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Triangular-lattice anisotropic dimerized Heisenberg antiferromagnet:
Stability and excitations of the quantum paramagnetic phase
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Motivated by experiments on nonmagnetic triangular-lattice Mott insulators, we study one candidate
paramagnetic phase, namely the columnar dimer (or valence-bond) phase. We apply variants of the bond-operator
theory to a dimerized and spatially anisotropic spin-1/2 Heisenberg model and determine its zero-temperature
phase diagram and the spectrum of elementary triplet excitations (triplons). Depending on model parameters,
we find that the minimum of the triplon energy is located at either a commensurate or an incommensurate wave
vector. Condensation of triplons at this commensurate-incommensurate transition defines a quantum Lifshitz
point, with effective dimensional reduction that possibly leads to nontrivial paramagnetic (e.g., spin-liquid) states
near the closing of the triplet gap. We also discuss the two-particle decay of high-energy triplons, and we comment
on the relevance of our results for the organic Mott insulator EtMe3P[Pd(dmit)2]2.
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I. INTRODUCTION

In the search for novel phases, frustrated quantum antiferro-
magnets have attracted an enormous amount of attention. Here,
the combined effect of geometric frustration and quantum
fluctuations tends to destabilize conventional magnetic order
in favor of quantum paramagnetic ground states, such as
valence-bond solids (VBS) with broken lattice symmetries or
featureless spin liquids.1–3

A prominent example of a frustrated quantum magnet is the
spin-1/2 Heisenberg model on the triangular lattice. Although
it was initially proposed by Anderson4 that its ground state
could be a resonating-valence-bond (RVB) spin liquid, it
is now established that the model displays semiclassical
noncollinear 120◦ order.5 However, modifications beyond
the simple nearest-neighbor exchange are believed to induce
nonmagnetic phases on the triangular lattice. For instance,
it has been argued6 that a combination of longer-range and
multiple-spin-exchange interactions is important near the Mott
transition to a metallic state, where they induce a spin-liquid
state as observed in numerical studies of the triangular-lattice
Hubbard model. Models with spatially anisotropic exchange
interactions have been studied as well,7–17 interpolating
from the triangular lattice to both the square-lattice and the
decoupled-chain limits, and both VBS and spin-liquid phases
have been proposed to occur.

Experimentally, triangular-lattice Heisenberg models are
realized in a variety of materials, such as the inorganic Mott
insulators Cs2CuCl4 and Cs2CuBr4 (Refs. 18 and 19) and
the organic compounds κ-(ET)2Cu2(CN)3 (Ref. 20) and
X[Pd(dmit)2]2 (Refs. 21–25, with X = EtMe3Sb or EtMe3P),
all showing some degree of spatial anisotropy. In the latter
two, the crystal lattice is rather soft: pressure can be used to
induce an insulator-to-metal transition, with superconductivity
appearing at low temperature. Spin-lattice interactions are also
relevant in the insulator, as they potentially relieve frustration
via dimerization. In fact, such a dimerized VBS phase has
been reported for EtMe3P[Pd(dmit)2]2, likely stabilized by
magnetoelastic coupling.

In this paper, we study the columnar dimer phase of
a generic triangular-lattice antiferromagnet (AF).26 In the
absence of detailed knowledge about microscopics, we focus
on a simple, yet very rich, model [Fig. 1(a)] with anisotropic
nearest-neighbor couplings and explicit dimerization, the latter
possibly arising from magnetoelastic effects. A determination
of the full phase diagram of this model (see Fig. 2 for a sketch)
is a hard task. Here we stick to the more modest goal of
characterizing the dimer phase and its triplon excitations and
locating the line of quantum phase transitions (QPTs) to a
magnetically ordered state, where the triplon gap closes. To
this end, we employ the bond-operator technique introduced
by Sachdev and Bhatt.27 It turns out to be important to go
beyond the linearized (i.e., noninteracting) boson problem:
We discuss various approximation schemes, also providing a
guideline as to which nonlinear effects are important in the
presence of frustration.

Among our results is the existence of a commensurate-
incommensurate transition (CIT) in the excitation spectrum,
i.e., the minimum of the triplon dispersion is locked at wave
vector (0,0) (in the coordinates of the dimerized lattice,
Fig. 1) in some region of parameter space, while it moves to
incommensurate momenta elsewhere. If the triplon gap closes
at the CIT line, the excitations become anomalously soft,
leading to a quantum Lifshitz point.28,29 We briefly discuss the
unusual quantum critical regime of such a putative magnetic
QPT, but we also speculate about an intervening nontrivial
paramagnetic phase. Finally, we discuss two-particle (as
opposed to three-particle) decay of magnetic excitations,30,31

which is generically possible in low-symmetry dimerized
magnets.

A. Model

We consider a triangular-lattice Heisenberg model,

H =
∑
〈i,j〉

Jij Si · Sj , (1)
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FIG. 1. (Color online) (a) Lattice structure of the model (1), with exchange couplings J , J ′, and J ′′ shown as black (thin), red (thick),
and dashed black lines, respectively. Solid (open) circles represent spin S1 (S2) of each dimer. a1 and a2 are the primitive vectors of the
dimerized lattice. (b) Dimerized ground state in the limit of large J ′. Here, ellipses represents a singlet. (c) Brillouin zone of the dimerized
lattice (solid), together with the (hexagonal) Brillouin zone of the original triangular lattice (dashed). The open circles indicate the minimum
position of ωq [Eq. (17)] for parameters J ′ = 1.5 and J ′′ = 1. Here K = (4π/3a,0), K′ = (2π/3a,2π/

√
3a), X = (π/a,0), Y = (0,π/

√
3a),

and M = (π/a,π/
√

3a), with a being the lattice spacing of the triangular lattice.

where Si represents a spin-1/2 at site i, and the nearest-
neighbor exchange couplings Jij equal J , J ′, and J ′′ according
to the pattern shown in Fig. 1(a).26 Hereafter, we employ
J = 1.

B. Phase diagram

To appreciate the richness of the model (1), it is useful to
discuss a few limiting cases, with their properties summarized
in the schematic phase diagram in Fig. 2.

(i) Line J ′′ = 1. On this line, for J ′ = 1, we recover
the isotropic triangular-lattice AF Heisenberg model. Its
ground state has noncollinear 120◦ Néel order, with com-
mensurate ordering wave vectors K = (4π/3a,0) and K′ =
(2π/3a,2π/

√
3a).5 Noncollinear order can be expected to

extend to small values of J ′. On the other hand, the limit
J ′ � 1 corresponds to a paramagnet of weakly coupled
dimers,32 such that spins that are pairwise coupled by J ′
combine into a columnar arrangement of singlets, as illustrated
in Fig. 1(b).

(ii) Line J ′′ = 0. Model (1) is now topologically equivalent
to the staggered dimerized Heisenberg model on a square
lattice, recently discussed in Refs. 33 and 34. According to
quantum Monte Carlo (QMC) calculations, a order-disorder
QPT takes place at J ′

c = 2.5196,33 with collinear Néel order
setting in for J ′ < J ′

c. The line J ′′ = 0 also includes the square
and honeycomb lattice AF at J ′ = 1 and 0, respectively.

