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Semiclassical approach to ground-state properties of hard-core bosons in two dimensions
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Motivated by some inconsistencies in the way quantum fluctuations are included beyond the classical treatment
of hard-core bosons on a lattice in the recent literature, we revisit the large-S semiclassical approach to hard-core
bosons on the square lattice at T = 0. First of all, we show that, if one stays at the purely harmonic level, the only
correct way to get the 1/S correction to the density is to extract it from the derivative of the ground-state energy
with respect to the chemical potential, and that to extract it from a calculation of the ground-state expectation
value of the particle number operator, it is necessary to include 1/

√
S corrections to the harmonic ground state.

Building on this alternative approach to get 1/S corrections, we provide the first semiclassical derivation of the
momentum distribution, and we revisit the calculation of the condensate density. The results of these as well as
other physically relevant quantities such as the superfluid density are systematically compared to quantum Monte
Carlo simulations. This comparison shows that the logarithmic corrections in the dilute Bose gas limit are only
captured by the semiclassical approach if the 1/S corrections are properly calculated, and that the semiclassical
approach is able to reproduce the 1/k divergence of the momentum distribution at k = 0. Finally, the effect of
1/S2 corrections is briefly discussed.

DOI: 10.1103/PhysRevB.85.104421 PACS number(s): 05.30.Jp

I. INTRODUCTION

Models of interacting bosons on a lattice are ubiquitous.
They have been introduced to describe the low-energy physics
of systems as different as thin superconducting films,1 Joseph-
son junction arrays,2 4He on substrates,3–5 cold atoms in
optical lattices,6 bipolarons,7 or quantum magnets in a field.8,9

In simple (unfrustrated) geometries, quantum Monte Carlo
(QMC) simulations do not suffer from the minus sign problem,
and the resulting picture is often quite clear.10 However, in
many recent applications, the relevant effective model contains
terms that lead to a severe minus sign problem. This is, for
example, true for the bosonic description of frustrated quantum
magnets in a magnetic field,11 where QMC approaches are
not appropriate. To investigate such models, it is important to
develop alternative approaches.

A very important subclass is that of models of hard-core
bosons on a lattice in which the on-site repulsion is assumed
to be infinite so that it is impossible to have more than one
boson at a given site. Such models appear, for instance, very
naturally in the description of dimer-based spin-1/2 quantum
magnets in a field.9 In this paper, we will concentrate on a
model of hard-core bosons on a two-dimensional square lattice
described by the simple Hamiltonian:

H = −t
∑
〈i,j〉

(a†
i aj + aia

†
j ) − μ

∑
i

ni, (1.1)

where t is the hopping amplitude between neighboring sites,
μ is the chemical potential, and a

†
i (ai) denotes the operator

creating (destroying) a hard-core boson at site i. One distinct
property of hard-core boson models is that they can be mapped
exactly onto spin-1/2 models using the Matsuda-Matsubara
transformation:3 ni = Sz

i + 1/2, a
†
i = S+

i , and ai = S−
i . The

equivalent spin-1/2 model is a ferromagnetic XY model with

magnetic field μ pointing in the z direction:

H = −t
∑
〈i,j〉

2
(
Sx

i Sx
j + S

y

i S
y

j

) − μ
∑

i

(
Sz

i + 1/2
)
. (1.2)

On the basis of this mapping, a semiclassical approximation
can be developed starting from the large S limit of this
spin Hamiltonian. This approach has been developed in a
series of papers.12–14 The paper by Bernardet and coworkers14

includes a careful comparison with QMC simulations and
shows that, already at the order of linear-spin wave theory,
the semiclassical approach is quantitatively accurate.

Building on this success, this semiclassical approach has
recently been used quite systematically in the investigation of
frustrated models13,15,17–21 for which it is often the only avail-
able analytical approximation. These studies have revealed a
number of subtleties, however, in the implementation of the
semiclassical approximation. A recurrent problem concerns
the calculation of the bosonic density as a function of the
chemical potential,22,23 or equivalently of the magnetization
as a function of the field. Bernardet et al. have calculated
the density as the opposite of the derivative of the energy
with respect to the chemical potential, which is equivalent to
calculating the magnetization as the opposite of the derivative
of the energy with respect to the field. But one could, in
principle, equally well calculate the magnetization as the
expectation value of the operator Sz in the ground state.
However, at the harmonic level, the two definitions do not
lead to the same answer, and it is not clear which definition
should be preferred. In addition, in its current setting, the
semiclassical approach only allows to calculate in a systematic
way quantities that can be derived from the ground-state
energy, i.e., the density and the superfluid stiffness. For
instance, no attempt has been made so far to calculate other
ground-state properties such as the momentum distribution
function. Finally, no attempt to check the convergence of
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the 1/S expansion by calculating higher-order corrections has
been made.

In the present paper, we address all these issues. First of all,
we show that, to get the same result using the two definitions
of the density, one has to include 1/

√
S corrections to the

harmonic ground state. These corrections have to be included
to get the correct answer to order 1/S because they contribute
at this order when calculating the expectation value of Sz.
In the low-density limit, we also show that these corrections
are crucial to get the logarithmic corrections predicted long
ago for interacting two-dimensional bosons. Building on this
success, we use this corrected ground state to calculate the
momentum distribution function, and we show that it leads
to a divergence at zero momentum that agrees with QMC
results. We also provide two complementary ways to calculate
the condensate at the order 1/S: from the derivative of the
energy with respect to a transverse field, and by a calculation
to the zero-momentum occupation factor using the perturbed
ground state. Finally, we calculate the 1/S2 correction to the
ground-state energy and show that it improves over the 1/S

result, supporting the basic assumption of the semiclassical
approach that the 1/S expansion is well behaved even for
S = 1/2.

Let us emphasize that we agree with all the results of Ref. 14
to order 1/S. In that respect, the main objective of the present
paper is to show how these results can be obtained from
perturbing the harmonic ground state with two new results:
a clear answer regarding the appropriate way to calculate the
expectation value of observables at the order 1/S, and the first
semiclassical calculation of the momentum distribution.

This paper is organized as follows. In Sec. II, the model
is treated in the context of linear spin wave theory (LSW).
Section III is devoted to the semiclassical correction of the
harmonic ground state and to the computation of several
observables in this perturbed ground state. Section IV presents
a comparison of the spin-wave results obtained with the results
of QMC simulations. Section V discusses the validity in the
context of a 1/S expansion of the sum rule that states that
the total density is equal to the sum of the condensate density
and of the average momentum distribution function. Section
VI presents some results obtained beyond the linear spin wave
approximation. A short conclusion is given in Sec. VII. Finally,
some details about the calculation of the superfluid density
and of the momentum distribution are given in Appendices A
and B.

