
PHYSICAL REVIEW B 85, 104415 (2012)
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We present an extensive analytical and numerical study of the antiferromagnetic Heisenberg model on the Cairo
pentagonal lattice, the dual of the Shastry-Sutherland lattice with a close realization in the S = 5/2 compound
Bi2Fe4O9. We consider a model with two exchange couplings suggested by the symmetry of the lattice, and we
investigate the nature of the ground state as a function of their ratio x and the spin S. After establishing the
classical phase diagram, we switch on quantum mechanics in a gradual way that highlights the different role
of quantum fluctuations on the two inequivalent sites of the lattice. The most important findings for S = 1/2
include (i) a surprising interplay between a collinear and a four-sublattice orthogonal phase due to an underlying
order-by-disorder mechanism at small x (related to an emergent J1-J2 effective model with J2 � J1), and (ii) a
nonmagnetic and possibly spin-nematic phase with d-wave symmetry at intermediate x.
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I. INTRODUCTION

Geometric frustration is at the heart of strong correlations
in many models of quantum magnetism.1–3 Given that the
most elementary building block of frustration is the triangle,
lattice spin models with triangular units have been the minimal
candidate models for realizing novel phases of matter in
frustrated magnetism and have thus been explored widely
over the years. Perhaps the most celebrated example in two
dimensions is the kagome lattice antiferromagnet (AFM), an
array of corner-sharing triangles, where frustration leads to
an extensive number of classical ground states (GSs).1 As a
result, quantum fluctuations play a nontrivial role and may
even favor a spin-liquid state, as is currently believed for the
extreme quantum-mechanical S = 1/2 case.1

Another elementary unit with built-in frustration is the
pentagon. As in the case of the triangle, an AFM exchange
interaction on a single pentagon favors a coplanar classical
state,4 which is frustrated in the sense that not all sides of the
pentagon are fully satisfied. This state is a spiral with pitch
angle 4π/5 which, compared to the 120◦ angle in the single
triangle case, might suggest a lower degree of frustration.

However, there is a generic aspect of pentagonal lattice
models that underlies a deeper degree of frustration and
complexity. This is related to the fact that there is no Bravais
lattice of pentagons and so, unlike the 120◦ state, which can
be easily “tiled” over the triangular lattice, it is not a priori
evident that the single pentagon minimum is a good starting
point for the description of the global low-energy physics. In
fact, even in the finite-size case of the dodecahedron, which is
a uniform tiling of pentagons on the geometry of a sphere, the
GS is not related to the single pentagon minimum.4

A related aspect of two-dimensional (2D) pentagonal
lattices is that they often consist of two or more inequivalent
sites and bonds (see below). Together with the above, one then
expects nontrivial classical and quantum-mechanical phases
in pentagon-based lattice models, and this is a direction in
frustrated magnetism that has been largely unexplored.

As mentioned above, the 2D plane has the generic property
that it cannot be tiled using regular pentagons. One alternative,

which is realized in the pentagonal Penrose lattice, is to
combine pentagons with other motifs in order to fill the void
spaces.5 Another is to use irregular pentagons, which leads to
the 14 pentagonal tesselations known so far.6,7 Among them,
there are two tilings that have attracted interest in frustrated
magnetism. The first is what is called “the pentagonal lattice”
in some of the literature (see, e.g., Fig. 2 in Ref. 8), and the
second is the “Cairo pentagonal lattice,”9–14 which is the dual
of the Shastry-Sutherland lattice (see Fig. 9 of Ref. 12) and is
shown in Fig. 1.

The Cairo lattice is the main subject of this study. Its main
features can be seen in Fig. 1. First, there are two inequivalent
sites with coordination numbers 3 and 4, and likewise there
are two inequivalent bonds connecting threefold with threefold
sites (thin blue) and threefold with fourfold sites (thick black).
In particular, the fourfold sites form a square lattice that is
represented by dashed lines in Fig. 1. The Cairo lattice has a
square Bravais lattice with a unit cell (green rectangle in the
middle of Fig. 1) of six sites, four of which are fourfold- and
two are threefold-coordinated.