(iii) Line J ′ = 1. Here, Eq. (1) represents the spatially
anisotropic triangular-lattice AF addressed in Refs. 7–17.
In particular, coupled-cluster calculations10 indicate that
the system displays collinear Néel order for J ′′ < 0.8 and
noncollinear spiral order with an incommensurate ordering
wave vector (except at J ′′ = 1) for 0.8 < J ′′ < 1.8. For
J ′′ � 1, the system consists of weakly coupled chains, and
a collinear AF state10 has been argued to arise as a result
of order-from-disorder physics.11,12 However, we note that
both noncollinear13 and disordered (i.e., spin-liquid) ground
states14,15 have also been proposed in this regime. For 0.7 <

J ′′ < 0.9, the physics is under debate as well: series-expansion

studies favored a spontaneously dimerized VBS in this region,9

which was not found in the coupled-cluster study.10

In total, the phase diagram of the model (1), Fig. 2, displays
a gapped paramagnetic phase, both collinear and noncollinear
long-range order (LRO), as well as putative nontrivial spin-
liquid regimes that may or may not be adiabatically connected
to the one-dimensional limit J ′′ → ∞.

In this paper, our focus is on the properties of the
dimerized paramagnet, which is adiabatically connected to
the limit of large J ′. As stated above, in a real system, such
as EtMe3P[Pd(dmit)2]2, the dimerization may arise sponta-
neously due to longer-range or ring-exchange couplings, and
will then be stabilized by magnetoelastic effects. Leaving
a detailed study of the latter for the future, we choose to
work with explicit dimerization as in Fig. 1.26 Most of our
calculations are restricted to the parameter range J ′ > J ′′ and
0 � J ′′ � 1.5. A quantitative phase diagram obtained from
various bond-operator approximations is shown in Fig. 3 and
will be discussed in detail below.

C. Outline

The remainder of our paper is organized as follows: In
Sec. II, we briefly summarize the bond-operator formalism
that is employed to describe the paramagnetic phase of the
model (1) and derive an effective Hamiltonian of interacting
triplet excitations (triplons). In Sec. III, we analyze the
noninteracting (i.e., harmonic) part of this Hamiltonian. We
determine the magnitude and momentum-space location of the
minimum energy gap of the triplons. Corrections arising from
interactions—both cubic and quartic—among the triplons are
analyzed in some detail in Sec. IV. For all levels of approxima-
tion, the closing of the triplon gap allows us to construct the
phase boundary between the singlet and long-range-ordered
phases, shown in Fig. 3. In Sec. V, we discuss various aspects
of our results, such as the two-particle decay of triplons
due to cubic interactions, the commensurate-incommensurate
transition, and the associated quantum Lifshitz point. We also
comment on some implications for the organic Mott insulator
EtMe3P[Pd(dmit)2]2. Concluding remarks close the paper. A
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FIG. 2. (Color online) Schematic phase diagram of the Heisen-
berg model (1) as a function of the couplings J ′ and J ′′, keeping
J = 1. For large J ′, a gapped dimer phase is realized (shaded).
Various other limits are indicated in the figure; see text for details.
The multicritical point, where the collinear LRO, noncollinear LRO,
and gapped dimer phases meet, is the quantum Lifshitz point. [The
classical limit of (1) is discussed in Appendix A.]

summary of the classical phase diagram of (1) as well as details
of the calculations are relegated to the Appendixes.

II. BOND OPERATORS AND TRIPLON EXCITATIONS

For J ′ > J,J ′′, it is useful to view the spin pairs coupled
by J ′ as building blocks of the model. The four states per such
dimer can be efficiently represented using bond operators,27

which naturally lead to a description of the elementary
excitations of the paramagnetic phase in terms of bosonic
spin-1 modes, dubbed “triplons.”

A. Bond-operator representation

To introduce bond operators, the triangular lattice of spins
is reinterpreted as a rectangular lattice of dimers, Fig. 1(b),
with sites i. For each dimer, one introduces bosonic operators
{s†i ,t†iα} (α = x,y,z), which create the dimer states out of a
fictitious vacuum. Explicitly (and omitting the site index i),
|s〉 = s†|0〉 and |α〉 = t†α|0〉, where |s〉 = (|↑↓〉 − |↓↑〉 )/

√
2,

|x〉 = (− |↑↑〉 + |↓↓〉 )/
√

2, |y〉 = i(|↑↑〉 + |↓↓〉 )/
√

2, and
|z〉 = (|↑↓〉 + |↓↑〉 )/

√
2. The Hilbert-space dimension is

conserved by imposing the constraint

s
†
i si +

∑
α

t
†
iαtiα = 1 (2)

on every site i. The original spin operators S1 and S2 of each
dimer are given by

S1,2
α = ± 1

2 (s†tα + t†αs ∓ iεαβγ t
†
βtγ ), (3)

where εαβγ is the antisymmetric tensor with εxyz = 1 and
summation convention over repeated indices is implied.
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FIG. 3. (Color online) Quantitative phase diagram for the Heisen-
berg model (1), obtained using the bond-operator formalism. The
dimer phase boundary ( ) has been obtained from the HF-cubic
approximation described in the paper; for comparison, we also show
the results of the harmonic mean-field27 ( ) and harmonic spin-wave
approximations (dashed blue).37 The dashed-dotted line separates the
commensurate (C) and incommensurate (INC) regions of the dimer
phase at large J ′. It continues into the dotted line, which separates the
phases with collinear and noncollinear LRO at small J ′—note that
this line is an estimate based on series-expansion9 and classical-limit
results (Appendix A). Also shown are the isotropic point J ′ = J ′′ = 1
( ) and the point J ′ = 1, J ′′ = 1.05 ( ) for EtMe3P[Pd(dmit)2]2.22

(Here, longer-range or multiple-spin interactions can also be expected
to be relevant.) Finally, on the J ′′ = 0 axis we have indicated the QMC
value of J ′

c ( ) for the square-lattice staggered dimerized Heisenberg
model.33

B. Effective theory for triplet excitations

Expressing the Hamiltonian (1) in terms of the dimer spins
(S1

i and S2
i ) yields

H =
∑

i

[
J ′S1

i · S2
i + J ′′ (S1

i · S1
i+1 + S2

i · S2
i+1

)]

+ J
∑
i,n

S2
i · S1

i+n. (4)

Here n = 1,2,3 corresponds to the nearest-neighbor vectors

τ 1 = ax̂, τ 2 =
√

3aŷ, τ 3 = a(x̂ +
√

3ŷ), (5)

with a being the lattice spacing of the original triangular lattice
(in the following, a = 1). Substituting Eq. (3) into (4) yields a
Hamiltonian of the form

H = H0 + H2 + H3 + H4, (6)

where Hn contains n triplet operators (see Appendix B for
details).

