices are observed to move radially outward as
the container spins down. The motion is disjointed; vortices
hop between pinning sites. The downward steps in angular
momentum occur later for stronger pinning, as a larger
differential velocity and hence Magnus force are needed to
unpin.

The step size in 〈L̂z〉 depends both on the distance traveled
by the vortex before repinning (or annihilating at the wall) and
the position (relative to the rotation axis) from which the vortex
unpins. For this reason, we do not expect glitches of equal size.
A full explanation of how power-law distributions of glitch
sizes arise in neutron stars must await the inclusion of knock-on
effects. This point is discussed in Ref. 48. In summary,
the effect of pinning is to create a sticky landscape for the
vortices to navigate, causing the condensate to decelerate
spasmodically.

d. Container response

In Fig. 17, we plot �(t) from simulations for the cases
involving feedback in Fig. 16. Overplotted are analytic
predictions for Vi = 0, with feedback based on a rigidly
rotating condensate (gray dot dashed) and accounting for the
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FIG. 17. Angular velocity �(t) as a function of time t for
spin-down experiments with pinning strengths Vi = 0.0, 8.3, 16.6,
and 33.3 (solid, dotted, dashed, and dot-dashed curves, respectively),
corresponding to the angular-momentum curves in Fig. 16. Over-
plotted are analytic predictions for the Vi = 0.0 case with feedback
resulting from a condensate rotating as a rigid body (gray dot-dashed
curve), feedback from a fluid with a vortex-free corona (gray dashed
curve), and without feedback (dotted curve). Simulation parameters:
R = 12.5, Vmax = 200.

vortex-free corona [Eq. (A5)] (dashed), as well as without
feedback at all (dotted). The jumps in � accompany downward
steps in 〈L̂z〉 according to Eq. (A1). The timing of the first
discrete step up in � scales with pinning strength. For example,
the first step up in � for Vi = 33.3 occurs at t ≈ 430, whereas
for Vi = 8.3 it occurs earlier at t ≈ 120.

A less obvious result from these simulations is the decrease
in the spin-down rate at early times (relative to spin down
dictated solely by Nc), before vortices unpin (t � 150). As in
the few-vortex case (Fig. 14), pinned vortices migrate to the
outer edge of the pinning sites as the container decelerates,
resulting in small, smooth decreases in 〈L̂z〉. Figure 17
demonstrates that, prior to the first unpinning, the migration
velocity of vortices is almost independent of Vi ; for t � 110,
all four simulation curves coincide.

In Fig. 18 we zoom in on a portion of the �(t) curve for
Vi = 16.6. The insets magnify the regions enclosed by the
dotted rectangles. Of particular interest is the average rise time,
�trise ≈ 5, for the “glitches.” Possible physical time scales
associated with �trise include the sound crossing time of the
container (2R/cs ≈ 24) and the sound crossing time between

FIG. 18. Angular velocity of the container �(t) as a function
of time t for the Vi = 16.6 experiment described in Fig. 17. The
insets zoom in on the local maxima at t = 439.5 (bottom left)
and t = 572.5 (top right), revealing oscillations following vortex
repinning. Detailed studies (see Sec. IV) associate the oscillations
with acoustic radiation. Simulation parameters: R = 12.5, Vmax =
200.

pinning sites (≈2.5), which overestimate and underestimate
the measured �trise, respectively. More promisingly, �trise

may be governed by the vortex travel time between pinning
sites (or from pinning site to annihilation at the wall of the
container). To test this, we estimate the radial vortex velocity
to be the mismatch between the azimuthal condensate velocity
and the container, vv ≈ vφ − b� (b is the radius at which
the vortex sits). If we compare �(t) for Vi = 16.6 with the
linear (Nc-only) spin-down curve in Fig. 17 at the time of the
first unpinning event (t ≈ 260), we can infer the change in
vφ due to vortex migration; the condensate spins down a little
bit during 0 < t < 260, and the container spins down a little
less than it would without vortex migration. If the vortices had
not moved at all, �(t) and �lin would coincide, but, instead,
we find �(260) − �lin(260) = 0.015, which is approximately
the cumulative spin-up during migration, giving vφ − b� ≈
0.175b. For a vortex at b ≈ 3, we get vv = vφ − b� ≈ 0.5.
Therefore, the time for a vortex to travel between pinning sites
is the intersite separation divided by vv , which gives ≈5, in
accord with the simulation output for �trise.
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