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Classical statistical model for distributions of escape events in swept-bias Josephson junctions
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We have developed a model for experiments in which the bias current applied to a Josephson junction is slowly
increased from zero until the junction switches from its superconducting zero-voltage state and the bias value
at which this occurs is recorded. Repetition of such measurements yields experimentally determined probability
distributions for the bias current at the moment of escape. Our model provides an explanation for available data
on the temperature dependence of these escape peaks. When applied microwaves are included, we observe an
additional peak in the escape distributions and demonstrate that this peak matches experimental observations. The
results suggest that experimentally observed switching distributions, with and without applied microwaves, can
be understood within classical mechanics and may not exhibit phenomena that demand an exclusively quantum
mechanical interpretation.
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I. INTRODUCTION

In 1974, Fulton and Dunkleberger1 demonstrated the way in
which a biased Josephson junction could be thermally excited
from its zero-voltage state. More precisely, they conducted
experiments in which the bias current was steadily increased
from zero to its critical current. In the absence of any noise,
thermal or otherwise, the junction would not switch until the
bias current reached the critical value. However, with thermal
noise, junctions were observed to switch with high probability
at bias currents that were slightly less than the critical value.
This type of experiment has proven to be an extremely useful
tool for probing the details of effective models of the junctions
themselves. Later work by Voss and Webb2 extended the
experiments to much lower temperatures, and they found what
was interpreted to be evidence that the junction had entered
a mode where an escape might be treated as Macroscopic
Quantum Tunneling (MQT) out of the effective potential well
associated with junction phase dynamics.

Once the idea of macroscopic quantum behavior for
Josephson junctions at low temperatures became accepted,
the possibility of the manifestation of discrete quantum levels
within the effective potential wells received attention. The
first experiment to consider this proposition was reported by
Martinis, Devoret, and Clarke (MDC).3 In that experiment,
microwaves were directed onto a junction and the bias current
was swept as before. The idea was that the microwaves would
excite transitions from a lower to a higher level within the
well and that the macroscopic quantum variable—the junction
phase—would then tunnel out of the well from that higher
level, resulting in an escape from the zero-voltage state. Single
and multiple peaks in the escape distributions of two samples
were reported in their experiment. These data were interpreted
as signatures of the anticipated level transitions dictated by
quantum theory.

Previously we analyzed the issue of the classical resonant
frequencies in wells under both harmonic and anharmonic ap-
proximations and found4 that the classical theory gave results
in good agreement with the experiments of MDC, suggesting
that the classical Resistive and Capacitive Shunted Junction
(RCSJ) model for a Josephson junction might have been
dismissed prematurely in favor of the macroscopic quantum
picture.5 The importance of the anharmonic component to the
potential well is evident from the fact that a measurement of
escape cannot be realized in a harmonic well and, thus, one
should not expect meaningful agreement between switching
experiments and classical analysis of plasma oscillations. This
notion was first presented in Ref. 6, in which the anharmonic
theory successfully compared to accompanying experiments
on both direct and harmonic resonant switching. It should
be mentioned that the anharmonic classical RCSJ approach
has since produced good agreement with other experimentally
observed features, such as Rabi oscillations and Ramsey
fringes,7,8 as well as tomographic reconstruction of anticipated
density matrices for a pair of capacitively coupled Josephson
junctions,9 which originally had been interpreted exclusively
in terms of quantum entanglement.

While the nonquantized RCSJ model has been proven to
replicate the primary resonant features of the experiments,
available experimental reports on switching during bias sweep
contain details not yet directly analyzed using the nonquan-
tized approach. One is the saturation of the width of the
switching distribution as the thermodynamic temperature is
lowered, interpreted as a signature of a quantum crossover
temperature;2 another is the set of multiple resonant switching
peaks, interpreted as signatures of quantized energy transitions
in the potential well.3

In this paper, we reconsider the evidence for the macro-
scopic quantum tunneling interpretation of these experiments.
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In particular, in the spirit of Kramers’s statistical analysis,10 we
develop a simple model of the swept-bias type of experiment
based on classical thermal activation and show that it gives an
excellent accounting of the peaks observed in a number of key
experiments.