In the paramagnetic phase realized for large J ′, the singlet
can be viewed as “condensed,”27 formally s

†
i ,si → √

N0 in
Eq. (6). As a consequence, one ends up with an effective
Hamiltonian solely in terms of the (bosonic) triplet operators
t
†
i α . In the spirit of mean-field theory, the constraint (2) is
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implemented on average via a Lagrange multiplier μ. Both μ

and N0 will be self-consistently determined. One expects that
N0 ≈ 1 in the limit J ′ � J,J ′′. (Other bond-operator schemes
will be discussed in Sec. II C below.)

After performing a Fourier transform, i.e., t
†
i α =

N ′−1/2 ∑
k exp(−ik · Ri)t

†
kα , the terms of the Hamiltonian (6)

read

E0 = −3J ′N/8 − μN (N0 − 1)/2,
(7)

H2 =
∑

k

[
Akt

†
kαtkα + 1

2
Bk(t†kαt

†
−kα + H.c.)

]
,

H3 = 1

2
√

N ′ εαβλ

∑
p,k

ξk−p t
†
k−pαt

†
pβtkλ + H.c., (8)

H4 = 1

2N ′ εαβλεαμν

∑
q,p,k

γk t
†
p+kβt

†
q−kμtqν tpλ. (9)

Here N ′ = N/2, with N being the number of sites of the
original triangular lattice, and the momentum sum runs over
the dimerized (rectangular) Brillouin zone. The coefficients
Ak, Bk, ξk, and γk are given by

Ak = J ′

4
− μ + Bk, (10)

Bk = 1

2
N0[(2J ′′ − 1) cos kx − cos(

√
3ky) − cos(kx +

√
3ky)],

(11)

ξk = −
√

N0[sin kx + sin(
√

3ky) + sin(kx +
√

3ky)],

(12)

γk = −1

2
[(2J ′′ + 1) cos kx + cos(

√
3ky) + cos(kx +

√
3ky)].

(13)

A few remarks here about the general structure of the
effective Hamiltonian (6) are in order: The bond-operator ap-
proach has some parallels to the Holstein-Primakoff approach
to ordered magnets, with the difference that one considers
fluctuations above a quantum paramagnetic state instead of a
Néel state. A cubic triplet term (8) is present in many low-
symmetry situations, including the model considered here and
also the square-lattice staggered dimerized Heisenberg model
of Refs. 33 and 34. This is to be contrasted with spin waves,
where a cubic interaction term—describing two-particle decay
of transverse magnons—is only present for noncollinear spin
structures while it vanishes for collinear ones (see Ref. 35 for
a discussion).

C. Alternative bond-operator schemes

The procedure discussed in the preceding section, where
the constraint (2) is included into the description via a
Lagrange multiplier and N0 is self-consistently determined, is
the one originally proposed by Sachdev and Bhatt.27 However,
alternative methods to deal with the constraint (2) can be found
in the literature. Let us briefly summarize two of them.

Chubukov and Morr36 resolve the constraint via
s = (1 − λt†αtα)1/2, where λ is an artificial control parameter,

with λ = 1 corresponding to the physical case. The square root
can now be expanded to obtain a Taylor series in the control
parameter λ—a procedure similar to the 1/S expansion in
conventional spin-wave theory. This generates a Hamiltonian
with triplon terms up to arbitrary order, which can be analyzed
order by order in λ. Finally, one arrives at physical results by
taking the limit λ → 1.

Kotov et al.37 instead implement the hard-core constraint
explicitly in the following way. First, the t operators are
reinterpreted as creation operators of triplons on top of a singlet
background. This is formally equivalent to setting s

†
i = si = 1.

The resulting Hamiltonian contains terms up to quartic order;
its harmonic piece,H2, is analogous to linear spin-wave theory.
The constraint is converted into the inequality

∑
α t

†
iαtiα � 1,

which can be imposed using an infinite on-site triplet repulsion
term

HU = 1

2N ′ U
∑
i,α,β

t
†
i,αt

†
i,β ti,β ti,α, U → ∞.

HU , which provides the main contribution to the renormal-
ization of the noninteracting triplet energy, is treated using
a self-consistent ladder summation of diagrams (Brueckner
approximation).

Both schemes were applied to the nonfrustrated square-
lattice bilayer Heisenberg model, with the Brueckner
approach37 giving very accurate results, e.g., for the location
of the phase boundary. Results of similar quality were obtained
for other models with collinear spin correlations.38 In contrast,
we have found that the Brueckner approach is less well suited
for the present triangular-lattice model: Following Ref. 37,
we have implemented the Brueckner approximation for the
hard-core triplon repulsion and included a non-self-consistent
treatment of the cubic term to second order. In the resulting
phase diagram, the stability of the paramagnetic phase is
clearly overestimated, i.e., we find the gapped paramagnet to be
stable even at the isotropic point J ′ = J ′′ = 1, with the critical
J ′

c ≈ 0.75 at J ′′ = 1. We suspect that the combined effect of
the hard-core and cubic terms in the presence of noncollinear
correlations requires a more accurate approximation, but we
have not explored this route further. Therefore, we resort to
the mean-field-based approach of Ref. 27, the results of which
are presented in the body of the paper.

III. HARMONIC APPROXIMATION

The lowest-order approximation to the triplon dynamics
consists in keeping the quadratic term H2 of the Hamiltonian
only, which describes the physics of noninteracting bosons.
H2 can be diagonalized with the help of the Bogoliubov
transformation

t
†
kα = ukb

†
kα − vkb−kα. (14)

One finds

H = Ē0 +
∑
k α

ωkb
†
kαbkα, (15)

where

Ē0 = −3

8
J ′NN0 − 1

2
μN (N0 − 1) + 3

2

∑
k

(ωk − Ak) (16)
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is the ground state energy,

ωk =
√

A2
k − B2

k (17)

is the energy of the triplet excitations, and the Bogoliubov
coefficients in Eq. (14) obey

u2
k,v

2
k = ±1/2 + Ak/2ωk and ukvk = Bk/2ωk. (18)

From the saddle-point conditions ∂E0/∂N0 = 0 and
∂E0/∂μ = 0, self-consistent equations for μ and N0 follow
(see Appendix C for details),

μ = −3J ′

4
+ 3

N0

∑
k

Bkvk (vk − uk) , (19)

N0 = 1 − 3

N ′
∑

k

v2
k = 1 − 1

N ′
∑
k α

〈t†kαtkα〉. (20)

Once μ and N0 are known, the triplon energy (17) is completely
determined.

In Fig. 4, we show the triplon dispersion relation for two
sets of model parameters inside the disordered phase. For
the case J ′ = 3 and J ′′ = 0, the minimum gap is located

at , the center of the dimerized Brillouin zone, while for
J ′ = 1.5 and J ′′ = 1.0, the minimum gap is at incommensu-
rate momenta, Q0 = ±(2π/3, − π/3

√
3). Indeed, within the

harmonic approximation, the momentum Q0 associated with
the triplon gap can be analytically calculated. From the solution
of ∇qωq = ∇qBq = 0, one finds that it depends only on the
coupling J ′′, namely

Q0 =
{

(0,0), 0 � J ′′ � 0.75,

±(qxm,qym), J ′′ > 0.75,
(21)

with

qxm = 2 arccos

(
1

4J ′′ − 2

)
,

(22)

qym = − 1√
3

arccos

(
1

4J ′′ − 2

)
.