II. LINEAR SPIN WAVE THEORY

A. The model

To perform a semiclassical expansion, it will prove useful
to extend the model of Eq. (1.2) in two ways. First of all, we
rescale the amplitudes in such a way that the various terms are
of the same order in the large S limit while the Hamiltonian
of Eq. (1.2) is recovered for S = 1/2. Secondly, and more
importantly, we introduce a transverse field � � 0 in the x

direction. These modifications lead to the Hamiltonian

H = − t

S2

∑
〈i,j〉

(
Sx

i Sx
j + S

y

i S
y

j

) − μ

S

∑
i

Sz
i − �

S

∑
i

Sx
i . (2.1)

The introduction of a transverse field � turned out to be an
essential ingredient in two respects. On one hand, it allows
one to calculate the condensate density as the opposite of the
derivative of the ground-state energy with respect to �, hence to
get an expression that is correct to order 1/S. On the other hand,
it breaks the continuous U(1) symmetry of the Hamiltonian
of Eq. (1.2) and opens a gap in the spectrum of the model.
Thanks to this gap, the correction to the harmonic ground state
is not divergent, and the corrected ground state can be used to
calculate the expectation value of various observables to order
1/S. The results for the original model are then obtained by
taking the limit � → 0 of the expectation values.

B. Classical solution

In the classical limit, spin operators are replaced by three-
dimensional vectors of norm S. In the absence of a transverse
field, the ground state consists of spins ordered ferromagnet-
ically in the x-y plane with a longitudinal magnetization m

that varies linearly with the magnetic field μ until saturation.
When � > 0, the classical solution lies in the x-z plane and
can be parametrized as follows:⎛

⎜⎝ Sx
i

S
y

i

Sz
i

⎞
⎟⎠ = S

⎛
⎜⎝ sin θ

0

cos θ

⎞
⎟⎠ . (2.2)

With this parametrization, the classical energy per site is given
by

E(0) = −2t sin2 θ − μ cos θ − � sin θ. (2.3)

The angle θ is fixed by minimizing the classical energy,

−4t sin θ cos θ + μ sin θ − � cos θ = 0. (2.4)

In the limit � → 0, Eq. (2.4) has the simple solution cos θ0 =
μ/4t , and Sx

i is different from zero in the field range −4 �
μ/t � 4. This defines the critical chemical potential μc = −4t

at which the system starts to acquire a transverse magnetiza-
tion. For S = 1/2, at μ > μc, we have Sz

i > −1/2, which
in terms of the original hardcore boson model corresponds
to a nonzero density of bosons. Thus μc is the value of
chemical potential at which a hardcore boson population starts
to develop. For � �= 0, the angle θ is a function of �. In
the following, we will focus on small � case, and we will
calculate the small � correction to several quantities. From the
equation sin θ (−4t cos θ + μ) = � cos θ , it is easy to see that
the first-order correction to θ is given by

∂θ

∂�

∣∣∣∣
�=0

= cos θ0

4t sin2 θ0
. (2.5)

The classical onsite magnetization is Sz = S cos θ and the
classical hardcore boson density is given by ρclass = (cos θ +
1)/2. In the limit where the transverse field vanishes, the
classical density is given by

ρclass = 1

2

(
μ

4t
+ 1

)
. (2.6)
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C. Holstein-Primakoff transformation

In order to study the effect of quantum fluctuations around
this classical solution, we start by performing a rotation of the
spins at each site:

Sx
i = cos θSx ′

i + sin θSz′
i ,

S
y

i = S
y ′
i , (2.7)

Sz
i = − sin θSx ′

i + cos θSz′
i ,

such that the Hamiltonian of Eq. (2.1), expressed in the rotated
frame (x ′,y ′,z′), has a ferromagnetic ground state. The new
spin operators can be expressed in terms of Holstein-Primakoff
bosons.24 To next to leading order, the expressions take the
following form:

Sz′
i = S − b

†
i bi ,

Sx ′
i =

√
2S

2
(bi + b

†
i ) − 1

4
√

2S
(nibi + b

†
i ni) + · · · , (2.8)

S
y ′
i =

√
2S

2i
(bi − b

†
i ) − 1

4i
√

2S
(nibi − b

†
i ni) + · · · .

The resulting Hamiltonian in terms of Holstein-Primakoff
bosons can be expanded as

H =
∑
n�0

H(n), (2.9)

where H(n) is proportional to S− n
2 . The first term of this

series is H(0) = NE(0), N being the total number of sites.
By construction, H(1) = 0 since we expand around a spin
configuration, which is a classical minimum of the energy.
H(2) is quadratic in bosonic operators, while H(3) and H(4)

contain only three or four boson terms, respectively. Their
expressions are given by

H(2) = − t

2S

∑
〈i,j〉

(cos2 θ + 1)(bi b
†
j + b

†
i bj )

− t

2S

∑
〈i,j〉

(cos2 θ − 1)(bi bj + b
†
i b

†
j ) (2.10)

+ 1

S

∑
i

b
†
i bi (4t sin2 θ + μ cos θ + � sin θ ),

H(3) = 2t

S
√

2S

∑
〈i,j〉

ni(bj + b
†
j ) sin θ cos θ, (2.11)

H(4) = − t

S2

∑
〈i,j〉

1

8
(1 − cos2 θ )([ni + nj ]bibj + H.c.)

− t

S2

∑
〈i,j〉

−1

8
(1 + cos2 θ )(b†i [ni + nj ]bj + H.c.)

− t

S2

∑
〈i,j〉

sin2 θninj . (2.12)

The calculation of 1/S corrections, to which most of the
paper is devoted, is based on H(2) and H(3). The fourth-order
correction H(4) will only be used in Sec. VI when we calculate
the 1/S2 correction to the energy.

D. Diagonalization of the harmonic Hamiltonian

In terms of the Fourier transformations of the Holstein-
Primakoff operators defined by

bj = 1√
N

∑
k

bke
irj k, b

†
j = 1√

N

∑
k b

†
ke

−irj k,

(2.13)

bk = 1√
N

∑
j

bj e
−irj k, b

†
k = 1√

N

∑
j b

†
j e

irj k,

H(2) can be decoupled into a sum over different modes:

H(2) = 1

S

∑
k

(b†k,b−k)

(
Ak Bk

Bk Ak

) (
bk

b
†
−k

)

− 1

2S

∑
k

(4t sin2 θ + μ cos θ + � sin θ ), (2.14)

where the coefficients Ak and Bk are defined by

Ak = − t

2
γk(cos2 θ + 1) + 2t sin2 θ + μ

2
cos θ + �

2
sin θ,

(2.15)
Bk = t

2
γk sin2 θ,

with γk = cos kx + cos ky . With the help of Eq. (2.5), these
coefficients can easily be expanded to linear order in �:

Ak ≈ A0
k + �

2

(
cos2 θ0

sin θ0

γk

2
+ 1

sin θ0

)
,

(2.16)

Bk ≈ B0
k + �

cos2 θ0

4 sin θ0
γk,

where A0
k = −t[γk(1 + cos2 θ0) − 4]/2 and B0

k =
(tγk sin2 θ0)/2 denote the coefficients Ak and Bk in the
absence of a transverse field.14 The second term in Eq. (2.14)
can also be expanded to first order in �, leading to
−(1/S)[

∑
k 2t + �/(2 sin θ0)].

The quadratic Hamiltonian (2.14) can be diagonalized via
a Bogoliubov transformation:

bk = ukαk − vkα
†
−k, b

†
k = ukα

†
k − vkα−k. (2.17)

The coefficients which ensure that the operators αk(α†
k) satisfy

bosonic commutation relations and that the Hamiltonian is
diagonal are given by

u2
k = 1

2

(
Ak√

A2
k − B2

k

+ 1

)
,

(2.18)

v2
k = 1

2

(
Ak√

A2
k − B2

k

− 1

)
.