II. MODELING A JOSEPHSON SWEPT-BIAS
EXPERIMENT

We consider Josephson junctions to be characterized by a
supercurrent IC sin ϕ with critical current IC junction phase ϕ,
and a capacitance C. The associated junction plasma frequency
is ωJ = √

2πIC/�0C, where �0 = h/2e is the flux quantum.
We assume junctions whose physical dimensions are much
smaller than the Josephson penetration depth.

From this perspective, the phase dynamics of a single
Josephson junction subjected to a dc bias is equivalent to the
motion of a particle on a washboard potential.11 The particle
sits in a potential well, which becomes shallower at high
bias currents. This in turn leads to an enhanced probability
of noise-activated escape. If the bias current is swept from 0
toward IC , then at some moment the junction will be observed
to escape from its potential well and switch to a running state
with finite voltage. In the experiments to which we refer,
this process was repeated many times in order to acquire a
statistical profile of the distribution of bias currents for which
the escapes from the zero-voltage state occur.

For our numerical simulations, we imagine an equivalent
scenario. Suppose there is an ensemble of M Josephson junc-
tions. The bias on all junctions starts at 0 and is incremented in
N steps, with each step of duration �t = (NfS)−1, where fS is
the sweep frequency. Each step is assigned a channel, and the
total counts in that channel indicate how many junctions have
switched to a finite-voltage state (escape from the potential
well) during that interval. As the bias sweep proceeds, the
original ensemble will have lost e1 junctions in the first
interval, e2 junctions in the second interval, and so forth.
Consequently, at the beginning of the nth bias interval, there
will be M − ∑n−1

j=1ej junctions not yet escaped. The number
from this remaining pool of junctions that will escape during
the next �t seconds will be

en =
⎡
⎣M −

n−1∑
j=1

ej

⎤
⎦ �(tn)�t, n = 2,3, . . . ,N, (1)

where �(tn) is the probability of escape per unit time in the
nth interval. Of course, the initial interval just satisfies

e1 = M�(t1)�t. (2)

Equations (1) and (2) will mimic a swept-bias experiment
provided a suitable expression is available for the escape
rate �.

In Kramers’s theory,10 the thermal escape rate can be
expressed as

�(tn) = fn exp

(
−�Un

kBT

)
, (3)

where fn is the plasma frequency for the well specific to the
nth bias interval and �Un/kBT is the height of the potential

barrier divided by the mean thermal energy. Voss and Webb2

assumed an escape rate in this form.
However, there has been an ongoing discussion regarding

the suitability of the Kramers expression, and as Devoret
et al.12 and others have pointed out, a better equation for the
escape rate, from Büttiker, Harris, and Landauer (BHL),13 is

�BHL(tn) = atfn exp

(
−�Un

kT

)
, (4)

where

at = 4α[
1 +

√(
1 + αQkBT

1.8�Un

)]2
. (5)

According to Devoret et al.,12 α = 1.4738. In this expression,
Q is a parameter that quantifies the dissipation in the junction;
low dissipation corresponds to large Q. Devoret et al.14 noted
that “the prefactor depends only weakly on Q” and they
consequently used an escape rate in the form of Eq. (3).
Similarly, Devoret et al. in Ref. 12 stated that the value of
the prefactor at is “close to unity.”

For these reasons, we proceed with our classical simulations
of swept-bias experiments using expression (3) for the escape
rate. We consider the second-order effects of Q in Sec. VI.

In the harmonic approximation

fn = fJ
4

√
1 − η2

n, (6)

with ηn being the normalized bias current within the nth bias
interval.

Combining these expressions, we obtain

�(tn)�t =
[(

fJ

NfS

)
4

√
1 − η2

n

]
exp

(
−�Un

kBT

)
, (7)

which is required in Eq. (1). The prefactor before the
exponential represents the number of plasma oscillations that
can fit within the time window of the nth data acquisition
channel—that is, the number of attempts that will occur in that
time window.