Note that Q0 continuously moves from a commensurate, (0,0),
to an incommensurate point, ±(qxm,qym), as J ′′ increases,
defining a commensurate-incommensurate transition (CIT) in
the excitation spectrum at J ′′

CIT = 0.75; see Fig. 5. At the
present harmonic level, Q0 only depends on J ′′, but this does

0

1

2

3

4

ω
K

k
Γ Y M X Γ M

(a)

0

1

2

ω
K

k k

0

1

2

ω
K

Γ Y M X Γ M A B

(b)

FIG. 4. (Color online) Upper row: Triplon dispersion relation at the harmonic level (solid black) along paths in the dimerized Brillouin
zone [Fig. 1(c)], for (a) J ′ = 3.0, J ′′ = 0 and (b) J ′ = 1.5, J ′′ = 1. For comparison, the dispersion obtained within the HF approximation
for the quartic term (thin green line, see Sec. IV A) is also shown, indicating that the corrections from the quartic term are minor. Finally, the
dashed red line represents the bottom of the two-particle continuum at the harmonic level. Lower row: Contour plot of the triplon energy at the
harmonic level, for (c) J ′ = 3.0, J ′′ = 0 and (d) J ′ = 1.5, J ′′ = 1.
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FIG. 5. (Color online) x and y components of the momentum Q0 (see text for definition) as a function of J ′′ at the harmonic (dashed), HF
( ), and HF-cubic ( ) approximations for the lines J ′ = 1.7 (a) and 3.0 (b). Nonzero values of Q0 correspond to incommensurate correlations.

not hold once corrections are included; see Sec. IV. Further
aspects of the CIT will be discussed in Sec. V B below.

Parenthetically, we note that—at the harmonic level—one
recovers the spin-wave-type approximation of Kotov et al.37

(see Sec. II C) if, instead of calculating μ and N0 self-
consistently, one sets μ = −3J ′/4 and N0 = 1.

IV. TRIPLON INTERACTIONS

Both the cubic and quartic interaction terms, H3 (8) and
H4 (9), renormalize the triplon energy and, consequently, shift
the phase boundary of the paramagnetic phase. Moreover,
the cubic term also induces two-particle decay of triplons, as
discussed in Refs. 30 and 31. In order to include triplon-triplon
interactions into our description, we treat the effect ofH4 at the
mean-field level (Sec. IV A) and the one of H3 perturbatively
(Sec. IV B).

A. Hartree-Fock approximation

We treat the quartic triplon interaction within the self-
consistent Hartree-Fock (HF) approximation. It is straight-
forward to show that Eq. (9) assumes the form (for details, see
Appendix A of Ref. 35)

HHF
4 = EHF

0 +
∑

k

[
AHF

k t
†
kαtkα + 1

2
BHF

k (t†kαt
†
−kα + H.c.)

]
.

(23)

Here

EHF
0 = 3

N ′
∑
k q

γk
(
v̄2

k+qv̄
2
q − v̄k+qūk+qv̄qūq

)
,

AHF
k = − 2

N ′
∑

q

γq−kv̄
2
q =

3∑
n=1

AHF
n cos(k · τ n), (24)

BHF
k = − 2

N ′
∑

q

γq−kūqv̄q =
3∑

n=1

BHF
n cos(k · τ n),

with γk being the bare quartic vertex (13), ūq and v̄q the
Bogoliubov coefficients (see definition below), τ n the nearest-
neighbor vectors (5), and the coefficients AHF

n read

AHF
1 = (J ′′ + 2)

1

N ′
∑

k

cos(kx)ū2
k,

AHF
2 = 1

N ′
∑

k

cos(
√

3ky)ū2
k, (25)

AHF
3 = 1

N ′
∑

k

cos(kx +
√

3ky)ū2
k.

Similar expressions hold for BHF
n but with ū2

k → ūkv̄k.

0

0.5

1

1.5

2

Q
x0

harmonic
HF 
HF-cubic

J′′ = 0.8

1 1.5 2 2.5 3 3.5
J′

-0.5

-0.4

-0.3

-0.2

-0.1

0

Q
y0

FIG. 6. (Color online) x and y components of the momentum Q0

(see text for definition) as a function of J ′ at the harmonic (dashed),
HF ( ), and HF-cubic ( ) approximations for the line J ′′ = 0.8. In
the strong-dimer limit of large J ′, the harmonic Q0 is approached for
both the HF and HF-cubic results.
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The final Hamiltonian is now given by H = E0 + EHF
0 +

H2 + HHF
4 . It is quadratic in triplet operators and can also be

diagonalized by the Bogoliubov transformation (14), namely

H = ĒHF
0 +

∑
k α

ω̄kb
†
kαbkα. (26)

In the above expression, the renormalized triplon energy ω̄k is
equal to Eq. (17) but now Ak → Āk = Ak + AHF

k and Bk →
B̄k = Bk + BHF

k . The ground-state energy ĒHF
0 is similar to

Eq. (16) apart from the replacements ωk → ω̄k and Ak → Āk
and the inclusion of EHF

0 . Finally, the Bogoliubov coefficients
and the analog of the self-consistent equations (19) and (20)
now read

ū2
k,v̄

2
k = ±1/2 + Āk/2ω̄k, ūkv̄k = B̄k/2ω̄k, (27)

μ = −3J ′

4
+ 3

N0

∑
k

Bkv̄k (v̄k − ūk) , (28)

N0 = 1 − 3

N ′
∑

k

v̄2
k. (29)

Note that Bk (not B̄k) enters the momentum summation in
Eq. (28) (for details, see Appendix C). In addition to μ and N0,
now AHF

1,2,3 and BHF
1,2,3 are also self-consistently calculated. The

set of equations (23)–(29) constitutes the HF approximation.
The resulting triplon dispersion is included in Fig. 4,

which shows that corrections arising from HHF
4 are small,

except for a slight upward renormalization of the gap. For
a fixed J ′, the minimum wave vector Q0 displays the same
qualitative behavior in terms of J ′′ as found in the harmonic
approximation; see Fig. 5. In the incommensurate regime, Q0

numerically deviates from the harmonic result for small J ′ (but
recovers the harmonic results in the large-J ′ limit); see Fig. 6.
Moreover, the line marking the CIT is slightly shifted as well;
see Fig. 5.

Figure 7 shows the evolution of N0 as a function of J ′ for
fixed J ′′, again comparing the HF results to those from the
harmonic approximation. The deviations are small in general
and vanish in the strong-dimer limit J ′ → ∞. Inside the
disordered phase, we observe N0 > 0.7, which implies that
vk and v̄k � 0.1; see Eqs. (20) and (29). The fact that v̄k is

1 1.5 2 2.5 3 3.5 4
J′

0.7

0.75

0.8

0.85

0.9

0.95

1

N
0

J′′ = 1  harmonic
J′′ = 1  HF
J′′ = 0  harmonic
J′′ = 0  HF

FIG. 7. (Color online) Parameter N0 as a function of J ′ for the
lines J ′′ = 0 and J ′′ = 1 at the harmonic and Hartree-Fock levels.

a small quantity is used in order to derive the self-consistent
equations (28) and (29); see Appendix C for details.