Among the previous studies on the Cairo lattice, we point
out the Ising model study by Urumov9 and Rojas et al.10 and
that by Ralko,11 who studied a Hubbard model with hard-
core bosons (equivalent to an XXZ model under a staggered
magnetic field). Our own study focuses on the Heisenberg
model described by the Hamiltonian

H =
∑
〈ij〉

Jij Si · Sj , (1)

where the sum runs over the nearest neighbors 〈ij 〉 of the
Cairo lattice. As shown in Fig. 1, we consider two different
exchange interactions (which is the minimal number imposed
by the symmetry of the Cairo lattice), J33 and J43, and we focus
on the regime where both are antiferromagnetic. By tuning the
ratio x ≡ J43/J33 and the spin S, we shall be able to drive the
system through a number of phases, some of which have a
strong quantum-mechanical origin. As we are going to show
below, the rich physics of this model is intimately connected to
the presence of two inequivalent sites and bonds in the lattice.
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FIG. 1. (Color online) The Heisenberg model on the Cairo
pentagonal lattice considered in this paper. Solid thick and thin bonds
stand for the J33 and J43 exchange couplings. The (green) rectangle
in the middle denotes the six-site unit cell of the Cairo lattice. The
fourfold-coordinated sites form a tilted square lattice (denoted by
thin dashed lines) that is further divided into two square sublattices
denoted by large open (red) and filled (blue) circles.

Besides the general motivation outlined above, there is
another theoretical motivation for looking at this specific lattice
model. This goes back to the work by Raman et al.,12 who pro-
posed a connection between quantum dimer models15 (QDMs)
and the so-called Klein models using a well-controlled
decoration procedure on a number of frustrated lattices.
The Cairo lattice has the most ingredients for resonating
valence bond physics,15 since it is non-bipartite and has large
resonance loops with even length.12 And indeed, one of the
main predictions of that study is that the QDM on the Cairo
pentagonal lattice has an extended spin liquid GS. This leads
to the question of whether such a phase would survive if one
includes dynamics out of the singlet manifold, and so a study
of the S = 1/2 Heisenberg model is a natural extension.

In parallel, it turns out that the Cairo pentagonal lattice is
not only of purely theoretical interest, since the magnetism of
Bi2Fe4O9 offers a somewhat close realization of this model
with S = 5/2.13,14 This compound was originally synthesized
in the 1970s by Shamir et al.,16 but it has attracted recent
interest since it is a common by-product in the synthesis
of the well-known multiferroic compound BiFeO9. In fact,
Singh et al.17 have shown that Bi2Fe4O9 also shares some
magnetoelectric properties.

A magnetic characterization in single crystals of Bi2Fe4O9

has been given by Ressouche et al.13 Despite the large
Curie-Weiss temperature θ � 1670 K, this material orders
magnetically at much lower temperatures TN � 238 K, which
is the standard signature of magnetic frustration. The most
nontrivial finding is the nature of the low-T phase: It is a copla-
nar configuration, whereby the fourfold-coordinated Fe3+
spins form four orthogonal sublattices while the threefold-
coordinated spins bind antiferromagnetically with each other
and in the direction of the local exchange field exerted by their
neighboring fourfold-coordinated sites.

As explained by Ressouche et al.,13 Bi2Fe4O9 is not
a perfect realization of the Cairo lattice model. The first
reason is that each pentagonal unit of the ab plane comprises

seven physical spins, since there are two ferromagnetically
(FM) coupled Fe3+ spins residing at each fourfold site.
Secondly, the minimal microscopic model description of this
compound comprises three in-plane and two out-of-plane
exchange pathways.13 Despite this, the classical configuration
of Bi2Fe4O9 seems to survive in a much larger parameter
space, since the same state appears also in our more symmetric
version of the model.

II. MAIN RESULTS AND ORGANIZATION OF THE PAPER

Our target is the GS phase diagram of the model in the
x-S plane. To accomplish this goal and establish a fairly good
understanding of the various phases of the model, we begin
with the purely classical limit (Sec. III) and then we switch on
quantum mechanics in a gradual way by using different levels
of approximations and complexity. In doing so, we shall also
be able to highlight the different role of quantum fluctuations
at the two inequivalent sites of the model.