In terms of the Bogoliubov operators, and to first order in �,
the Hamiltonian takes the diagonal form:

H(2) = 2

S

∑
k

√
A2

k − B2
k α

†
kαk

+ 1

S

∑
k

(√
A2

k − B2
k − 2t − �

2 sin θ0

)
. (2.19)
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The ground state of the harmonic Hamiltonian H(2) is the
vacuum of α particles. We will refer to it as the harmonic
ground state in the rest of this paper. The first-order 1/S

correction to the energy per site is given by

E(2) = 1

SN

∑
k

(√
A2

k − B2
k − 2t − �

2 sin θ0

)
. (2.20)

The only difference with the approach of Ref. 14 is that, as
long as the transverse field is strictly positive, the Bogoliubov
transformation is well behaved even at k = 0 since the
excitation spectrum is gapped. Indeed, for small k and �,
the excitation energy �k = 2

√
A2

k − B2
k/S can be written as

�k ≈
√

	2 + v2k2, (2.21)

with

	 = 2

S

√
�t sin θ0 + O

(
�

3
2
)
, (2.22)

and

v = 2

S
t sin θ0 + �(1 + 3 cos2 θ0)

4S sin2 θ0
+ O(�2). (2.23)

In the limit � → 0, the spectrum becomes gapless and linear,
as expected for phononlike excitations in a superfluid.

E. Calculation of the densities from the ground-state energy

A system of bosons is characterized by three densities: the
total density, the condensate density, and the superfluid density.
They can all be calculated as derivatives of the ground-state
energy. Using the Hellman-Feynman theorem that states that〈

∂H(h)

∂h

〉
= ∂

∂h
〈H(h)〉, (2.24)

where h is some parameter of the Hamiltonian, one can
calculate the longitudinal magnetization m as

m(S) = −S
∂E(2)(� = 0)

∂μ
(2.25)

and the transverse magnetization m⊥ as

m⊥(S) = −S
∂E(2)

∂�

∣∣∣∣
�=0

(2.26)

while the spin stiffness is given by the second derivative of the
energy with respect to a twist (see Appendix A). The advantage
of deriving these densities from the ground-state energy is that,
once we have an expression of the energy to a given order in
1/S, we obtain expressions of the densities that are correct
at the same order. Let us discuss the result for the various
densities.

1. Total density

Using the expression of the energy of Eq. (2.20) for � =
0, the derivative with respect to μ leads to the longitudinal
magnetization

m(S) = S cos θ0 + cos θ0

4

1

N

∑
k

γk

√
A0

k − B0
k

A0
k + B0

k

.

The total density ρ is related to the longitudinal magnetization
by ρ = m(S = 1/2) + 1/2, which leads to

ρ = 1 + cos θ0

2
+ cos θ0

4

1

N

∑
k

γk

√
A0

k − B0
k

A0
k + B0

k

(2.27)

in perfect agreement with Ref. 14.

2. Condensate density

Taking now the derivative of the energy of Eq. (2.20)
with respect to �, we obtain the following expression for the
transverse magnetization:

m⊥(S) = S sin θ0

− 1

2 sin θ0

1

N

∑
k

⎡
⎣ A0

k√(
A0

k

)2 − (
B0

k

)2
− 1

⎤
⎦

− cos2 θ0

4 sin θ0

1

N

∑
k

γk

√
A0

k − B0
k

A0
k + B0

k

.

The condensate density ρ0, which is the number of bosons
occupying the k = 0 mode per site ρ0 = 〈a†

k=0ak=0〉/N =∑
ij 〈S+

i S−
j 〉/N2, is simply related to the transverse magneti-

zation by ρ0 = [m⊥(S = 1/2)]2, which leads to the expression

ρ0 = 1

4
sin2 θ0 − 1

2N

∑
k

⎡
⎣ A0

k√(
A0

k

)2 − (
B0

k

)2
− 1

⎤
⎦

− cos2 θ0

4

1

N

∑
k

γk

√
A0

k − B0
k

A0
k + B0

k

. (2.28)

This expression is different from that of Ref. 14. The two
expressions are strictly equivalent only in the limit μ → −4t

(low-density limit) and at μ = 0 (half-filling). In the range
−4 < μ/t < 0 and 0 < μ/t < 4, the expression of Ref. 14
differs form that of Eq. (2.28) by a term which is of order 1/S2

[note that this difference comes from the fact that in Ref. 14
both the condensate and superfluid densities are expressed
in terms of ρ(1 − ρ), where ρ denotes the particle density
corrected to order 1/S.16 We believe that the above expression
for the transverse magnetization is the correct one to order
1/S. This will be further supported by a direct calculation of
the expectation value of Sx in the next section.

3. Superfluid density

As explained in Appendix A, the superfluid density is given
at 1/S order by the following expression:

ρsf = 1

4
sin2 θ0 + 1

4Nt

∑
k

[
2t −

√(
A0

k

)2 − (
B0

k

)2]

− cos2 θ0

4

1

N

∑
k

γk

√
A0

k − B0
k

A0
k + B0

k

. (2.29)

This expression is equivalent to order 1/S to the expression
of Ref. 14. Looking at the expressions (2.28) and (2.29)
for the condensed and superfluid densities, one can make
several interesting observations. First, quantum fluctuations
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deplete the condensate whereas they enhance superfluidity. In
Eq. (2.29), two contributions in the mechanism of superfluidity
enhancement are present: the first term comes from the nearest-
neighbor kinetic energy, which increases (in absolute value)
due to quantum fluctuations [see Eq. (2.20)], and the second
one is due to the increase of the total density of particle ρ as
seen in Eq. (2.27). Interestingly, the same term appears in the
condensate density, but with an opposite sign.

III. LARGE S CORRECTIONS TO THE HARMONIC
GROUND STATE

Now that we have expressions for the longitudinal and
transverse magnetizations valid to order 1/S, let us show
how these expressions can be obtained as expectation values
of Sz and Sx . Since the expressions to order 1/S have been
derived from the energy calculated at the harmonic level, one
might expect that it is sufficient to calculate the expectation
value of Sz and Sx in the harmonic ground state. As we shall
see, this is not the case. The basic reason is quite simple: in
terms of Holstein-Primakoff bosons, the operators Sz and Sx

contains terms of order O(S) and terms of order O(1). To
get an expression that is correct up to order O(1), i.e., which
includes all corrections up to 1/S, one should thus include in
the ground-state corrections up to order 1/

√
S, if any, since

the expectation value of the O(S) part of the operators in such
a correction will give a contribution of order O(1). As we shall
now show, the term H(3) in the expansion of the Hamiltonian
indeed leads to a correction to the ground state of order 1/

√
S.