We note that we experienced more difficulties in obtaining
self-consistent solutions near the phase boundary in the HF
approximation as compared to the harmonic one, but these
problems are cured upon including the cubic term; see
Sec. IV B below.

B. Hartree-Fock-cubic approximation

We implement a Hartree-Fock-cubic (HF-cubic) approx-
imation by perturbatively adding the effect of H3 to the
mean-field Hamiltonian H = E0 + EHF

0 + H2 + HHF
4 . This

scheme, which simplifies the treatment of the cubic triplet
interaction considerably, is similar in spirit to the one adopted
in Refs. 37 and 39, where an interacting Hamiltonian for
triplets without the cubic term is treated self-consistently first,
and then the lowest-order corrections due to the cubic term are
added.

Using the Bogoliubov transformation (14) with the renor-
malized coefficients ūk and v̄k (27), one can show that H3 (8)
in terms of the b

†
kα and bkα operators reads

H3 = 1

2
√

N ′
∑
k,p

∑′
α,β,γ

1(k,p)(b†k−pαb
†
pβbkγ + H.c.)

+ 1

2
√

N ′
∑
k,p

2(k,p)(b†k−pxb
†
pyb

†
−kz + H.c.). (30)

Here the sum over α,β,γ has only three components:
(α,β,γ ) = (x,y,z), (z,x,y), and (y,z,x). The renormalized
vertex 1(k,p) is given by

1(k,p) = (ξk−p − ξp)(ūk−pūpūk + v̄k−pv̄pv̄k)

+ (ξk + ξp)(v̄k−pūpv̄k + ūk−pv̄pūk)

− (ξk−p + ξk)(v̄k−pūpūk + ūk−pv̄pv̄k), (31)

with ξp being the bare cubic vertex (12), and the vertex
2(k,p) = −1(k,p) in addition to the replacements ūk ↔
v̄k. The vertices 1(k,p) and 2(k,p) are illustrated in
Fig. 8(a).

The lowest-order diagrams that contribute to the (normal)
self-energy �3(k,ω) are shown in Figs. 8(b)–8(e). In each
diagram, the solid line corresponds to the bare b triplon
propagator (we now omit the index α since the three triplon
branches are degenerate)

G−1
0 (k,ω) = ω − ω̄k + iδ. (32)

Note here that no anomalous bare b propagators exist; in
principle, those are generated in perturbation theory, but will
be neglected in the following.40 Using standard diagrammatic
techniques for bosons at zero temperature, one shows that only
the diagrams (b) and (e) are finite, and therefore �3(k,ω) =
�

(b)
3 (k,ω) + �

(e)
3 (k,ω) with

�
(b)
3 (k,ω) = 1

4N ′
∑

q

2
1(k,q)

ω − ω̄q − ω̄k−q + iδ
,

(33)

�
(e)
3 (k,ω) = − 1

4N ′
∑

q

2
2(k,q)

ω + ω̄q + ω̄k−q − iδ
.
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FIG. 8. (a) Renormalized cubic vertices 1(k,p), (1), and
2(k,p), (2). Here (α,β,γ ) = (x,y,z), (z,x,y), and (y,z,x). (b)–(e)
Lowest-order diagrams resulting from the combination of vertices (1)
and (2) that contribute to the normal self-energy �3(k,ω).

The renormalized triplon energy �k is given by the poles
of the full Green’s function G(k,ω), i.e,

G−1(k,ω) = ω − ω̄k − �3(k,ω) = 0. (34)

We solve Eq. (34) within the so-called off-shell approximation,
which consists in evaluating the self-energy at ω = �k − ĩk,
i.e.,

�k − ĩk − ω̄k − �3(k,�k − ĩk) = 0. (35)

[Recall that in the more common on-shell approximation, the
self-energy is evaluated at the bare single-particle energy, i.e.,
�k − ĩk − ω̄k − �3(k,ω̄k) = 0.] Moreover, instead of using
Eq. (35), causality requires us to consider

�k − ĩk − ω̄k − �3(k,�k + ĩk) = 0. (36)

The procedure outlined above follows Ref. 35, where
spin-wave excitations of the isotropic triangular-lattice AF
Heisenberg model (J ′ = J ′′ = 1) were calculated. It is shown
by Chernyshev et al.35 that the on-shell approximation leads
to discontinuities in the spin-wave spectrum and concomitant
logarithmic singularities in the decay rate ̃k, and that the
off-shell approximation regularizes such singularities. Finally,
the replacement �k − ĩk → �k + ĩk in the argument
of the self-energy guarantees that the quasiparticle pole
is in the correct half of the complex plane (we refer the reader
to Appendix D, Ref. 35, for details).

In Fig. 9, we compare the renormalized triplon energy
�k obtained in the HF-cubic approximation to that from
HF. Clearly, the inclusion of the cubic term leads to sizable
changes of the dispersion, which are particularly pronounced
in the incommensurate regime [see Fig. 9(b) for J ′ = 1.5
and J ′′ = 1]. For instance, the dispersion along -M is
significantly enhanced by the cubic term. Most notably, the
triplon gap � is renormalized downward; see Fig. 10 below.
In other words, cubic interactions tend to destabilize the
paramagnetic phase, whereas (repulsive) quartic interactions
have the opposite effect.

The behavior of the minimum wave vector Q0 as a
function of J ′′ is again qualitatively similar to the harmonic
one, Fig. 5. Interestingly, the shift of the CIT line due to
the cubic interaction is opposite to (and larger than) that
induced by the quartic interaction, such that the CIT line is
now located at some J ′′

CIT > 0.75, which moreover depends
nonmonotonically on J ′, Fig. 3. Figure 9 also displays the
decay rate of triplons caused by two-particle decay via H3—
this is nonzero whenever the single-particle branch is above
the two-particle threshold.

We conclude that the cubic triplon term is of vital impor-
tance for a quantitative description of the triplon dynamics
in the frustrated coupled-dimer model (1), especially in the
incommensurate regime. This is in contrast to, e.g., the
unfrustrated asymmetric bilayer model studied in Ref. 37

0

1

2

3

4

Ω
k

k
Γ Y M X Γ M

(a)

0

1

2

Ω
k

k k

0

1

2

Ω
k

Γ Y M X Γ M A B

(b)

FIG. 9. (Color online) Triplon dispersion relation along some particular lines of the dimerized Brillouin zone for (a) J ′ = 3 and J ′′ = 0
and (b) J ′ = 1.5 and J ′′ = 1 at the HF (dashed black line) and HF-cubic (solid red line) approximations. The triplon decay rate ̃k (dot-dashed
blue line) and the bottom of the two-particle continuum (dotted green line) both at the HF-cubic approximation are also shown. The A-B line
includes the triplon minimum energy of the corresponding approximation.
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where the cubic term leads to minor corrections only. A further
discussion of the physical implications of our results is given
below.