Our theoretical predictions for the phase diagram in the x-S
plane are presented in Fig. 2. The classical (large-S) phase
diagram is shown at the top line of Fig. 2. It consists of three
magnetic phases: (i) the orthogonal phase (x <

√
2) found for

Bi2Fe4O9, (ii) a collinear 1/3-ferrimagnetic phase (x > 2), and
(iii) an intermediate (

√
2 < x < 2) mixed phase that combines

both (i) and (ii). We should note here that the 1/3-ferrimagnetic
phase appears also for Ising spins10 and for hard-core bosons.11

Our first step to include quantum fluctuations in the problem
is by a standard linear spin-wave theory (Sec. IV). Our results
for the renormalized spin lengths indicate three regions (see
the second line of Fig. 2) with strong quantum fluctuations:
(i) at the threefold sites for small x, (ii) at the fourfold sites
as we approach the classical transition between the orthogonal
and the mixed phase (x = √

2), and (iii) at the fourfold sites
throughout the mixed phase. These are the regions where new
competing phases might appear as we approach the extreme
S = 1/2 quantum limit. By contrast, the 1/3-ferrimagnetic
phase seems to survive quantum fluctuations.

One may immediately realize that the strong fluctuations at
the threefold sites at small x result from the following generic
feature. At small x, the threefold sites prefer to bind into
quantum-mechanical singlets, which are very different from
the product up-down configuration of the classical ansatz. This
strong tendency to form singlets on the J33 dimers can be
captured by a modified variational ansatz (Sec. V) whereby
the threefold dimers are treated fully quantum mechanically
and the fourfold sites are still treated classically.

A numerical minimization of this ansatz for S = 1/2 gives
the phase diagram shown in the third line of Fig. 2. The first
important result is that the orthogonal state is now stabilized
up to x = 2, i.e., the mixed state does not survive in this ansatz
for low enough spins S. In addition, the present ansatz predicts
a finite staggered polarization on the J33 dimers, apart from
the strong tendency to form singlets. This can be explained by
the fact that the local exchange field exerted from the fourfold
sites in their orthogonal configuration is staggered and can
thus admix a finite triplet |t0〉 amplitude with the singlet wave
function as soon as x is finite.

We may go one step further and include stronger quantum
fluctuations by performing an expansion around the orthogonal
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FIG. 2. (Color online) The Heisenberg model on the Cairo pentagonal lattice. Left panel: Evolution of the phase diagram as we go from the
classical (top) to the quantum limit (bottom). Quantum fluctuations are included gradually in a way that highlights the different role of the two
inequivalent sites of the lattice. The regions indicated by “SF” in the second and fourth lines are those with strong semiclassical fluctuations.
Right panel: The main magnetic phases appearing in the phase diagram. The mixed phase (not shown) interpolates between the orthogonal (a)
and the 1/3-ferrimagnetic phase (c) as described in the text. In (a) and (b), we also show our labeling scheme for the corresponding bosonic
operators (for each of the six sites of the unit cell enclosed by the green solid line) that appear in LSW theory. Note that in the collinear phase
(b), the spins in half of the J33 bonds (e.g., the ones labeled by ci and ei) do not feel any exchange field from the neighboring fourfold sites.

variational GS found for x < 2. The natural way to do this
is to perform a standard Holstein-Primakoff expansion for the
fourfold spins and a bond-wave expansion18,19 for the threefold
dimers. The corresponding quadratic theory is presented in
Sec. VI and its predictions for S = 1/2 are shown in the fourth
line of Fig. 2. The main result is the presence of very strong
fluctuations above x ∼ 1, which provides strong evidence that
the variational treatment is not a good starting point in the
window 1 < x < 2, and that a new phase will be stabilized in
this regime for low enough spins S.

The last place to look for quantum fluctuations is at the
fourfold sites (Sec. VII), which have been treated classically
or semiclassically up to now. It turns out that these fluctuations
are responsible for some very rich physics at low energies.
The main reason for this is that the x = 0 limit has a highly
degenerate GS manifold since the fourfold sites are free to
point up or down in this limit. As a result, the low-energy
physics at small x is governed by effective interactions
between the fourfold sites, which are mediated by the virtual
fluctuations of the J33 dimers out of their singlet GS. By
integrating out these high-energy fluctuations up to fourth
order in x, we have derived an effective low-energy theory
for spins S = 1/2, which governs the interactions between the
fourfold sites up to x ∼ 0.4–0.6.