A. Beyond the harmonic ground state

The objective of this part is to compute the large S cor-
rections to the harmonic ground state. To do so, we treat H(3)

(2.11) as a perturbation toH(2), the small parameter being 1/S.
The ground state ofH(2), the vacuum of α quasiparticles, being
nondegenerate, we use Rayleigh-Schrödinger nondegenerate
perturbation theory. To first order, the perturbed ground state
is given by

|ψ〉 = |0〉 +
∑
|e〉

1

E|0〉 − E|e〉︸ ︷︷ ︸
O(S)

〈e|H(3)|0〉|e〉︸ ︷︷ ︸
O

(
1

S
√

S

)
= |0〉 + 1√

S

∣∣φ 1
2
〉 + O

(
1

S

)
, (3.1)

where |0〉 denotes the vacuum of α quasiparticles, |e〉 magnon
excitations and E|0〉(E|e〉) the energy of the vacuum (excited
states). The first correction to the ground state is of order 1/

√
S

since 1/(E|0〉 − E|e〉) is of order O(S), while 〈e|H(3)|0〉|e〉 is
of order O(1/S

3
2 ). The second line defines |φ 1

2 〉, the ket that
gives the 1/

√
S correction to the ground state. The above

wave function is correct to order 1/
√

S since all terms H(n)

with n � 4 in the Holstein-Primakoff expansion (2.9) will
contribute corrections of higher order in 1/S. Finally, we have
to normalize the state, which leads to

|ψ0〉 ≈
(

1 − C

2S

)
|0〉 + 1√

S

∣∣φ 1
2
〉 + · · · , (3.2)

where C = 〈φ 1
2 |φ 1

2 〉 and 〈ψ0|ψ0〉 = 1 + O(1/S2). To compute
|φ 1

2 〉, we first express H(3) in Fourier space:

H(3) = 2t

S
√

2NS

∑
k,q

sin θ cos θγq(b†q+kbkbq + b
†
k−qbkb

†
q)

(3.3)

with

b
†
q+kbkbq = (uk+qα

†
k+q − vk+qα−k−q)

× (ukαk − vkα
†
−k)(uqαq − vqα

†
−q), (3.4)

b
†
k−qbkb

†
q = (uk−qα

†
k−q − vk−qα−k+q)

× (ukαk − vkα
†
−k)(uqα

†
q − vqα−q). (3.5)

H(3) being a three-body operator, its effect on the vacuum is to
create one-magnon or three-magnon excitations. In Sec. III B,
we will show that, for the computation of first-order corrections
to the average values of the observables of interest in this paper,
only single magnon excitations are relevant. We thus write |φ 1

2 〉
as a sum of one-magnon and three-magnon contributions,

∣∣φ 1
2
〉 = ∣∣φ 1

2
〉
1m

+ ∣∣φ 1
2
〉
3m

, (3.6)

and we concentrate on the expression of the one-magnon
contribution |φ 1

2 〉1m. Due to momentum conservation in
Eq. (3.3), the only single-particle excitations allowed have
zero momenta. Hence E|0〉 − E|e〉 = −�0 = −2

√
A2

0 − B2
0/S

and |φ 1
2 〉1m is given by

∣∣φ 1
2
〉
1m

= − t√
2

sin θ cos θ
(u0 − v0)√
A2

0 − B2
0

× 1√
N

∑
k

[
2v2

k + γk
(
v2

k − vkuk
)]|1q=0〉, (3.7)

where |1q=0〉 denotes an excited state of one magnon with
momenta q = 0. Note that it is only possible to write down
such an expression because we have included a transverse field
in the Hamiltonian, so that the Bogoliubov transformation is
not singular at k = 0. This expression actually diverges in
the limit � → 0 because

√
A2

0 − B2
0 = O(�1/2), while (u0 −

v0) = O(�1/4). As we shall see, the limit � → 0 must be taken
after calculating the expectation value of the operators.

B. Expectation values of observables

1. Total density

Let us first use the perturbed ground state to calculate the
expectation value of Sz. The first step is to express 〈Sz〉 in
terms of the spin operators in the rotated frame and to use the
expansion of these operators in terms of Holstein-Primakoff
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bosons. This leads to〈
Sz

i

〉 = cos θ
〈
Sz′

i

〉 − sin θ
〈
Sx ′

i

〉
= cos θ (S − 〈b†i bi〉)

− sin θ

〈√
2S

2
(bi + b

†
i ) − 1

4
√

2S
(nibi + b

†
i ni)

〉
.

(3.8)

At the classical level, the average magnetization is given by
S cos θ0 when � = 0. The spin-wave corrections to this result
are of order O(1). Thus, given the structure of the perturbed
ground state |ψ0〉 ≈ (1 − C/(2S))|0〉 + S− 1

2 |φ 1
2 〉, the terms

entering the average magnetization to order O(1) are〈
Sz

i

〉∣∣
�=0 = S cos θ0 − lim

�→0

[
cos θ〈0|b†i bi |0〉

+ sin θ
1√
2

(〈
0
∣∣b†i + bi

∣∣φ 1
2
〉
1m

+ c.c.
)]

. (3.9)

In the above expression, we have only included |φ 1
2 〉1m in the

matrix element of b
†
i + bi since the operator b

†
i + bi can at

most create or destroy one Bogoliubov excitation. The three-
magnon component |φ 1

2 〉3m would only contribute to the matrix
element (1/

√
S)〈0|(nibi + b

†
i ni)/(4

√
2S)|φ 1

2 〉, but this term is
of order O(1/S) and can be neglected since we are interested
in the O(1) correction to the expectation value of Sz.

The matrix elements 〈0|b†i bi |0〉 and 〈0|b†i + bi |φ
1
2 〉1m are

readily computed in Fourier space:

〈0|b†i bi |0〉 = 1

N

∑
k

v2
k, (3.10)

and〈
0
∣∣b†i + bi

∣∣φ 1
2
〉
1m

= 1√
N

∑
k′

〈
0
∣∣(b†k′e

−ik′ri + bk′e
ik′ri

)∣∣φ 1
2
〉
1m

= 1√
N

〈
0
∣∣ (u0 − v0) α0

∣∣φ 1
2
〉
1m

= − t√
2

sin θ cos θ
1

N

∑
k �=0

2v2
k + γk

(
v2

k − vkuk
)

A0 + B0
(3.11)

with

A0 + B0 = 2t sin2 θ0 + �

(
cos2 θ0

sin θ0
+ 1

2 sin θ0

)
+ O(�2).

(3.12)

Note that the expression of the second matrix element has a
finite � → 0 limit because of the extra u0 − v0 factor. Injecting
back Eqs. (3.10) and (3.11) into Eq. (3.9), one recovers exactly
the expression of the longitudinal magnetization obtained
before from the derivative of the energy calculated at the
harmonic level.

2. Condensate density

The same procedure can be repeated for the operator 〈Sx
i 〉 =

sin θ〈Sz′
i 〉 + cos θ〈Sx ′

i 〉, and the � → 0 limit of its expectation

value is given by

〈
Sx

i

〉∣∣
�=0 = S sin θ0 − lim

�→0

[
sin θ〈0|b†i bi |0〉

− cos θ
1√
2

(〈
0
∣∣b†i + bi

∣∣φ 1
2
〉
1m

+ c.c.
)]

. (3.13)

Injecting back Eqs. (3.10) and (3.11) into this expression leads
to exactly the same expression for the condensate as the one
obtained from the derivative of the energy with respect to �.