V. DISCUSSION

A. Phase boundary

For the different levels of approximation, the evolution of
the energy gap � with the dimerization strength J ′ is shown
in Fig. 10 for J ′′ = 0, 0.8, and 1. As expected, � increases
with J ′; the vanishing of the gap defines a critical value J ′

c

where the singlet phase becomes unstable toward magnetic
order. Assuming a continuous QPT, we fit the data to

� = a0 + a1J
′ + a2

1

J ′ + a3(J ′)2 (37)

and we use the condition � = 0 to estimate the critical
coupling J ′

c. (Note that the present approximations cannot be
expected to yield nontrivial critical exponents. Omitting the
1/J ′ fitting term leads to only minor changes of J ′

c.)
The resulting phase boundary for 0 < J ′′ < 1.5 is shown

in Fig. 3, with the HF-cubic result (�) being our best
approximation. The phase diagram in Fig. 3 displays four
distinct regions: At large J ′ we have the gapped dimer phase,
with spin correlations peaked at Q0 = (0,0) for 0 � J ′′ � J ′′

CIT
and incommensurate Q0 for J ′′ > J ′′

CIT. At the harmonic
level, J ′′

CIT equals 0.75 but acquires a J ′ dependence from
anharmonic terms; see Figs. 5 and 6. The closing of the triplon
gap at J ′

c for a given J ′′ leads to magnetic long-range order
at wave vector Q0 (provided that no other phase intervenes).
One concludes that the system displays collinear Néel order
for J < J ′′

CIT and noncollinear spiral order for J ′′ > J ′′
CIT. As

indicated in Fig. 2, an additional paramagnetic phase might be
realized near the crossing of the CIT and the order-disorder
transition lines,9 with a more detailed discussion given in
Sec. V B.

Let us discuss quantitatively the evolution for two values
of J ′′. (i) J ′′ = 0: Here we find a critical coupling J ′

c = 2.65
(2.76) at the harmonic (HF-cubic) level, which is quite close to
the one determined via QMC simulations for the (topologically
equivalent) staggered dimerized AF Heisenberg model on a
square lattice, J ′QMC

c = 2.5196.33 For J ′ < J ′
c, the system

indeed develops collinear Néel order with Q0 = (0,0).33,34

(ii) J ′′ = 1, where we find J ′
c = 1.09 (1.34) at the harmonic

(HF-cubic) level. Again, this is a very reasonable result since
LRO is certainly present at the isotropic point (J ′ = J ′′ = 1).
One difference from case (i) is that the ordering wave vector
varies with J ′ inside the ordered phase (see Appendix A for
the corresponding classical-limit results); therefore, Q0 at the
phase boundary is distinct from the Goldstone wave vectors
K,K′ of the 120◦ structure; see also Fig. 1(c).

B. Commensurate-incommensurate transition

As shown above, the minimum wave vector Q0 of the triplon
dispersion in the gapped paramagnetic phase of the Heisenberg
model (1) is locked to (0,0) for small J ′′, while it moves to
incommensurate values for larger J ′′ (Figs. 5 and 6), with the
boundary being located near J ′′

CIT � 0.75. This CIT, driven by
increasing magnetic frustration, has various consequences.

Right at the CIT, the quadratic piece of the triplon dispersion
vanishes in one of the two space directions (independent of the
level of approximation), i.e., we find for the triplon propagator

G−1(k,ω) = −ω2 + �2 + c1k̃
2
1 + d1k̃

4
2 (38)

in a small-momentum expansion around the  point, where
k̃1,2 are the two components of k perpendicular and parallel
to the Q0 that is taken beyond the CIT. Moreover, in the
incommensurate regime near the CIT, the dispersion along
the k̃2 direction (connecting  and Q0) is anomalously flat.
This is illustrated in Fig. 11, which shows a contour plot
of the triplon dispersion �k (HF-cubic approximation) for
J ′ = 1.5 and J ′′ = 0.8. Qualitatively, the soft dispersion near
the CIT will lead to an effective dimensional reduction. When
the triplon gap closes, � = 0, Eq. (38) defines a quantum
Lifshitz point; see Sec. V D below.

Of course, the physics underlying the CIT is also observed
inside the ordered phase. This has been studied in particular
in the nondimerized case, J ′ = 1. Linear spin-wave theory7,8

yields a QPT from collinear Néel to spiral order at J ′′
c = 0.5,

where the ordering wave vector changes from a commensurate
to an incommensurate value. (The analysis of the classical
ground state for the general case J ′ �= 1 is given in Appendix
A.) The magnetization curve has a minimum at the transition,
where the spin-wave velocity vanishes along one particular
direction in k space. Coupled-cluster calculations10 find a

2.5 3 3.5 4
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HF       
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(b)  J′′ = 0.8
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FIG. 10. (Color online) Triplon gap � as a function of J ′ for (a) J ′′ = 0, (b) J ′′ = 0.8, and (c) J ′′ = 1 at the harmonic ( ), HF ( ), and
HF-cubic ( ) approximations. The solid line is a fit to the data using Eq. (37).
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FIG. 11. (Color online) Contour plot of the triplon energy �k

(HF-cubic) for J ′ = 1.5 and J ′′ = 0.8, i.e., near the CIT.

scenario similar to spin-wave theory, but here J ′′
c ≈ 0.8.

Finally, series-expansion results9 not only indicate a CIT at
J ′′ ≈ 0.75, but they also provide evidence for a disordered
phase in the vicinity of the CIT, i.e, for 0.68 < J ′′ < 0.91.

C. Two-particle decay

The cubic triplon term H3 is generically present in the
model (1) and thus enables two-particle decay of triplons.30,31

Such decay occurs if the one-triplon dispersion moves inside
the two-particle continuum.

As can be seen from Fig. 9, two-particle decay does not
happen in the commensurate regime of small J ′′, where
the one-particle spectrum is always below the two-particle
continuum. Note that an exceptional case is realized right
at the QPT to the magnetically ordered state, where the
lower bound of the two-particle continuum coincides with
the single-particle branch near the ordering wave vector (0,0).
This nontrivial coupling has been argued to lead to a novel
universality class for the phase transition;34 see also Sec. V D
below.

The situation is different in the incommensurate regime,
where high-energy triplons can decay into triplon pairs; see
Fig. 9 for the calculated decay rate. Note that such decay never
happens near Q0, i.e., cubic interactions are not part of the
critical theory in the incommensurate case.

As an aside, we note that decay of high-energy modes also
occurs inside the ordered phase, where spin waves can decay
into pairs of spin waves provided that the order is noncollinear;
for details, see Ref. 35.

D. Quantum criticality

Let us briefly discuss the quantum phase transitions in the
phase diagram shown in Fig. 2.

