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Critical behavior in the antiperovskite ferromagnet AlCMn3

Lei Zhang,1,* Bosen Wang,2,† Yuping Sun,1,2,‡ Peng Tong,2 Jiyu Fan,3 Changjin Zhang,1 Li Pi,1,4 and Yuheng Zhang1,4

1High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
2Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei 230031, China

3Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
4High Magnetic Field Laboratory, University of Science and Technology of China, Hefei 230026, China
(Received 15 December 2011; revised manuscript received 23 February 2012; published 29 March 2012)

We have investigated the critical behavior of the antiperovskite ferromagnetic AlCMn3 by bulk magnetization
study. The critical exponents (β, γ , and δ) have been obtained by different methods, such as a modified Arrott plot,
the Kouvel-Fisher method, and critical isotherm analysis. With these critical exponents, the experimental M-T -H
relations below and above Curie temperature collapse into two universal branches, fulfilling the single scaling
equation m = f±(h), where m and h are renormalized magnetization and field, respectively. The critical exponents
are confirmed by the Widom scaling law δ = 1 + γβ−1. Apart from a slight increase in β and γ , the deduced
critical exponents are very close to the theoretical values of the mean-field model, indicating the existence of a
long-range ferromagnetic interaction. In addition, the exchange distance is obtained as J(r) ∼ r−4.7. We suggest
that the competition between the localized Mn-Mn magnetic interaction and itinerant Mn-C hybridization should
be responsible for the critical behavior in this system.
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I. INTRODUCTION

The antiperovskite materials have attracted renewed at-
tention due to their novel physical properties, such as su-
perconductivity in MgCNi3,1 large magnetoresistance and
magnetocaloric effect in GaCMn3,2,3 nearly zero temperature
coefficient of resistance and large magnetostriction up to
2000 ppm in CuNMn3,4,5 and cracks induced by the magnetic
ordering in ZnNMn3.6 An antiperovskite with structural con-
figuration AXM3 (A represents main group element; X stands
for carbon, boron, or nitrogen; and M is the transition metal)
has a cubic structure of the perovskite type. In antiperovskite
structure materials, X ions are located at the body-centered
positions of the XM6 octahedrons, M ions are located at the
face-center positions, and A ions are located at the corner
sites.7 Despite the isostructure of the perovskite, the physical
properties of the transition-metal ions in the antiperovskite
are very different from those in the perovskite owing to their
different ionic occupations.

In Mn-based antiperovskite materials, AlCMn3 is promi-
nent because of its large magnetocaloric effect near room
temperature, which makes it a potential application for
magnetic refrigeration with the advantage of being environ-
mentally friendly.8 AlCMn3 exhibits a paramagnetic (PM)–
ferromagnetic (FM) phase transition at the Curie temperature
TC = 288 K without magnetic hysteresis, and its resistivity
shows a metallic behavior. Therefore, some previous investi-
gations have proved that it is a soft itinerant ferromagnet.9–11

Although the magnetothermal properties of AlCMn3 have
been extensively investigated, more studies are desired to
understand the intrinsic magnetic interactions. As shown in
recent investigations, analysis of the critical exponents near
the PM-FM region is an effective way to clarify the magnetic
interactions and properties.12–14 In this paper, we study the
critical behavior of AlCMn3, where the critical exponents β,
γ , and δ have been obtained reliably by different analytical
methods. It is found that the magnetic behavior of AlCMn3

is close to the theoretical prediction of the mean-field model,

except that β and γ are slightly larger than theoretical values.
In addition, the magnetic interaction distance was deduced to
decay as J(r)∼ r−4.7.

II. EXPERIMENT

A polycrystalline sample of AlCMn3 was prepared by
the solid-state reaction method. The detailed preparation
procedure was described elsewhere.8 The magnetization was
measured using a superconducting quantum interference de-
vice magnetometer (Quantum Design MPMS). The sample
was processed to ellipsoid shape, and the magnetic field was
applied along the longest semiaxis to decrease the demag-
netizing field. In order to make sure each curve was initially
magnetized, the isothermal magnetization was performed after
the sample was heated well above TC for a long enough time,
then cooled under zero field to the objective temperature.
The applied magnetic field Ha has been corrected into the
internal field as Hi = Ha − NM (where M is the measured
magnetization and N is the demagnetization factor obtained
as in Ref. 15). The calculated Hi was used for analysis of the
critical behavior.