The first key result of the effective theory is that the nearest-
neighbor coupling J1 is much smaller than the next-nearest-
neighbor coupling J2 due to destructive quantum interferences.
Thus, at small enough x, the effective model reduces to the
well studied20–25 J1-J2 AFM model on the square lattice with
J2 � J1. An immediate consequence is that there must exist a
critical value of x (see the fifth line of Fig. 2) below which the
orthogonal phase becomes unstable in favor of the collinear
phase through an order-by-disorder mechanism.

The second important result from the effective theory is
the appearance, in fourth order in x, of a four-spin coupling

term K , which involves the four spins in every plaquette
of the square lattice and is similar to the well-known ring
exchange term.26 Our exact diagonalizations provide evidence
that this plaquette term is the one that actually drives the system
into the intermediate (1 < x < 2) quantum-mechanical phase
mentioned above.

It is worth noting that the collinear phase cannot not be
detected using the above linear semiclassical theories. The
reason is that the collinear phase is not the GS of either
the fully classical or the variational ansatz, and therefore
one must include interactions between the spin waves or
spin + bond waves, respectively, in order to stabilize this
phase. To demonstrate this, we have employed (Sec. VIII)
a spin-wave expansion around the collinear phase using the
effective model Hamiltonian and keeping up to quartic terms in
the interactions. The results from a self-consistent mean-field
decoupling show that the collinear phase can indeed be
stabilized at low enough x (fifth line of Fig. 2).

It is by now quite clear that the phase diagram becomes
richer as we approach the extreme S = 1/2 limit. We have
seen, for instance, that out of the three classical phases, the
mixed phase does not survive quantum fluctuations for low
enough spins S. We have also uncovered an interesting order-
by-disorder mechanism that is at play in the small-x regime
and gives rise to the collinear phase for S = 1/2. We have also
learned from the spin + bond-wave expansion that a new phase
is to be expected at intermediate x for low enough S. However,
the nature of this phase is not yet known. In particular, one
important question is whether the small-x limit is a good
perturbative limit for the description of this phase. If the answer
is yes, we must next identify the effective term that drives the
transition, which is a difficult task given that our fourth-order
effective model should be valid only up to x ∼ 0.4–0.6.

To solve these open issues, we look at the full quantum-
mechanical S = 1/2 problem using exact diagonalizations
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(ED) on finite-size clusters (Sec. IX). Our numerical results
on the original Cairo lattice model confirm the presence of
two nearly decoupled AFM sublattices for small x, which
is the physics we expect from the effective model at large
J2/J1. Both the symmetries of the low-energy spectra and the
GS correlations show signatures of the orthogonal and the
collinear phase, but we are not able to pinpoint the exact
transition between the two phases given that the locking
between the two AFM sublattices present at large J2/J1 takes
place at very large length scales.27,28

The results also establish the presence of a new phase at
intermediate values of x before we reach the 1/3-ferrimagnetic
phase. Apart from a GS level crossing, we also find a new
spectral structure at low energies. In particular, the magnetiza-
tion process in a field now shows steps of �Sz = 2, which is
typical for collinear spin-nematic phases.29,30 Moreover, this
phase seems to be adiabatically connected to the GS manifold
of the x = 0 limit, which suggests that it is driven by one of
the couplings in the effective model.

To clarify this issue, we have also performed ED in the
effective model on the square lattice but with unconstrained
J1/J2 and K/J2. We have found that the low-energy spectral
structure in the regime K � J1,2 is very similar to the one in
the Cairo lattice model at intermediate x. This suggests that the
intermediate phase is driven by one of the three topologically
different four-spin exchange terms of the model, which we
identify as the one that has an enlarged SU(2) × SU(2) sym-
metry. We show that this term favors a spin-nematic phase with
d-wave symmetry similar to the one found by Shannon et al.29

The main difference is that here the symmetry breaking seems
to take place in one of the two sublattices of the square lattice
only, while the symmetry of the other sublattice remains intact.

The rest of the paper is organized along the main lines
described above. We shall focus mainly on the central
aspects and predictions of each separate approach and relegate
technical details to the Appendixes.