The transition from the dimer phase to the collinear LRO
state with Q0 = (0,0) would in principle be expected to be in
the standard Heisenberg [or O(3)] universality class in D =
2 + 1 dimensions; however, the cubic triplon term becomes
part of the critical theory and leads to a new universality class
(labeled class B in Ref. 34), with leading O(3) exponents and
anomalously large corrections to scaling.33,34

The transition from the dimer phase to the noncollinear
LRO state does not display this complication and therefore is
a standard O(N ) QPT in D = 2 + 1, with N = 4 (assuming a
single transition to coplanar spiral order).

Finally, we can discuss the multicritical point where the
collinear LRO, noncollinear LRO, and dimer phases meet.
Here, the softness of the triplon dispersion in one direction,
Eq. (38), implies that the quadratic piece of the critical field
theory takes the form

S =
∫

d2x dτ φa

(
δ + ∂2

τ + ∂2
x + ∂4

y

)
φa, (39)

where φa are the components of the magnetic order parameter,
and δ = 0 defines the phase transition point. Such (d,m)
quantum Lifshitz points (here d = 2, and m = 1 refers to the
number of “soft” directions) have been discussed before,28,29

but the relevant case of d = 2 dimensions with undamped
order-parameter dynamics has not been studied in any detail.
A thorough analysis of this critical theory is therefore deferred
to a future publication; here we only make a few qualitative
remarks. The absence of the quadratic derivative in the y

direction implies that the effective dimensionality is reduced
compared to a standard φ4 theory, or in other words, the
upper critical dimension (in the quantum case) is increased
from d+

c = 3 to d+
c = 3 + m/2 (Ref. 29). While Eq. (39),

supplemented by a standard quartic term (note that a cubic
term34 might be important as well), describes a continuous
multicritical point, it is conceivable that this is preempted by a
fluctuation-induced transition into a novel phase. We speculate
that this could be a nontrivial paramagnetic phase (e.g., with a
symmetry-breaking dimerization), as deduced for J ′ = 1 from
series-expansion studies.9

E. Application to EtMe3P[Pd(dmit)2]2

As mentioned in the Introduction, the experimen-
tal findings21–24 indicate that the organic Mott insulator
EtMe3P[Pd(dmit)2]2 realizes a columnar VBS phase at low
temperature and pressure. According to Ref. 22, this system
can be described by the Heisenberg model (1) with J ′ = 1
and J ′′ = 1.05. Although this configuration is outside of the
VBS region predicted by our bond-operator analysis, it is quite
close to the VBS phase boundary (see the orange diamond,
Fig. 3). It is conceivable that a combination of longer-range
or ring-exchange interactions, which arise in proximity to the
Mott transition,6 increases the level of magnetic frustration,
which is then released by a lattice dimerization through
magnetoelastic couplings (note that organic compounds of the
X[Pd(dmit)2]2 display a rather soft lattice). As a result, a VBS
phase can emerge, whose magnetic couplings are explicitly
dimerized as in our Hamiltonian (1).

Therefore, we believe that the excitation spectrum of the
organic compound may display features qualitatively similar
to the ones shown, e.g., in Fig. 9(b), which corresponds to
a configuration (J ′ = 1.5, J ′′ = 1) close to the critical line.
Hence we predict the spin correlations in the VBS phase of
EtMe3P[Pd(dmit)2]2 to be incommensurate, which may be
checked in future neutron scattering or NMR experiments.
Moreover, it would be interesting to see whether one could
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drive the material into a state with magnetic LRO by moving
farther away from the Mott transition (and thus reducing
the influence of magnetic couplings beyond nearest-neighbor
exchange).

VI. SUMMARY

We have studied a dimerized Heisenberg AF on a spatially
anisotropic triangular lattice, with a focus on its quantum
paramagnetic (i.e., dimer) phase. Starting from bond-operator
mean-field theory, we have included interaction corrections
to the harmonic approximation at the Hartree-Fock level for
the quartic term and in second-order perturbation theory for
the cubic term. We have shown that this Hartree-Fock-cubic
approximation gives sensible results for the triplon dispersion
for the investigated part of the parameter space (away from the
one-dimensional limit). The resulting boundary of the dimer
phase where the triplon gap closes, Fig. 3, is one of our main
results; its location in the unfrustrated limit J ′′ = 0 is in good
quantitative agreement with QMC data.

The minimum wave vector Q0 of the triplon spectrum
displays a commensurate-incommensurate transition as frus-
tration is increased. At this CIT, the quadratic piece of the
triplon dispersion vanishes in one momentum direction. The
closing of the triplon gap at the CIT leads to a quantum
Lifshitz point, the detailed study of which is left for future
work: it either leads to distinct power-law critical behavior
or it may even be inherently unstable, leading to a novel
intermediate phase, Fig. 2. Remarkably, we find the critical J ′
to be only slightly above unity, suggesting that the origin of the
nontrivial VBS phase seen in series-expansion studies9 for the
nondimerized model is indeed the enhanced fluctuations near
the quantum Lifshitz point. Finally, in the incommensurate
regime of the dimer phase, the cubic triplon interaction leads
to two-particle decay of triplons at high energies.

Our study paves the way for further investigations of
frustrated dimerized magnets. As those are difficult to access
using QMC simulations, due to the inherent minus sign
problem, bond-operator as well as series-expansion techniques
are often the methods of choice. Clearly, the inclusion of
longer-range and cyclic exchange interactions on triangular
and Kagome lattice geometries would be most interesting.
On the methodological side, a self-consistent treatment of the
cubic term might further improve the numerical accuracy. In
addition, the formation of bound states of triplons—which
would signify the instability toward phases other than those
with magnetic LRO—should be studied; we leave this for
future work. Finally, the interplay of magnetoelastic couplings
and longer-range exchange interactions should be studied near
the isotropic point, with an eye toward EtMe3P[Pd(dmit)2]2.
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APPENDIX A: CLASSICAL PHASE DIAGRAM

To determine the classical phases of the model (1), we
parametrize the spins S1

i and S2
i [Fig. 1(a)] according to

S1
i = ê1 cos(Q · Ri) + ê2 sin(Q · Ri),

(A1)
S2

i = ê3 cos(Q · Ri) + ê4 sin(Q · Ri),

which assumes coplanar order. Here êi are a set of unit vec-
tors that obey ê1 · ê2 = ê3 · ê4 = 0, ê1 · ê3 = ê2 · ê4 = cos θ ,
and ê2 · ê3 = −ê1 · ê4 = sin θ . Substituting Eq. (A1) into the
Hamiltonian (4), it is easy to see that the total energy is
E = (N/2)S2JQ(θ ), with

JQ(θ ) = J ′ cos θ + 2J ′′ cos(Qx) + cos(Qx + θ )

+ cos(
√

3Qy + θ ) + cos(Qx +
√

3Qy + θ ). (A2)

For fixed J ′ and J ′′, the ground-state energy is determined by
minimizing Eq. (A2) with respect to the components of the
vector Q and the angle θ .