According to MQT theory, at sufficiently low temperatures
tunneling of the phase variable becomes the dominant escape
mechanism, in which case the escape rate takes the form

�q = aqfn exp

[
−7.2

�Un

hfn

(
1 + 0.87

Q
+ · · ·

)]
, (8)

where

aq =
[

120π

(
7.2�Un

hfn

)] 1
2

. (9)

Clearly, in contrast to the classical expression Eq. (3), this
escape rate does not depend on temperature. Voss and Webb2

pointed out that the transition from classical to quantum
behavior should take place around a “crossover temperature”
satisfying

Tcr ≈ hf

7kB

. (10)
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III. MICROWAVES OFF

The height of the barrier at the nth step is given by the
well-known expression

�Un = 2
IC�0

2π

[√
1 − η2

n − ηn cos−1 ηn

]
, (11)

so
�Un

kBT
= 2

β

[√
1 − η2

n − ηn cos−1 ηn

]
, (12)

where

β =
(

2πkB

�0

)
T

IC

. (13)

A. Voss and Webb (1981)

As an example of an experimental simulation, parameters
were chosen to be N = 5000, M = 100 000, fJ = 35.53 GHz,
and fS = 10 Hz, numbers consistent with the experiments of
Voss and Webb2 (although they gave no value for the number
of channels in their system). The evolution of the peaks shown
in Fig. 1 is in very good agreement with the experimental data
in Fig. 1 of Voss and Webb.2 Also shown in Fig. 1 is the single
MQT peak from a simulation using the escape rate expression
Eq. (8) with Q = 50. The conclusion to be drawn is that when
the value of β drops below a crossover equivalent, macroscopic
quantum behavior should take over from the classical escape
process and the temperature-independent peak marked MQT
should become frozen in place. In such a case not only the
peak widths but also the peak positions must remain constant.
Then, none of the classical peaks to the right of MQT would
be observed in an experiment.

The crossover temperature, Eq. (10), is a function of the
natural frequency of a particular well, and this in turn is
controlled by the applied bias current as specified in Eq. (6).
Therefore, in a swept-bias experiment, one is also sweeping
the natural frequency of the continuously varying well shape.

FIG. 1. (Color online) Simulation results for a swept-bias ex-
periment. The ten classical peaks had β values (left to right) of
0.0551, 0.0375,0.0259, 0.0169, 0.0123, 0.0092, 0.00656, 0.00372,

0.00223,0.00160. The single escape peak labeled MQT was com-
puted using expression (8) for the escape rate with Q = 50.

FIG. 2. (Color online) Dependence of the crossover temperature
on bias current, for sample parameters of Voss and Webb.2 Dots mark
the positions of the seven lowest temperature peaks shown in Fig. 1 of
Ref. 2. At 1.470 μA, the experimental data drop below the crossover
boundary. According to the MQT hypothesis, the escape peaks should
then become temperature independent and peak positions would be
expected to lie on the vertical line, as depicted by open circles.

It is simple to use Eqs. (6) and (10) to plot the dependence
of crossover temperature on bias current; this is shown in
Fig. 2. The positions (bias values) of the experimental peaks,
indicated by solid dots, were manually extracted from Fig. 1
in Ref. 2 using digitizing software.15 A vertical line marks
the point at which the sample temperature has dropped below
the crossover characteristic; this occurs at T ≈ 155 mK and
a bias of 1.470 μA. Note that the two experimental escape
peaks for temperatures T = 95 mK and T = 5 mK are below
the anticipated quantum transition temperature and appear not
to have frozen at 1.470 μA, but instead continue to advance
beyond the MQT stopping point into the shaded “forbidden”
zone. While this progression of escape peaks toward higher
bias values is contrary to the expectations of the MQT model,
it is consistent with the classical escape model.

The apparent saturation of the widths of the escape peaks
below the crossover temperature, noted in Ref. 2 was claimed
to constitute the “first compelling evidence for the existence
of quantum tunneling of a macroscopic variable.” Using
digitizing software, the experimental data points for the peak
widths were extracted from Fig. 3 in Ref. 2. These points are
plotted in Fig. 3. More than twenty years ago, Cristiano and
Silvestrini16 proposed that the presence of some additional
noise could raise the sample temperature above the bath
temperature T such that Teff = T + TN . In particular, they
demonstrated that the observed temperature dependence of the
peak widths in Ref. 2 could be replicated using TN = 63 mK
and with classical escape theory alone. Such an elevated
sample temperature, possibly due to self-heating, was also
noted in Ref. 17.