3. Momentum distribution

The main advantage of this approach is that it gives access
to observables that cannot be calculated as derivatives of the
energy. Among them, a physically very important one is the
momentum distribution defined by

〈a†
kak〉 = lim

� → 0
S → 1

2

1

N

∑
ij

〈S+
i S−

j 〉eik(ri−rj ). (3.14)

The details of the calculation of 〈S+
i S−

j 〉 in the perturbed
ground state (3.2) are given in Appendix A. For k �= 0, the
momentum distribution is given by

〈a†
kak〉 = 1

4 (1 + cos θ0)2

+ 1
2

[
(1 + cos2 θ0)v2

k + ukvk sin2 θ0
]
. (3.15)

The classical expression for 〈a†
kak〉 is equal to the square of

the classical density and does not depend on k. Eq. (3.15) can
be re-expressed as

〈a†
kak〉 = 2t[1 + cos2 θ0(1 − γk)]

�k
+ cos θ0

2
, (3.16)

from which one sees that the 1/S-corrected distribution
diverges like 1/�k when approaching the condensate point at
k = 0. More precisely, the momentum distribution is singular
and behaves like ∼sin θ0/k for all values of the field −4 <

μ/t < 4. The integral of this quantity over the whole Brillouin
zone is convergent and yields the number of uncondensed
particles, which is given by

1

N

∑
k �=0

〈a†
kak〉 = (ρclass)2

(
1 − 1

N

)

+ 1

N

∑
k �=0

1

2
cos2 θ0

(
v2

k − ukvk
)

+ 1

N

∑
k �=0

1

2

(
v2

k + ukvk
)
. (3.17)

Let us point out that one can also recover the condensate
density using Eq. (B3) in Appendix A. Indeed, if k is replaced
by zero in the right-hand side of Eq. (B3), the expression can
be rearranged to lead again to the condensate density obtained
previously using the definition ρ0 = 〈Sx〉2.

IV. COMPARISON WITH QMC SIMULATIONS

In this section, we compare the large S approximation of
various quantities to exact QMC estimates obtained using the
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stochastic-series-expansion (SSE) algorithm.25 The simula-
tions have been performed for the hard-core boson model (1.1)
on square lattices L × L with L = 8,16,24,32 at temperatures
low enough to get ground-state estimates (β/t ∝ L2), in
particular, in the dilute limit where the finite size gap scales as
∼L−z with z = 2. Overall, we agree with the numerical results
of Ref. 14 whenever we could compare. We have nevertheless
included numerical results for the density, the condensate and
the superfluid density to be able to discuss their behavior close
to μc, where the corrections to the harmonic ground state
turn out to be crucial. In addition to these quantities that had
already been discussed in Ref. 14, this section also contains
QMC results for the momentum distribution.

A. Particle density

Figure 1 is a plot of the hardcore boson density as a
function of μ/t . The spin wave results for the density are
plots of 〈Sz〉 + 1/2 calculated using the perturbed (solid line)
and using the harmonic (dotted line) ground states. While
both approaches yield significant corrections to the mean
field density, the expectation value 〈Sz〉 calculated in the
harmonic ground state misses some terms of order O(1),
i.e., 1/S corrections to the classical results, as discussed in
Sec. III B. This effect is best seen in the inset of Fig. 1,
which shows the relative deviation of the spin-wave results
from the QMC estimates. For small densities, the relative
deviation from the QMC result is as large as 40% if 〈Sz〉
is computed using the harmonic ground state. This deviation
never exceeds 5% if the perturbed ground state is used.
Furthermore, the computation in the nonperturbed harmonic
ground state misses a very important feature of the dilute
Bose gas limit. Indeed, logarithmic corrections have been
shown to dominate the low-density limit26–28 close to the
critical point μc, and QMC data are indeed consistent with the
behavior ρ ∼ (μ − μc) ln (μ − μc) with μc = −4t , as shown
in Fig. 2. The density computed using the perturbed ground
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25

50
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0.5

QMC data

<S > +1/2  (LSW with corrected wave-function)

<S > +1/2  (LSW without corrected wave-function)
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Sz + 1/2 (LSW without corrected w.f)

S z + 1/2 (LSW with corrected w.f)

μ/t
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er
ro

r
%

(μ − μc)/t

FIG. 1. (Color online) Hard-core boson density ρ as a function
μ/t . QMC results (symbols) are compared with classical and LSW
calculations. The inset shows the relative deviation of the classical
and spin-wave results from the numerically exact QMC estimates.

0.1 1

0.15

0.2

0.25

(μ− μc)/t

QMC
Perturbed GS
Harmonic GS

Logarithmic fit
Classical

ρ
/(

μ
−

μ
c
)

FIG. 2. (Color online) Logarithmic corrections to the density as
a function of distance from the critical chemical potential (μ − μc).
QMC data (symbols) are described by a fit (dotted-dashed green
line) of the form α |ln [ε(μ − μc)/4t]| with α � 0.034 and ε � 0.04;
the spin-wave calculation using the perturbed ground state (black
line) captures the logarithmic correction and yields α � 0.035
and ε � 0.065. Classical (blue dotted) and LSW results using the
nonperturbed harmonic ground state (magenta dashed) do not capture
the logarithmic corrections.

state correctly captures the logarithmic correction whereas
〈Sz〉 computed in the harmonic ground state does not.

These results show without any ambiguity that the best
way to estimate the density in the context of a semiclassical
approximation is to deduce it from the derivative of the
harmonic energy with respect to the chemical potential, or
equivalently to deduce it from a calculation of the expectation
value of Sz in the ground state that includes leading corrections
beyond the harmonic approximation. The density deduced
from the expectation value of Sz calculated in the harmonic
ground state is much less accurate, and qualitatively wrong in
the dilute limit.

B. Condensate density and superfluid density

1. LSW and QMC results

Figures 3 and 4 are the plots of the condensate and
superfluid densities as a function of μ/t . The semiclassical
results presented in the previous sections are in very good
agreement with QMC results, as also discussed in Ref. 14. At
the classical level, the condensate and the superfluid densities
are equal. The effect of quantum fluctuations is to enhance the
superfluidity and to deplete the condensate. QMC estimates
for ρsf and ρ0 are obtained in the directed loop algorithm
framework25 using the winding number fluctuations29 for ρsf

and the Green’s function estimate30 for ρ0. Note that the latter
suffers from larger statistical errors than ρsf .

2. Dilute Bose gas limit

Building on the fact that the semiclassical results are very
accurate, we analyze the extremely dilute limit for condensed
and superfluid fractions using this approximate framework
with the help of semiclassical calculations on finite square
lattices of linear length L = 105 down to very low particle
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FIG. 3. (Color online) Superfluid density as a function of μ/t .
Classical (dashed line), semiclassical (solid green line), and QMC
(symbols) results are shown. Inset: superfluid fraction.

density of ρ = 10−6. Such a limit is simply impossible to
access using QMC simulations, where the computational cost
grows very fast, like ∼L4, so that only systems with a linear
size of the order of L ∼ 102 can be accessed. In both Figs. 3 and
4, these fractions are shown in the insets. While both fractions
are the same at the classical level, the effect of quantum
fluctuations is qualitatively different in the two cases. In the
extreme dilute limit, they converge to 1 very differently. Let
us first consider the superfluid density. The superfluid fraction
ρsf/ρ is enhanced by quantum fluctuations with respect to the
classical case, as seen in the inset of Fig. 3. More precisely, in
the dilute limit, the semiclassical superfluid fraction (Fig. 5,
left) tends to 1 like

ρsf/ρ = 1 − (ζ 2ρ)υ, (4.1)

with ζ � 0.728, and an exponent υ � 1.07 very close to one.
Note that, at the classical level, both fractions (superfluid and
condensate) tend to 1 like f = 1 − ρ.