III. RESULTS AND DISCUSSION

Figure 1 displays the temperature dependence of magneti-
zation M(T ) and inverse magnetization M−1(T ) for AlCMn3.
A PM-FM phase transition occurs at TC ∼ 288 K, which is de-
termined from dM/dT (shown in the inset of Fig. 1), in agree-
ment with previous reports.11,16 The M(T ) curve branches
between the zero-field-cooling (ZFC) and field-cooling (FC)
conditions, which may be due to magnetic disorders caused by
atomic disorders. The deviation of M−1(T ) from the straight
line above TC indicates the appearance of critical fluctuations
even in the PM phase.17 Generally, H/M vs M2 present a
series of straight lines around TC in ferromagnetic materials
according to the Arrott plot, where H/M vs M2 at TC just pass
through the origin.18 The slope of the line indicates the order
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FIG. 1. (Color online) Temperature dependence of magnetization
M(T ) (left axis) and inverse magnetization M−1(T ) (right axis). The
inset shows dM/dT vs T .

of the phase transition according to the criterion suggested
by Banerjee: a negative slope corresponds to a first-order
transition while positive slope corresponds to a second-order
one.19 Figure 2(a) presents the initial isothermal magnetization
around TC at the interval of 2 K, and H/M vs M2 around TC

are plotted in Fig. 2(b). It can be seen that all H/M vs M2

relations show quasistraight lines with positive slopes in high
field range, implying a second-order transition. However, these
lines are not parallel to each other, indicating that β = 0.5 and
γ = 1.0 within the framework of Landau mean-field model
need to be modified.

It is well known that the critical behaviors for a second-
order phase transition can be studied in detail through a
series of critical exponents. In the vicinity of a second-order
phase transition, the divergence of correlation length ξ = ξ0|

FIG. 2. (Color online) (a) The initial isothermal magnetization
around TC ; (b) Arrott plot of H/M vs M2.

FIG. 3. (Color online) (a) The spontaneous magnetization MS

(left) and inverse initial susceptibility χ 0
−1 (right) vs T with the

fitting solid curves; (b) KF plots for MS(T ) (left) and χ 0
−1(T ) (right)

(solid lines are fitted); (c) scaling plots around TC using β and γ

determined by the KF method (only a few typical curves are shown);
(d) the renormalized magnetization and field potted as m2 vs h/m.

(TC − T )/TC |−ν leads to universal scaling laws for the
spontaneous magnetization MS and initial susceptibility χ0.
In this sense, the mathematic definitions of exponents from
magnetization can be described as20,21

MS(T ) = M0(−ε)β, ε < 0, T < TC, (1)

χ0(T )−1 = (h0/M0)εγ , ε > 0, T > TC, (2)

M = DH 1/δ, ε = 0, T = TC, (3)

where ε = (T − TC)/TC is the reduced temperature and
M0/h0 and D are critical amplitudes. The parameters β

(associated with MS), γ (associated with χ0), and δ (associated
with TC) are the critical exponents. As shown in Fig. 3(a),
MS and χ−1

0 are obtained by linear extrapolation from the
high-field region to the intercepts. According to Eqs. (1) and
(2), it is obtained from the modified Arrott plot that β =
0.618 ± 0.002 with TC = 288.5 ± 0.1 and γ = 1.184 ± 0.003
with TC = 287.1 ± 0.3. One can see that the value of TC

obtained from the modified Arrott plot agrees well with that
obtained from the M(T ) curve.

On the other hand, the critical exponents can be accurately
determined by the Kouvel-Fisher (KF) method:22

MS(T )

dMS(T )/dT
= T − TC

β
, (4)

χ−1
0 (T )

dχ−1
0 (T )/dT

= T − TC

γ
. (5)

According to Eqs. (4) and (5), MS(T )/[dMS(T )/dT ] and
χ−1

0 (T )/[dχ−1
0 (T )/dT ] vs T should yield straight lines with

slopes 1/β and 1/γ , respectively. MS(T )/[dMS(T )/dT ] and
χ−1

0 (T )/[dχ−1
0 (T )/dT ] vs T are plotted in Fig. 3(b). The

new exponents are obtained as β = 0.606 ± 0.009 with TC =
288.5 ± 0.5 and γ = 1.177 ± 0.008 with TC = 287.1 ± 0.6
by the KF method. These values are close to those deduced
from the modified Arrott plot.
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FIG. 4. (Color online) The critical isotherm analysis at TC . The
inset shows the plot on log10-log10 scale with a fitted solid line.