We have run our simulation with T replaced by Teff and
TN = 63 mK, and the results, virtually identical to those in
Ref. 16, are shown in Fig. 3. By most standards, the agreement
between experiment and classical theory is excellent. A vote
in favor of a quantum signature in these data could only be
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FIG. 3. (Color online) Dots: experimental peak widths from Fig. 3
of Ref. 2. Dashed line: classical simulation with an effective sample
temperature of T + 63 mK, where T is the bath temperature.

supported by a much finer analysis including error bars in the
experimental peak widths. As it stands, the classical model
fits the experimental data exceptionally well over two orders
of magnitude in bath temperature with the above-mentioned
suggested effective sample temperature.

IV. MICROWAVES ON

We now consider appropriate modifications to the swept-
bias model needed to take into account the action of applied mi-
crowaves. In such experiments, a fixed-frequency microwave
source is used and the bias current is ramped up.

Our numerical solutions of the equation of motion of the
phase11 with both dc and ac bias reveal induced oscillations
around the minimum in the potential well. The amplitude of
these oscillations depends on the dc bias chosen. There will be
a particular bias, ηres, at which the the oscillation amplitude is
a maximum. The question is, what is the value for ηres?

In the harmonic approximation, the natural frequency of a
well is related to the dc bias through Eq. (6). However, as shown
in Refs. 4 and 6, when the amplitude of the phase oscillations
is large, the cubic nature of the well comes into play and an
anharmonic approximation takes the place of Eq. (6):

fn = fJ

√√√√(J0(A) + J2(A))

√
1 −

(
ηn

J0(A)

)2

, (14)

where Jp is the Bessel function of pth order, first kind, and A is
the amplitude of the oscillation. Thus, the resonance frequency
is depressed for increasing oscillation amplitudes A. It has
been found that situations in which resonant states produce
nonzero and nonunity switching probabilities are given for
oscillation amplitudes near the inflection point of the potential
well. In the limit η → 1, this value of A is given by the explicit
expression A2 ≈ 4

3 (1 − ηres).
Setting fn = fac in Eq. (6) would give one answer for the

resonant bias ηres, while Eq. (14) would give a slightly smaller
answer. This means that without knowledge of the strength of
the microwaves at the junction, the best one can say is that ηres

must lie somewhere below the value for A = 0 (as also seen
experimentally in Ref. 18) and in the vicinity of the interval
spanned by the two values for A = 0 and A2 ≈ 4

3 (1 − ηres).
As an example, for a microwave frequency fac/fJ = 0.350,
the limits of ηres are 0.9925 and 0.9887.

Let the amplitude of the induced phase oscillation to
the right of the minimum point of any well be denoted
δϕn. For not too large excitations, δϕ has a bell-shaped
distribution, centered at ηres. At ηres the ac field is transferring
a maximum amount of energy into the junction. On either side
of this optimum bias, the amplitude of the phase oscillations
diminishes and the absorbed energy declines. For a bell-shaped
distribution of δϕ we used the following heuristic expression:

δϕn = a
b2

(ηn − ηres)2 + b2
. (15)

There are two parameters here: b, which sets the sharpness of
the distribution, and a, which sets the peak value.

Whenever sustained phase oscillations are induced, the
added energy is

�U1n

kBT
= β−1 {[− cos ϕmax − ηnϕmax)]

− [− cos ϕmin − ηn (ϕmin)]} (16)

with ϕmin = sin−1 ηn and ϕmax = ϕmin + δϕn. This will reduce
the escape barrier in the nth interval to an effective value

�Ueff

kBT
= �Un

kBT
− �U1n

kBT
, (17)

and this is what thermal noise needs to overcome. This effective
barrier height replaces the original in Eq. (7) and then the
simulation can proceed as before.

We now apply this simulation to several sets of published
data. First we consider experiments which showed only a
single microwave-induced escape peak.

A. Single microwave-induced peaks

As already noted, swept-bias experiments yield histograms
for the escape probability. Some authors prefer to convert
such data to escape rates � as a function of bias cur-
rent. Then a relative rate, with and without microwaves,
[�(P ) − �(0)]/�(0), may be plotted. This has the effect
of stripping away the thermal escape peak (as discussed in
Secs. III and IV), thereby isolating purely microwave-induced
phenomena.

1. Martinis et al. (1985)

Consider the results presented in Martinis et al.3 Their
Fig. 3 is reproduced in the upper panel of Fig. 4. The junction
was characterized by the following parameter values: IC =
9.489 μA and C = 6.35 pF. This gives a junction zero-bias
plasma frequency fJ = 10.72 GHz; hence the microwave
frequencies of 3.7, 3.6, 3.5, and 3.4 GHz correspond to
0.3451, 0.3358, 0.3265, and 0.3172 in dimensionless form.
This experiment was carried out at T = 18 mK.