By contrast to the superfluid fraction, the condensed
fraction is more affected by quantum fluctuations in the dilute
limit. Indeed, it converges much more slowly to unity, as can
be seen in the right panel of Fig. 5 and in the inset of Fig. 4. As
first predicted by Schick in Ref. 26, logarithmic corrections of
the form

ρ0/ρ = 1 − α

| ln(ξ 2ρ)| (4.2)

are expected in the extreme dilute limit. Figure 5 (right) shows
semiclassical results for the very slow convergence of the
condensate fraction to 1, with a fit to Eq. (4.2) with α � 0.86
and ξ � 0.68. In the theory of Ref. 26, the distance ξ of
Eq. (4.2) corresponds to the effective diameter of the hard core
of the bosons, i.e., to the minimal distance between bosons. In
our model, since bosons cannot be on the same site, but can
occupy neighboring sites, we expect this effective minimal
distance to be of the order of the lattice parameter (here equal
to 1), and this is indeed the case since ξ � 0.68. We also note
that the same is true for the length scale of Eq. (4.1), and that
the two length scales are of the same order (ζ ∼ ξ ∼ 0.7), a
point not addressed in Ref. 26.
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FIG. 4. (Color online) Condensate density as a function of μ/t ;
classical (dashed line), semiclassical (solid green line), and QMC
(symbols) results are shown. Inset: condensate fraction.

C. Momentum distribution

We now turn to the momentum distribution

N (k) = 〈a†
kak〉, (4.3)

which can be efficiently computed using QMC simulations,
following Ref. 30. Results for the half-filled case (μ = 0)
are shown in Fig. 6 for k �= 0 along the line kx = ky = k

in the first Brillouin zone. At the classical level (dashed
line), the distribution does not depend on momentum and
is equal to (ρclass)2. The effect of spin-wave fluctuations
(solid line) is to introduce a momentum dependence that is
singular near k = 0 and diverges like 1/k, as discussed in
Sec. III B. This redistribution of spectral weight is due to
the fact that spin waves deplete the condensate at k = 0.
The semiclassical calculation of the momentum distribution
reproduces the behavior of the QMC results for small k. This
is best seen in the right inset of the figure, which is a log-log
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FIG. 5. (Color online) Semiclassical results (red symbols) for
the superfluid (left) and condensate (right) fractions plotted versus
the total density ρ. Blue lines are fits of the form Eq. (4.1) for the
superfluid (left) and Eq. (4.2) for the condensate (right).
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0 0.1 0.2

0.2

0.22

/2 0 /20

1

3

16 x 16
24 x 24
32 x 32
LSW
MF

0.1 1
0.1

1

N(k)

N(k) L−1 k

k

N(0)
L2

Classical

FIG. 6. (Color online) Momentum distribution of hard-core
bosons N (k) Eq (4.3) at half-filling (μ = 0) along the line kx =
ky = k for k �= 0. Classical (dashed line), semiclassical (full line),
and QMC (different symbols for L = 16,24,32) results are shown
together. Right inset: log-log plot of the momentum distribution,
which diverges as ∼1/k. Left inset: finite size scaling of the
condensate density from QMC as a function of 1/L. It is well
accounted for by a quadratic fit (black line).

plot of the distribution showing the 1/k dependence of the
QMC results for small k. Looking back at Eq. (3.16), the 1/k

divergence of N (k) is a consequence of the linear spectrum
at small momentum �k ∼ k. Away from the condensation
vector k = 0, the agreement between semiclassical and QMC
results is less good. The QMC estimate is consistent with a
distribution that goes to zero when k → π while, according
to the semiclassical results, the distribution is only slightly
renormalized downward with respect to the classical constant
value.

The contribution at k = 0 is not shown on the main panel
of Fig. 6 since it diverges with the system size like L2. In
the left inset, however, we show the QMC result for ρ0 =
N (0)/L2 plotted against 1/L. Using a quadratic fit, we extract
the thermodynamic limit value of the condensate density at
half-filling ρ0 0.188(2), which is in a good agreement with the
estimate 0.191(2) reported by Sandvik and Hamer in Ref. 31
(see also Table I).

V. DENSITY SUM RULE

Having obtained the first-order corrections to the total
density of particles, the density of condensed particles and
the density of uncondensed particles, it is natural to test the
semiclassical approximation with respect to the following sum
rule:

ρ = ρ0 + 1

N

∑
k �=0

a
†
kak. (5.1)

The above equality follows directly from the conservation of
the number of particles: the total number of hardcore bosons
in the system is equal to the sum of the number of condensed
and uncondensed particles. Somewhat surprisingly, with the

FIG. 7. (Color online) Total density ρ (red diamonds) and ρ0 +
1
N

∑
k�=0 a

†
kak (blue triangles) as a function of the chemical potential.

The inset presents the violation to the sum rule.

semiclassical expressions derived in the previous section, the
sum rule of Eq. (5.1) is violated. Figure 7 shows the average
particle density obtained from Eq. (2.27) and a plot of the sum
ρ0 + (

∑
k �=0 a

†
kak)/N [the sum of Eqs. (2.28) and (3.17)]. In

the inset, the violation of the sum rule, defined as the relative
difference between the two quantities, is shown in the entire
filling range. It is smaller than 2% up to half-filling, and never
exceeds 6.5% above half-filling.

The origin of the violation of the sum rule is actually quite
simple. In the spin-1/2 language, the sum rule relies on two
identities: ∑

i

S+
i S−

i = 1

N

∑
i,j

∑
k

S+
i S−

j eik(ri−rj ) (5.2)

and

Sz
i + 1/2 = S+

i S−
i , (5.3)

which lead to

1

N

∑
i

ni︸ ︷︷ ︸
ρ

= 1

N2

∑
i,j

S+
i S−

j︸ ︷︷ ︸
ρ0

+ 1

N2

∑
i,j

k �=0

S+
i S−

j eik(ri−rj )

︸ ︷︷ ︸
1
N

∑
k �=0 a

†
kak

(5.4)

since, according to the Matsubara-Matsuda transformation,
the local density is related to the z component of the spin
by ni = Sz

i + 1/2. However, when the spin is larger than
1/2, the identity Sz

i + 1/2 = S+
i S−

i is no longer valid, and
the expectation value of Sz

i is no longer equal to that of
S+

i S−
i − 1/2.

Remarkably enough, in spite of that, the sum rule is almost
satisfied, especially below half-filling. This provides some
additional confidence in the accuracy of the semiclassical
approach. As a further test, we discuss in the next section the
effect of higher-order corrections on the ground-state energy.