III. CLASSICAL LIMIT

In the classical limit, we find three different GSs as a
function of x. At large x, the lattice becomes effectively
bipartite and one can minimize the energy by a collinear
arrangement of up and down spins on the threefold and the
fourfold sites, respectively [see Fig. 2(c)]. Since the number of
threefold sites is twice the number of fourfold sites, N3 = 2N4,
this is a ferrimagnetic configuration with a total magnetization
of 1/3. This phase remains stable down to x = 2.

In the opposite limit of small x, the classical GS is the
orthogonal configuration shown in Fig. 2(a), which is the
one found for Bi2Fe4O9.13 Here the fourfold sites form an
orthogonal four-sublattice configuration, while the nearest-
neighbor threefold sites align antiferromagnetically to each
other and at the same time point opposite to the total exchange
field exerted by the neighboring fourfold sites. This phase
remains stable up to x = √

2. We note here that the orthogonal
configuration of the fourfold sites has been found previously
on some ring-exchange26 models on the square lattice; see,
e.g., Refs. 31 and 32.

This leaves a window between x = √
2 and 2 where

the spins find a compromise between the two phases by

combining both into a mixed phase. Namely, at x = √
2 the

threefold and fourfold sites begin to tilt out of the plane but in
opposite directions to each other. In particular, the projection
of this noncoplanar configuration onto the xy plane gives the
orthogonal phase while the projection along the z axis gives
the 1/3 ferrimagnetic state. At x = 2, the spins are completely
aligned along the z axis.

All three classical phases are special cases of the ansatz
[see the right panel of Fig. 2(a)],

Sai
= S(pi cos θey − sin θez), (2)

Sfi
= S(pi cos θex − sin θez), (3)

Sbi
= Sdi

= S(−pi cos θ ′e+ + sin θ ′ez), (4)

Sci
= Sei

= S(pi cos θ ′e− + sin θ ′ez), (5)

where pi = eiQ·Ri , Q = (π,π ), and e± = ex±ey√
2

. The two
angles θ and θ ′ account for the tilting out of the xy plane
of the fourfold and the threefold sites, respectively. For
the orthogonal and the 1/3-ferrimagnetic phases, θ = θ ′ = 0
and θ = θ ′ = π/2, respectively, while for the mixed phase,
sin θ =

√
2 − 4/x2 and sin θ ′ = x

2 sin θ . The corresponding
energies per site are

εortho/S
2 = −(1 + 2

√
2x)/3, (6)

εmixed/S
2 = −1 − x2/3, (7)

εferri/S
2 = (1 − 4x)/3. (8)

To confirm that these phases correspond to the global
minima, we have also performed classical Monte Carlo
(CMC) calculations at low temperatures using the METROPOLIS

algorithm. The average energies per site in some representative
low-T equilibrium ensembles are shown in Fig. 3 for a number
of cluster sizes. The results are in excellent agreement with the
above picture. In particular, they confirm the presence of the
intermediate mixed phase.

We note here that the energy of the mixed phase is only
slightly below the energies of the neighboring orthogonal and
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FIG. 3. (Color online) Classical GS energy per site (measured
from the energy of the orthogonal phase) as a function of x = J43/J33.
The lines stand for the analytical expressions given in Eqs. (7)
and (8), and the symbols are numerical data from CMC simulations
at βJ33 = 103.
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ferrimagnetic phases, and this suggests that this phase may be
quite fragile against quantum fluctuations. Indeed, the varia-
tional treatment presented below in Sec. V will demonstrate
that the mixed phase is unstable for S = 1/2 as soon as we
include the quantum fluctuations on the threefold sites.

IV. SEMICLASSICAL EXPANSION

A. Linear spin-wave theory

Our next step is to assess the strength of quantum fluctua-
tions by performing a separate semiclassical expansion around
each of the three classical GSs. The Cairo pentagonal lattice
has six sites (two fourfold- and four threefold-coordinated)
per unit cell. So we introduce six bosonic operators denoted
by ai,bi,ci,di,ei,fi to describe the transverse fluctuations on
each site of the ith unit cell. For each site, we define a local
quantization z axis [see Figs. 1(a)–1(c)] and perform a standard
Holstein-Primakoff expansion, namely

Sz
ai

= S − a+
i ai,S

+
ai

�
√

2Sai, (9)

and similarly for the remaining sites of the unit cell. The
standard procedure33,34 for the diagonalization of the resulting
quadratic Hamiltonian is outlined in Appendix A. Here
we shall focus on the two main quantities of interest: the
renormalization of the GS energy and the renormalization of
the local spin lengths by harmonic fluctuations.