According to the prediction of the scaling equation, in
the asymptotic critical region, the magnetic equation can be
written as21

M(H,ε) = εβf±(H/εβ+γ ), (6)

where f± are regular functions with f+ for T > TC and
f− for T < TC . Equation (6) indicates that M(H,ε)ε−β vs
Hε−(β+γ ) forms two universal curves for T > TC and T <

TC , respectively. Defining the renormalized magnetization as
m ≡ ε−βM(H,ε) and the renormalized field as h ≡ Hε−(β+γ ),
the scaling equation is rewritten as

m = f±(h). (7)

Based on the scaling equation, the isothermal magnetization
around TC is plotted in Fig. 3(c), where all experimental
data collapse onto two universal curves. Alternatively, the
exponents have been confirmed with a more rigorous method
by plotting m2 vs h/m as given in Fig. 3(d), which shows that
all experimental data fall on two independent branches. The
obedience of the scaling equation over the entire range of the
normalized variables indicates the reliability of the obtained
critical exponents.

The third critical exponent δ can be determined from the
critical isotherm analysis according to Eq. (3). Obviously,
from the above critical exponents, the Curie temperature can
be determined to be 288 K. Figure 4 shows the isothermal
magnetization at T = 288 K, where the inset shows the plot
on the log10-log10 scale. The log10(M)-log10(H ) relation yields
a straight line in the higher field range with the slope 1/δ.
Subsequently, δ = 2.971 ± 0.002 is obtained. According to
statistical theory, these critical exponents fulfill the Widom
scaling relation:23

δ = 1 + γ

β
. (8)

As a result, δ = 2.92 ± 0.02 is obtained from the modified
Arrott plot in Fig. 3(a), and δ = 2.94 ± 0.06 is deduced by the
KF method in Fig. 3(b), which agree well with that obtained
from the critical isotherm analysis.

According to the Arrott-Noakes equation of state, H/M vs
M follows (H/M)1/γ = (T − TC)/TC + (M/M1)1/β (where
M1 is constant).24 However, the Arrott-Noakes equation of
state is only strictly obeyed at the limit of ε → 0 (T → TC).
More universally, H/M vs M obeys

(H/M)1/γ = A′ + B ′M1/β, (9)

FIG. 5. (Color online) (a) The (H/M)1/γ vs M1/β with the critical
exponents obtained by the KF method; (b) temperature dependence
of modified coefficients A′ and B ′.

where A′ and B ′ are temperature-dependent coefficients. Thus
the experimental results are reconstructed as (H/M)1/γ vs
M1/β with critical exponents obtained from the KF method, as
depicted in Fig. 5(a). One can see that all lines are parallel to
each other, where the line at TC just passes through the origin.
The obtained A′ and B ′ are shown in Fig. 5(b). It is noticed
that A′ just passes the origin at TC . In addition, the minimum
of B ′ is located at TC . All the results indicate that the obtained
critical exponents are reliable.

The obtained critical exponents of AlCMn3, as well as
those of different theoretical models, are listed in Table I for
comparison. It is found that experimentally deduced β, γ , and
δ are very close to values of the mean-field model, which
indicates that the FM coupling in the sample is a long-range
interaction. However, β and γ are slightly larger than the
theoretical values. In view of the deviation of the estimated
exponents from the theoretical values, it is important to clarify
whether they belong to any universality class in the asymptotic
region. Thus the effective exponents βeff and γeff are obtained
as25

βeff(ε) = d[lnMS(ε)]

d(lnε)
, γeff(ε) = d[lnχ−1

0 (ε)]

d(lnε)
. (10)

The βeff and γeff as a function of reduced temperature ε

are plotted in Figs. 6(a) and 6(b). However, both βeff(ε)
and γeff(ε) show nonmonotonic changes with ε, indicating
that βeff and γeff do not match any predicted universality
class, even in the asymptotic region. This result resembles
that in Pr0.5Sr0.5MnO3 and partially frustrated amorphous
alloys, where the nonmonotonic changes were attributed to
magnetic disorders.15,25 As mentioned, the branching of the
M(T ) curves under the ZFC and FC conditions also implies
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TABLE I. Comparison of critical exponents of AlCMn3 with different theoretical models. MAP, modified Arrott plot; KF, Kouvel-Fisher
method; CI, critical isotherm analysis.