104421-9



COLETTA, LAFLORENCIE, AND MILA PHYSICAL REVIEW B 85, 104421 (2012)

VI. SECOND-ORDER SPIN-WAVE THEORY

A. Energy

The convergence of the expansion of spin operators in terms
of Holstein-Primakoff bosons Eq. (2.8) can be a cause of
concern in the case S = 1/2. In this section, we compute the
1/S2 correction to the expectation value of several observables.

The ground-state energy of the Hamiltonian to H(2) gives
the energy of the original problem to order 1/S. The 1/S2

correction comes from both H(3) and H(4). It is obtained by
treatingH(3) up to second order in perturbation theory, andH(4)

to first order, as pointed out in another context by Zhitomirsky
and Nikuni.32 The contribution of H(4) is simply given by
E(4) = 〈H(4)〉/N , where the expectation value is calculated
in the harmonic ground state. Using Wick’s theorem, this
contribution is given by

E(4) = lim
�→0

t

2S2
[cos2 θ (2m − δ)(n − 	)

+ (2m + δ)(	 + n) − sin2 θ (4m2 + 	2 + n2)], (6.1)

where m,n,δ, and 	 are defined by

m = 1

N

∑
k

v2
k = 〈b†i bi〉,

n = 1

N

∑
k

v2
kγk = 2〈b†i bj 〉,

δ = 1

N

∑
k

ukvk = −〈bibi〉, (6.2)

	 = 1

N

∑
k

ukvkγk = −2〈bibj 〉,

where i and j are nearest neighbors.
Being odd in the number of bosonic operators, H(3)

contributes only at second order in nondegenerate perturbation
theory:

E(3) = 1

N

∑
|e〉�=|0〉

|〈e|H(3)|0〉|2
E|0〉 − E|e〉

∼ O
(

1

S2

)
, (6.3)

where E(3) is the energy per site. The effect of H(3) on the
Bogoliubov vacuum is to create either single-magnon excited
states or three-magnon excited states. We treat these two cases
independently and write the H(3) contribution to the energy as
E(3) = E

(3)
1m + E

(3)
3m. The single magnon component of H(3)|0〉

is
2t sin θ cos θ

S
√

2S
√

N

∑
k

(u0 − v0)
[
2v2

k + γk
(
v2

k − ukvk
)] |1q=0〉,

(6.4)

which leads to

E
(3)
1m = lim

�→0

−t2

S2
sin2 θ cos2 θ

(u0 − v0)2√
A2

0 − B2
0

× 1

N2

∣∣∣∣∣∑
k

[
2v2

k + γk
(
v2

k − ukvk
)]∣∣∣∣∣

2

= − t

2S2
cos2 θ0 lim

�→0
(2m + n − 	)2 (6.5)
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FIG. 8. (Color online) Plot of the first-order spin-wave energy,
second-order spin-wave energy, and QMC energy measured with
respect to the mean-field energy.

In the thermodynamic limit, E
(3)
3m is dominated by the

excited states in which the three magnons all have different
momenta. The three-magnon component ofH(3)|0〉 that fulfills
this condition is given by

2t sin θ cos θ

S
√

2S
√

N

∑
k,q

′f(q,k)|1k1q1−k−q〉,
(6.6)

f(q,k) = γq(uk+qvkvq − ukuqvk+q),

where the sum
∑′

k,q is such that the three momenta k,q, and
−k − q are all different. The three-magnon contribution to
E(3) takes the form

E
(3)
3m = −2t2

S3

1

N2
sin2 θ0 cos2 θ0

× lim
�→0

1

3!

∑
k,q

F2(k,q)

�k + �q + �k+q
, (6.7)

where F(k,q) is defined by

F(k,q) = f(k,q) + f(−k − q,q) + f(q,k) + f(q, − k − q)

+ f(−k − q,k) + f(k, − k − q). (6.8)

The spin-wave approximation of the energy per site to order
O(1/S2),

E = E + E(2) + E
(3)
1m + E

(3)
3m + E(4), (6.9)

is plotted in Fig. 8, together with the first-order SWT and
QMC results, as a function of μ/t . All energies are measured
with respect to the classical energy E . The difference with the
classical energy is monotonously increasing (in absolute value)
from the dilute limit up to half-filling, where the correction
due to quantum fluctuations is the most important. Clearly,
the 1/S correction captures most the quantum correction, but
the inclusion of 1/S2 corrections leads to a significantly better
agreement with QMC results. This systematic improvement
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TABLE I. Ground-state estimates at half-filling (μ = 0) for the energy per site e0, the superfluid density ρsf , the condensate density ρ0, and
the compressibility κ . The three first lines are analytical results from classical and spin waves at first (1/S SW) and second order (1/S2 SW).
Below are shown QMC estimates from SSE simulations obtained by Sandvik in Ref. 31 and in this work.

Egs ρsf ρ0 κ

Classical −1 0.25 0.25 0.125
1/S SW −1.08382 0.27095 0.18904 0.1075
1/S2 SW −1.09539 0.27198 0.19127 0.1053
QMC (Ref. 31) −1.097648(4) 0.2696(2) 0.191(2) 0.1048(1)
QMC (this work) −1.09764(1) 0.2697(2) 0.188(2) 0.1048(1)

upon including higher-order 1/S corrections gives additional
support to the semiclassical expansion.

B. Other observables

Superfluid and condensate densities as well as the com-
pressibility κ = ∂ρ/∂μ can also be calculated at order 1/S2.
The calculation is straightforward but cumbersome and, for
simplicity, it is not reproduced here. The estimates that we
have obtained at half-filling are listed in Table I, together with
QMC results from the present work as well as from Ref. 31. For
the ground-state energy and the compressibility, the agreement
increases systematically from 1/S0 (classical) to 1/S2. For the
energy, the relative error is ∼9% for the classical estimate, less
than 1.3% including the 1/S correction, and ∼0.2% including
the 1/S2 correction. For the condensate density, the result
including the 1/S correction is already within the error bars
of QMC, and it is not clear whether including 1/S2 correction
leads to any improvement. For the superfluid density, both
the results including corrections up to order 1/S and 1/S2 lie
outside the error bars of QMC, and the result up to order 1/S

appears to be better than the result up to order 1/S2. In any
case, the improvement over the classical result is clear for all
quantities.

VII. CONCLUSION

The semiclassical approach to hard-core bosons on a
lattice, which is based on a large S approximation to the
Matsubara-Matsuda spin-1/2 version of the Hamiltonian, has
been revisited with a few questions in mind: what is the correct
way to get the exact 1/S correction to various observables? Can
the method be extended to a more complete characterization
of ground-state correlations? How good is the semiclassical
approach in dealing with some of the subtleties of bosons
in 2D, for instance, the logarithmic corrections of the dilute
limit? We have shown that to get the exact 1/S correction
to the ground-state expectation value of various observables,
it is necessary to include corrections to the harmonic ground
state, and we have explicitly shown how to include them for
the density, the condensate, and the momentum distribution
function, for which, to the best of our knowledge, we have
provided the first semiclassical expression. By a careful
comparison with QMC results, we have shown that, when
it is done properly, the semiclassical expansion is remarkably
accurate. In particular, we have shown that it reproduces the
logarithmic corrections predicted a long time ago in the dilute
limit as well as the divergence of the momentum distribution

at k = 0. We have further tested the reliability of the 1/S

results by looking at the density sum rule and at higher order
corrections. Whichever way one looks at it, the semiclassical
approach appears as a very accurate description of hard-core
bosons on a lattice.