B. Results

In the following, we present the predictions of LSW theory
for spins S = 1/2. We first discuss the harmonic correction δE

to the GS energy. This is shown in the upper panel of Fig. 4,
where we also make a comparison to exact diagonalization
results on clusters with 12 and 24 sites and S = 1/2 (open
symbols). We see that by including harmonic corrections to
the classical energy, one obtains a remarkably good agreement
with the full quantum-mechanical results on finite-size clusters
(the agreement becomes better with an increasing number of
sites, especially at larger x). However, as we are going to show
below, this agreement is quite deceptive for S = 1/2. Although
the semiclassical theory accounts for most of the energy, there
is quite a lot of rich physics taking place at much smaller
energies compared to the bare scale J33, and this happens
because the x = 0 limit is singular in the sense that it has a
highly degenerate GS manifold (see Sec. VII below).

We next examine the quadratic correction δS to the local
spin lengths of the two inequivalent sites of the lattice, which
are shown in the lower panel of Fig. 4. The first important
feature to note is the upturn of δS for the threefold sites as we
approach the limit x = 0. This is a manifestation of the singular
nature of the x = 0 limit mentioned above. In the semiclassical
treatment, we are expanding around the product up-down state
on the J33 dimers, and thus we cannot capture the actual
tendency to form quantum-mechanical singlet wave functions
at small x. Below we shall correct for this effect for the case of
S = 1/2 by integrating out the large J33 energy scale of the J33

singlets and by deriving an effective Hamiltonian model for the
fourfold sites only. In doing this, it will become immediately
apparent that the orthogonal phase is actually unstable at small
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FIG. 4. (Color online) Upper panel: Classical (Ecl) and semi-
classical (Ecl + δE) GS energy per site from LSW theory around
the orthogonal (black), the mixed (blue), and the ferrimagnetic
state (red), as a function of x = J43/J33. For comparison, we also
show (with symbols) the GS energy per site obtained from a fully
quantum-mechanical numerical calculation (ED) on two clusters with
12 and 24 sites with periodic boundary conditions. Lower panel:
Correction to the local spin length of the fourfold- (circles) and the
threefold- (squares) coordinated sites. The (green) diamonds show the
results from LSW theory around the orthogonal phase in the effective
model (see Sec. VII).

x and S = 1/2 against a collinear magnetic phase, which is
stabilized by an underlying order-by-disorder effect.

A second feature in our results for δS is its upturn for both
types of sites around the transition between the orthogonal and
the mixed phase. This is clearly a sign of strong quantum fluc-
tuations, and suggests that another possibly nonmagnetic phase
might be stabilized for S = 1/2 in this regime. Our ED results
for S = 1/2 will indeed provide strong evidence for a nonmag-
netic state in this regime. In particular, as we show in the fol-
lowing section, the mixed phase becomes unstable altogether
by including quantum fluctuations on the J33 dimers only.

Third, the harmonic corrections in the ferrimagnetic phase
seem to be almost independent of x and suggest that this phase
probably survives quantum fluctuations. Indeed, our ED results
confirm this.

Finally, we should note that, except for the special region
around x = 0, the correction for the fourfold sites is generally
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larger than that of the threefold sites. For x >
√

2, they differ
by about a factor of 2. This is a manifestation of the very
different role of quantum fluctuations on the two inequivalent
sites of the lattice. It is also at odds with the simple intuition
that higher coordination sites tend to behave more classically,
but seems to be a consistent feature in a number of 2D lattices
(see e.g. Ref. 35).