Composition Reference TC (K) β γ δ

AlCMn3 (MAP) This work 288.5 ± 0.1 0.618 ± 0.002 1.184 ± 0.003 2.92 ± 0.02a

AlCMn3 (KF) This work 288.5 ± 0.5 0.606 ± 0.009 1.177 ± 0.008 2.94 ± 0.06a

AlCMn3 (CI) This work 288 2.971 ± 0.002
Tricritical mean-field model 31 0.25 1.0 5.0
Mean-field model 32 0.5 1.0 3.0
3D Heisenberg model 32 0.365 1.386 4.8
3D Ising model 32 0.325 1.24 4.82

aWidom scaling relation δ = 1 + γβ−1.

the existence of magnetic disorders, in agreement with the
conclusion here. The magnetic disorders may be produced by
atomic disorders in this system. As is known, there should be
no magnetic disorders in an ideal AlCMn3 sample. However,
a few atomic disorders are unavoidable in the sample, which
lead to magnetic disorders. Therefore, the branching of ZFC
and FC may be attributed to the extrinsic magnetic disorders.
However, for a second-order phase transition, the critical
exponents for a homogeneous magnet should be independent
of the microscopic details of the system due to the divergence
of correlation length in the vicinity of the transition point.26

Hence, the critical exponents obtained here are intrinsic.
For a homogeneous magnet, the universality class of the

magnetic phase transition depends on the exchange interaction
J(r). A renormalization group theory analysis suggests the
long-range attractive interactions decay as27

J(r) ∼ 1/r (d+σ ), (11)

FIG. 6. (Color online) Effective exponents (a) βeff and (b) γeff as
a function of the reduced temperature ε.

where d is the spatial dimension and σ is a positive constant.
For the long-range interaction, we have15,27,28

γ = 1 + 4

d

n + 2

n + 8

σ + 8(n + 2)(n − 4)

d2(n + 8)2

×
[

1 + 2G
(

d
2

)
(7n + 20)

(n − 4)(n + 8)

]

σ 2, (12)

where 
σ = (σ − d
2 ), G( d

2 ) = 3 − 1
4 ( d

2 )2, and n is the spin
dimensionality. For three-dimensional materials (d = 3), there
is a relation J (r) ∼ r−(3+σ ) with 3/2 � σ � 2. When σ = 2,
the Heisenberg model (β = 0.365, γ = 1.386, and δ = 4.8) is
valid for the three-dimensional isotropic ferromagnet, where
J(r) decreases faster than r−5. When σ = 3/2, the mean-field
model (β = 0.5, γ = 1.0, and δ = 3.0) is satisfied, which
indicates that J(r) decreases slower than r−4.5. Herein, it
is obtained that σ = 1.734 ± 0.003 according to Eq. (12),
implying that J(r) decreases as ∼r−4.7 in the ferromagnetic
AlCMn3. It is noticed that J(r) lies between that of the
Heisenberg model and the mean-field model. In fact, in
Mn-based antiperovskite, it has been suggested that there
exist strong competitions between Mn-Mn and Mn-C bonds,
where the Mn-Mn bonds are metallic and the Mn-C bonds
are covalent.29 Theoretical investigations have demonstrated
that the density of states (DOS) at the Fermi level EF

[N (EF )] is predominantly contributed by Mn 3d electrons
in the Mn-based carbide antiperovskite.29 However, there
exist strong hybridization between Mn 3d states and C
2p states, which leads to the widening of the bandwidth
of Mn 3d states as wide as 5 eV.29,30 Consequently, the
electrons of the Mn 3d state are mainly itinerant in this
system. In addition, the obtained saturated magnetic moment
(μS = 1.15μB Mn−1) is much lower compared to that of the
localized Mn ions in perovskite (3 − 4 μB Mn−1), which also
indicates an itinerant character of the carriers in AlCMn3.2,8

Therefore, the competition between the Mn-Mn and Mn-C
bonds should be responsible for the exchange interaction
J(r) in this system. The Mn-Mn magnetic interaction tends
to create a localized ferromagnetism. However, the Mn-C
hybridization is inclined to form the itinerant state. Thus, the
competition leads to an itinerant ferromagnetic state with J(r)
lying between the 3D Heisenberg model and the mean-field
model.
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IV. CONCLUSION

In summary, the critical behavior of AlCMn3 has been
investigated. Reliable critical exponents β and γ are obtained
from the modified Arrott plot and KF method, and δ was
generated by critical isotherm analysis. With these exponents,
the M-T -H relations below and above TC collapse into two
universal branches in the asymptotic critical region following
the scaling equation. Moreover, all critical exponents fulfill
the Widom scaling law. It is found that the obtained critical
exponents of AlCMn3 approach close to the theoretical predic-
tion of the mean-field model, except that β and γ are slightly
larger. The investigation of critical behavior gives the result
that the interaction distance decays as J (r) ∼ r−4.7, which lies
between that of the Heisenberg model and mean-field model.
We suggest that the competition between the localized Mn-Mn

magnetic interaction and itinerant Mn-C hybridization should
be responsible for the critical behavior in this system.
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