ACKNOWLEDGMENTS

We are grateful to George Batrouni for very useful dis-
cussions about the results of Ref. 14. This project has been
supported by the Swiss National Fund and by MaNEP.

APPENDIX A: COMPUTATION OF
THE SUPERFLUID DENSITY

1. Classical value

The superfluid density can be obtained by imposing a phase
gradient �ri+e − �ri

= ϕ to the system (e being the unit vector
along the x or y axis of the lattice). At the classical level, this
leads to the following energy cost per site:

E(ϕ) − E(0) = t (sin θ0)2 ϕ2 + O(ϕ4). (A1)

Using the analogy introduced by Fisher, Barber, and Jastrow
in Ref. 33 where the kinetic energy density of a superflow
(density ρsf and velocity vsf) in one direction is δE(vsf) =
1
2m∗ρsf (vsf)2, with vsf = (h̄/m∗)ϕ. This gives for the super-
fluid density

ρsf = m∗

2h̄2 ϒsf, (A2)

where ϒsf = ∂2E(ϕ)/∂ϕ2|ϕ=0 is the helicity modulus, the
effective mass is given by 2m∗/h̄2 = 1/(2t), and the factor
of 2 comes from the fact that the twist ϕ has been introduced
in both directions. Finally, we get at the classical level

ρsf = sin2 θ0

4
. (A3)

Interestingly, we remark that condensate and superfluid densi-
ties are equal at this level of approximation.

2. SW corrections

In order to evaluate the SW corrections to the superfluid
fraction, the phase gradient can be introduced directly on the
bosonic operators

a
†
i → a

†
i ei�i ,

(A4)
ai → aie

−i�i ,
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which in term of equivalent spin operators translates into

Sx
i → Sx

i cos �i − S
y

i sin �i,
(A5)

S
y

i → Sx
i sin �i + S

y

i cos �i.

Therefore the rotation (2.7) becomes

Sx
i = (

cos θSu
i + sin θSw

i

)
cos �i − Sv

i sin �i,

S
y

i = (
cos θSu

i + sin θSw
i

)
sin �i + Sv

i cos �i, (A6)

Sz
i = − sin θSu

i + cos θSw
i .

In the new rotated frame, at the linear SW approximation the
XY Hamiltonian now reads

H(2)(ϕ) = 2
∑

k

[Ak(ϕ)(a†
kak + a

†
−ka−k)

+ Bk(ϕ)(a†
ka

†
−k + aka−k)], (A7)

with

Ak(ϕ) = − t

2
cos ϕ[(1 + cos2 θ )γk − 4] (A8)

and

Bk(ϕ) = t

2
cos ϕ(sin2 θ )γk, (A9)

where we used S = 1/2 and where θ is fixed by the equation
cos θ = μ/(4t cos φ) imposed by the minimization of the clas-
sical energy. At order ϕ2, we have of course cos ϕ � 1 − ϕ2/2.
Similarly, the condition on θ yields cos2 θ � cos2 θ0(1 + ϕ2)
and sin2 θ � sin2 θ0 − cos2 θ0ϕ

2. Therefore we have up to the
order ϕ2:

Ak(ϕ) = Ak(0) − ϕ2

2
[Ak(0) + tγk cos2 θ0] (A10)

and

Bk(ϕ) = Bk(0) − ϕ2

2
[Bk(0) + tγk cos2 θ0]. (A11)

Writing Ak(0) = Ak and Bk(0) = Bk, the 1/S correction to
the GS energy in the presence of a small twist reads

E(2)(ϕ) − E(2)(0)

= ϕ2

N

∑
k

(
2t −

√
A2

k − B2
k − tγk cos2 θ0

√
Ak − Bk

Ak + Bk

)
.

Thus the superfluid density is given at 1/S order by the
following expression:

ρsf = sin2 θ0

4

+ 1

4Nt

∑
k

(
2t −

√
A2

k − B2
k

− tγk cos2 θ0

√
Ak − Bk

Ak + Bk

)
. (A12)

This expression and that of Ref. 14 are strictly equivalent
only at μ = −4t (low-density limit) and at μ = 0 (half-filling).
In the range −4 < μ/t < 0 and 0 < μ/t < 4, they differ by a
term which is of order 1/S2.

APPENDIX B: MOMENTUM DISTRIBUTION

We start by expressing S+
i S−

j in the rotated frame:

S+
i S−

j = cos2 θSx ′
i Sx ′

j + sin2 θSz′
i Sz′

j + S
y ′
i S

y ′
j

+ cos θ sin θ
(
Sx ′

i Sz′
j + Sz′

i Sx ′
j

)
+ cos θSz′

i δi,j − sin θSx ′
i δi,j . (B1)

The terms involved in 〈S+
i S−

j 〉 up to order O(S) are

〈S+
i S−

j 〉 = S

2
cos2 θ〈0|(bi + b

†
i )(bj + b

†
j )|0〉

+ S2 sin2 θ − S sin2 θ〈0|b†i bi + b
†
j bj |0〉

− S

2
〈0|(bi − b

†
i )(bj − b

†
j )|0〉

+ cos θ sin θ
S√
2

(〈
0
∣∣(bi + b

†
i )

∣∣φ 1
2
〉 + c.c.

)
+ cos θ sin θ

S√
2

(〈
0
∣∣(bj + b

†
j )

∣∣φ 1
2
〉 + c.c.

)
+ S cos θδi,j . (B2)

Injecting this result in Eq. (3.14) and making use of the
definitions of the inverse Fourier transforms of the bi operators,
Eq. (2.13), we obtain

〈a†
kak〉 = lim

�→0

S→ 1
2

[
S

2
cos2 θ〈0|(b−k + b

†
k)(bk + b

†
−k)|0〉

+ S2 sin2 θNδk,0

− S sin2 θδk,0〈0|
∑

i

b
†
i bi(e

ikri + e−ikri )|0〉

− S

2
〈0|(b−k − b

†
k)(bk − b

†
−k)|0〉

+ cos θ sin θ

√
NS√
2

δk,0
(〈

0
∣∣(b−k + b

†
k)

∣∣φ 1
2
〉 + c.c.

)
+ cos θ sin θ

√
NS√
2

δk,0
(〈

0
∣∣(bk + b

†
−k)

∣∣φ 1
2
〉 + c.c.

)
+ S cos θ

]
. (B3)

Hence the number of particles at momentum k �= 0 is given by

〈a†
kak〉 = lim

�→0

S→ 1
2

[
S

2
cos2 θ〈0|(b−k + b

†
k)(bk + b

†
−k)|0〉

−S

2
〈0|(b−k − b

†
k)(bk − b

†
−k)|0〉 + S cos θ

]

= 1

4
(1 + cos θ0)2

+ [
(1 + cos2 θ0)v2

k + ukvk sin2 θ0
]
/2. (B4)
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