V. SWITCHING ON QUANTUM MECHANICS ON
THE THREEFOLD DIMERS: VARIATIONAL ANSATZ

In the purely classical description, one treats each spin
as a classical vector pointing in some fixed direction in spin
space. However, as we discussed above, in the limit of small
x, the nearest-neighbor threefold sites prefer to bind into
singlets, which are locally entangled quantum-mechanical
states that are very different from the up-down (or down-up)
product state of the classical ansatz. In particular, the latter
contributes an energy of −S2, while the singlet wave function
contributes −S(S + 1).61 In order to capture this strong-singlet
physics at small x, we introduce a variational wave function
|�var〉 that still treats the fourfold sites as classical vectors
but leaves complete quantum-mechanical freedom for the
threefold sites. Furthermore, to include both the orthogonal
and the mixed phase as special cases of this ansatz, we
assume that the unit cell of |�var〉 is twice the unit cell
of the Hamiltonian with ordering wave vector at (π,π ). In
addition, we do not put any restriction on the directions of the
fourfold classical vectors. Thus the variational parameters in
this ansatz are the six polar angles corresponding to three
fourfold classical vectors [by global SO(3) symmetry, the
fourth fourfold vector is forced to point in a fixed direction]. In
effect, this ansatz amounts to solving quantum mechanically,
for each set of the above parameters, the problem of an AFM
S = 1/2 dimer in the presence of two local fields of arbitrary
directions.

The first major result from the variational minimization
is that the optimal GS corresponds to the orthogonal coplanar
configuration up to x = 2 and to the ferrimagnetic state (where
the J33 bonds form |↑↑〉 triplets) for x > 2. Hence including
quantum mechanics on the threefold sites makes the mixed
phase unstable for low enough spin S, which confirms our
expectation that this compromise between the orthogonal and
the ferrimagnetic phase is fragile.

We have double-checked this important result by searching
for the minimum energy of the same variational problem but
in the more restricted parameter space whereby the fourfold
classical spins are tilted away from the xy plane by an angle
θ (i.e., as in the mixed phase configuration). This angle is
the only variational parameter, which makes the problem of
finding the minimum much more tractable numerically. In
fact, this problem is equivalent to that of an AFM dimer in
the presence of a staggered field hs = √

2xS cos θex plus
a uniform field hu = 2xS sin θez, i.e., it is an extension
of the staggered field-only case treated in Appendix B.
And indeed, the GS of this problem has θ = 0 (coplanar
phase) for 0 � x < 2, but θ = π/2 (ferrimagnetic phase)
for x > 2.

We now look at the main quantities of interest in the above
optimal variational state for S = 1/2. The first is the overlap
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0.4
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43

/J
33
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|〈GS | Singlet〉|2

local spin lengths
on the J

33
−dimers

orthogonal (+dimerization)

FIG. 5. (Color online) Comparison between the numerical min-
imization of the variational ansatz described in the text (symbols)
and the analytical prediction (solid lines) from the problem of an
AFM dimer in the presence of a staggered field hs = √

2Sx (see
Appendix B). Circles show the squared overlap between the optimal
quantum-mechanical state |	〉 of a dimer and the full singlet state,
and squares show the local spin lengths on the J33 bonds.

of the optimal GS on the dimer with the exact singlet wave
function. The second is the polarization of the two threefold
sites forming a dimer. Both quantities signify the amount of
triplet admixture in the GS, and they are shown in Fig. 5,
where they are also compared to the corresponding analytical
predictions given in Appendix B. Our first comment is that the
overlap remains quite large up to x = 2, which signifies that
the strong x = 0 coupling limit is a good perturbative limit for
discussing the physics of the full S = 1/2 quantum problem
even at intermediate x. Another feature is that the polarization
of the threefold sites becomes immediately finite as soon as we
switch on a finite x. This happens because we are dealing with
a quantum-mechanical dimer in the presence of a staggered
field (i.e., the local exchange fields at the two sites of the
dimer are opposite to each other in the coplanar phase), which
admixes the triplet |t0〉 into the singlet GS as soon as x is finite
(see details in Appendix B). This is in contrast to the case of an
AFM dimer in a uniform field, which can polarize the dimer
only above a critical value that is set by the singlet-triplet gap.