We find two phases, Fig. 12: (a) collinear order, with a com-
mensurate ordering wave vector Q = (0,0) and θ = π , real-
ized for J ′′ � J ′′

CIT(J ′), and (b) noncollinear order, with incom-
mensurate Q = (Qxm,Qym) and θ = π − Qxm/2 − √

3Qym.
The components of Q solve

μ sin(Qx/2) cos(
√

3Qy) − sin(Qx/2 −
√

3Qy) = 0,
(A3)

4J ′′ cos(Qx/2) − μ cos(
√

3Qy) = 1,

with μ = 2J ′/(1 + J ′). Numerical solutions of (A3) can be
easily obtained, which yield the phase boundary in Fig. 12.

Interestingly, it is possible to solve Eqs. (A3) analytically
for the particular cases J ′ = 0, 1, and ∞, which, respectively,
correspond to μ = 0, 1, and 2. The solutions can be written in
the following way:

Qxm = 2 arccos

(
1 − μ2 + 2μ

4J ′′ − μ(μ − 1)

)
,

(A4)

Qym = λμ√
3

arccos

(
1 − μ2 + 2μ

4J ′′ − μ(μ − 1)

)
.

0 0.5 1 1.5
J′′

0

1

2

3

4

J′ collinear LRO non-collinear LRO

FIG. 12. Classical phase diagram for the Heisenberg model (1),
obtained from numerically solving Eq. (A3).
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Here, λ0 = −λ2 = 1 and λ1 = 0. Since the argument of
arccos(x) is within the range −1 � x � 1, we conclude that
the noncollinear phase is stable for J ′′ � J ′′

CIT, where

J ′′
CIT = 1

4
+ J ′

2(1 + J ′)
, (A5)

valid for J ′ = 0, 1, and ∞. (For J ′ = ∞, we obtain J ′′
CIT =

0.75 and Qxm,ym = qxm,ym, i.e., the classical result matches
the corresponding features of the bond-operator result for S =
1/2.)

Quantum corrections to the classical phase boundary can
be obtained using nonlinear spin-wave theory. For J ′ = 1, this
has recently been demonstrated to move the CIT boundary to
J ′′ = 0.77 at order 1/S (Ref. 41).

APPENDIX B: EFFECTIVE TRIPLET HAMILTONIAN
IN REAL SPACE

Here we quote the full expressions for the real-space
Hamiltonian (6), which can be obtained using straightforward
algebra via Eq. (3),

H0 = −3J ′

4

∑
j

s
†
j sj , (B1)

H2 = J ′

4

∑
j

t
†
j αtj α

+ 1

4

∑
j,n

g2(n)[(sj s
†
j+nt

†
j αtj+n α + H.c.)

+ (s†j s
†
j+ntj αtj+n α + H.c.)], (B2)

H3 = i

4
εαβλ

∑
j,n

{[(s†j tj α + t
†
j αsj )t†j+nβtj+n λ + H.c.]

− (j ↔ j + n)}, (B3)

H4 = −1

4
εαβλεαμν

∑
j,n

g4(n)t†j β t
†
j+n μtj+n νtj λ, (B4)

where the
∑

j runs over the sites of the dimerized lattice, and
the gm(n) coefficients read

g2(n) = (2J ′′ − 1)δn,1 − δn,2 − δn,3,

g4(n) = (2J ′′ + 1)δn,1 + δn,2 + δn,3.

APPENDIX C: SELF-CONSISTENT EQUATIONS

Here we derive the self-consistent Eqs. (19) and (20)
involved in the harmonic approximation, and Eqs. (28) and
(29) related to the HF one. As mentioned in Sec. III, the starting
point is the saddle-point conditions: (i) ∂Ē0/∂N0 = 0 and (ii)
∂Ē0/∂μ = 0.

Let us consider the harmonic case. From the expression
(16) for the ground-state energy, we have

∂Ē0

∂N0
= −3

8
J ′N − 1

2
μN + 3

2

∑
q

(
∂ωq

∂N0
− ∂Aq

∂N0

)
. (C1)

Since ∂Aq/∂N0 = ∂Bq/∂N0 = Bq/N0, see Eqs. (10) and (11),
condition (i) yields Eq. (19). Moreover,

∂Ē0

∂μ
= −1

2
N (N0 − 1) + 3

2

∑
q

(
∂ωq

∂μ
− ∂Aq

∂μ

)
. (C2)

One can easily see that ∂Aq/∂μ = −1 and ∂ωq/∂μ =
−Aq/ωq, and therefore condition (ii) leads to Eq. (20).

Turning to the Hartree-Fock approximation, the equivalent
of Eq. (C1) is given here by

∂ĒHF
0

∂N0
= −3

8
J ′N − 1

2
μN + 3

2

∑
q

(
∂ω̄q

∂N0
− ∂Āq

∂N0

)
. (C3)

The contribution due to EHF
0 , Eq. (24), can be neglected since

it is O(v̄2
q) and therefore small compared to the other terms

(see the discussion in Sec. IV A). The last term of the above
equation can be written as

I = 3

2

∑
q

(
−1 + Āq

ω̄q

)
∂Āq

∂N0
− B̄q

ω̄q

∂B̄q

∂N0

with

∂Āq

∂N0
= Bq

N0
− 1

N ′
∑

k

γk−q
∂

∂N0

(
Āk

ω̄k

)
,

∂B̄q

∂N0
= Bq

N0
− 1

N ′
∑

k

γk−q
∂

∂N0

(
B̄k

ω̄k

)
.

Assuming that

∂Āq/∂N0 = ∂B̄q/∂N0 ≈ Bq/N0, (C4)

and using the expressions (27), we show that I ≈
(3/N0)

∑
q Bqv̄q(v̄q − ūq), and therefore Eq. (28) follows

from condition (i). Some words here about the assumption
(C4) are in order: we realize that it is a good approximation
as long as v̄q is small. Indeed, using the relations (27), it is
possible to show that

∂

∂N0

(
Āk

ω̄k

)
= 4ū2

kv̄
2
k

ω̄k

∂Āq

∂N0
+ 2ūkv̄k

ω̄k

(
v̄2

q + ū2
q

) ∂B̄k

∂N0
.

Substituting (C4) in the above expression, one can easily see
that ∂Āq/∂N0 ≈ Bq/N0 + O(v̄k). A similar expression holds
for ∂B̄q/∂N0.

The analog of Eq. (C2) reads

∂ĒHF
0

∂μ
= −1

2
N (N0 − 1) + 3

2

∑
q

(
∂ω̄q

∂μ
− ∂Āq

∂μ

)
. (C5)

Here

∂Āq

∂μ
= −1 − 1

N ′
∑

k

γk−q
∂

∂μ

(
Āk

ω̄k

)
,

∂B̄q

∂μ
= − 1

N ′
∑

k

γk−q
∂

∂μ

(
B̄k

ω̄k

)
.

In order to be consistent with the above approximation,
we assume that ∂Āq/∂μ ≈ −1 and ∂B̄q/∂μ ≈ 0, which
implies ∂ω̄q/∂μ ≈ −Āq/ω̄q. Notice that this is indeed a
reasonable approximation because condition (ii) yields merely
the conservation (on average) of the total number of bosons
per site of the dimerized lattice, i.e., Eq. (29).
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