For comparisons of these experiments with classical results,
we simply make use of the escape rate expression, Eq. (3),
with a barrier given by Eq. (12) in the absence of microwaves
or with a reduced effective barrier given by Eq. (17) when
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FIG. 4. (Color online) Comparison of the experimental results of
Martinis et al.3 (top) with our simulation (bottom).

microwaves are present. For each of the four microwave
frequencies, the anharmonic result, Eq. (14), was used to obtain
the bias current ηres which selects the well that is resonant
with the excitation. With this normalized bias, Eq. (16)
together with Eq. (15) permits the reduced barrier height to be
calculated.

The remainder of the parameters chosen to match the
situation were a = 0.10, b = 0.0010, and β = 0.0000796. The
results for the classical escape-rate calculations are shown in
the lower panel of Fig. 4. As can be seen, the classical results
agree very well with the experimentally observed peaks in the
escape rates for these four microwave frequencies.

2. Thrailkill et al. (2009)

Thrailkill et al.19 carried out swept-bias experiments on
a Josephson junction characterized by IC = 9.485 μA and
C = 4.7 pF. The Josephson plasma frequency was thus
fJ = 12.46 GHz. The escape probability distributions were
measured at several different combinations of temperature
and microwave frequency, as shown in the upper panel of
Fig. 5. For the classical simulations, the parameter values
were a = 0.09, b = 0.003 (equivalent to a half-width in the
distribution of 0.028 μA) and from top to bottom, ηres = 0.972,
0.976, 0.980, and 0.984. The simulation results clearly are in
very good agreement with the experimental data. Note that

FIG. 5. (Color online) Comparison of experimental data from
Thrailkill et al.19 (top) and our simulation results (bottom). where
closed circles indicate results without microwaves.

the ac resonance and the thermal peak are nearly on top of
each other, so the peaks almost merge. Also, the simulation
exhibits the same shifting effect as in the experiments:
The thermal peak without microwaves becomes displaced
slightly toward lower bias values when the microwaves are
turned on.

B. Multiple microwave-induced peaks

Every swept-bias experiment with microwaves present
yields at least one ac induced escape peak. This includes both
Figs. 2 and 3 in Ref. 3, Fig. 3 in Ref. 17, Fig. 2 in Ref. 19,
and Fig. 6.5 in Ref. 20, but only in two instances was a second
microwave peak in evidence.

In Fig. 2, of Ref. 3, one of the experimental samples
exhibited an additional microwave escape peak. For that
experiment, the sample parameters were IC = 30.572 μA,
C = 47 pF, and so fJ = 7.07 GHz. Hence the normalized
microwave frequency of 2 GHz was 0.2829. The two peaks
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FIG. 6. (Color online) Comparison of classical model and quan-
tum model with experimental data. Circles are experimental points,
squares are predictions of the quantum model [digitized from
the positions of the arrow markers in Fig. 3(b) in Ref. 3], and
diamonds are predictions of the classical model using the anharmonic
approximation for resonance frequencies in Eq. (14). The harmonic
approximation, Eq. (6), is also plotted. The bottom pair of points are
taken from the experimental data in Fig. 2 of Ref. 3; the upper pair
of points (stars) are the two observed peaks from Fig. 3 in Ref. 17.

were at 30.43424 μA and 30.41391 μA, which in normalized
units are 0.995490 and 0.994829. These two points are
included in Fig. 6; they are both quite close to the anharmonic
curve.

In Fig. 3 of Ref. 17, there are two microwave-induced
escape peaks.The sample parameters were IC = 14.12 μ A,
C = 4.2 pF, yielding a junction plasma frequency fJ =
16.1 GHz. The microwave frequency was 5.7 GHz, which is
0.354 in normalized units. The two peaks are at bias currents of
I = 13.9907 μA and I = 13.9530 μA, which in normalized
units are 0.9908 and 0.9882. These two points are included
in Fig. 6. Interestingly, one appears to be on the anharmonic
curve, while the other is close to the harmonic curve, perhaps
suggesting that the system can resonantly respond to either
condition. The possibility for multiple states in the ac-driven
anharmonic potential is consistent with previously reported
observations (see Fig. 1 in Ref. 8). It should be pointed out
that the solid line in Berkley’s Fig. 3 was described as “a
Lorentzian fit to two peaks,” meaning it is not in any sense a
theoretical prediction and so does not constitute confirmation
of quantum expectations. The labeling of the two peaks as
|1〉 → |2〉 and |0〉 → |1〉 is based on assumptions regarding
applicable physics.

In the previous section, it was noted that the four single
peaks, each at a different microwave frequency, from Fig. 3 of
Ref. 3 are reasonably reproduced by classical calculations of
relative escape rates. These classical points are shown in Fig. 6
as diamonds that lie along the anharmonic curve. However,
the comparison of experiments with classical and quantum
theories described in Ref. 3 contained the following statement:
“Furthermore, the measured positions of the resonances are
clearly very different from a classical prediction for the
resonant activation of the particle oscillating at the plasma
frequency (dashed line).” This dashed line appears in part (b)

of the figure and is in fact the harmonic approximation, but we
see from our Fig. 6 that the fair test of the classical model is the
anharmonic approximation, and at the very least the classical
model is as successful as the quantum hypothesis.

V. EFFECT OF SWEEP FREQUENCY

It is important to note that peaks in the escape probability
distributions are not like lines in atomic spectra in that they
are a manifestation of both the fundamental physics associated
with escape rates and the way the experiment is performed–
specifically, the frequency at which the bias current is swept
from zero to its critical value, (fS). This issue was addressed
in a swept-bias simulation with: N = 50,000, M = 100,000,
fJ = 7.072 GHz, fS = 10 Hz, and β = 0.00129. The results
for microwaves off are shown in Fig. 7. Clearly, the exact
location and shape of the thermal escape peak are determined
in part by the speed with which the bias current is ramped
toward the critical value. As might be anticipated, increasing
the sweep rate moves the peak toward higher bias currents.

VI. EFFECT OF DISSIPATION

To illuminate some aspects of the effects of dissipation,
we carried out swept-bias simulations using Eqs. (4) and
(5), and for this example with parameters IC = 14.12 μA,
C = 4.2 pF, and β = 0.00018. The microwave frequency was
set at 5.7 GHz and the assumed excitation parameters were
a = 0.085 and b = 0.0012. Typical values of the dissipation
Q for underdamped Josephson junctions lie in the range 20
to 50. Escape histograms were repeated for a number of
choices of the dissipation constant parameter, and the results
are shown in Fig. 8. Note that the microwave peak does not
shift, but the position of the purely thermal peak varies with
Q. Therefore, the particular value of the junction dissipation
might have a slight effect on predictions of the Voss and
Webb–type of experiment but would not influence the positions
of microwave-induced peaks.

FIG. 7. (Color online) Simulation results showing the effects of
bias sweep frequency fS on the position of the peak in the escape
probability distribution.
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FIG. 8. (Color online) Swept bias simulations with selected
values of the parameter Q using the escape rate due to Büttiker,
Harris, and Landauer.13

VII. DISCUSSION

The decades-old papers of Voss and Webb and Martinis
et al. appeared to convincingly demonstrate the (anticipated)
appearance of MQT in superconducting circuits operating
below a crossover temperature. The classical model was
subsequently discarded as a possible source for observed
phenomena at millikelvin temperatures. In this paper we

have shown that this assertion may not be justified, and that
these early foundational experiments can certainly be modeled
successfully within a purely classical device description.

With respect to the experiments of Voss and Webb, we
have demonstrated that there was not strong evidence that the
junction had entered a macroscopic quantum state even at the
lowest temperatures. A classical model with some self-heating
gives a more consistent description of those observations.

With respect to the experiments of Martinis et al., we have
demonstrated that in the presence of microwave irradiation
the additional peaks which appear in the swept-bias escape
distributions are just as well accounted for within the classical
resonant activation model as by the proposed macroscopic
quantum model.

The key issue in this situation was nicely expressed by De-
voret et al.21 as follows: “An experiment cannot prove a theory,
but only invalidate an alternative theory.” The present study
should therefore be seen in this context—the classical theory
for these systems has not yet been ruled out. Therefore, an
exclusive presumption of MQT in these systems is not justified.
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