VI. QUADRATIC FLUCTUATIONS AROUND
THE VARIATIONAL ANSATZ

A. Linear spin + bond-wave theory

In the previous variational wave function, the J33 dimers
were treated fully quantum mechanically but the fourfold sites
were treated as classical vectors. So we refine our treatment
to include the quadratic fluctuations around the variational
state by performing a semiclassical spin-wave expansion for
the fourfold sites and a bond-wave expansion18,19 for the J33

dimers.
Figure 6 shows the unit cell of the lattice and the orthogonal

variational state around which we expand. For the fourfold
sites ai and fi , we perform a Holstein-Primakoff expansion
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FIG. 6. (Color online) Bosonic operators and local quantization
axes (for the fourfold sites and the first site of each dimer) in the
orthogonal state, where all spins lie on the xz plane.

Sz
ai

= S − a+
i ai , S+

ai
� √

2Sai (and similarly for Sfi
), where

we use the local quantization axes shown in Fig. 6.
Using the above representation for the fourfold spins, we

may regroup the various terms in the Hamiltonian as follows:

H = H(33) + H(43)
1 + H(43)

2 ≡ H0 + H(43)
2 , (10)

where H(33) contains the J33 coupling terms while H(43)
1

contains the parts that come from the constant S from the
z component of the fourfold spins and H(43)

2 contains the re-
maining portion from the J43 coupling terms. More explicitly,

H0 =
∑

i

J33S1,i · S2,i − hszs,i · (S1,i − S2,i)

+ J33S′
1,i · S′

2,i − hszs ′,i · (S′
1,i − S′

2,i), (11)

where hs = √
2xS. Therefore, H0 describes two independent

dimers in the presence of staggered fields, a problem that is
solved in Appendix B.

To account for the fluctuations driven by the remain-
ing portion H(43)

2 of the Hamiltonian, we shall make a
bond-wave expansion. We first introduce eight bosonic
operators, which create the singlet |s〉 = 1√

2
(|↑↓〉 − |↓↑〉)

and the three triplet states |t1〉 = |↑↑〉, |t−1〉 = |↓↓〉, and
|t0〉 = 1√

2
(|↑↓〉 + |↓↑〉), for each of the two J33 dimers per

unit cell. These bosons will be denoted by {s,t1,t0,t−1}i
and {s ′,t ′1,t

′
0,t

′
−1}i (see Fig. 6). The spin operators of

the two sites of each dimer have the following bosonic
representation:18,19

Sz
1,2 = ±1

2
(t+0 s + s+t0) + 1

2
(t+1 t1 − t+−1t−1), (12)

S+
1,2 = ∓ 1√

2
(t+1 s − s+t−1) + 1√

2
(t+1 t0 + t+0 t−1). (13)

We also introduce the bosons that create the two lowest
eigenstates of H0 [see Eqs. (B2) and (B3)] for the two separate

dimers in the unit cell, namely

ψ+
1 = us+ + vt+0 , ψ+

2 = vs+ − ut+0 , (14)

ψ ′+
1 = us ′+ + vt ′+0 , ψ ′+

2 = vs ′+ − ut ′+0 , (15)

where the constants u,v are defined in Appendix B. To expand
around the variational GS, we take the constraint ψ+

1 ψ1 +
ψ+

2 ψ2 + t+1 t1 + t+−1t−1 = 1 and replace the right-hand side
with a large number M . We then assume that the bosons ψ1

and ψ ′
1 are condensed and perform a large-M expansion,19

ψ1 �
√

M − 1

2
√

M
(ψ+

2 ψ2 + t+1 t1 + t+−1t−1). (16)

Replacing in the Hamiltonian and keeping only quadratic terms
in the expansion, we arrive at

H � E0 + 1

2

∑
k

A+
k ·

(
Ck Dk

D+
k CT

−k

)
· Ak, (17)

where E0/Nuc = (2M + 3)ε1 − ε2 − 1/2 − 4xvuM/
√

2,
Nuc = 6N is the number of unit cells, ε1,2 are the single-dimer
energies given in Eqs. (B2) and (B3),

A+
k = (a+

k , f +
k , ψ+

2,k, t
+
1,k, t

+
−1,k, ψ

′+
2,k, t

′+
1,k, t

′+
−1,k, a−k,

f−k, ψ2,−k, t1,−k, t−1,−k, ψ
′
2,−k, t

′
1,−k, t

′
−1,−k),

(18)

and the 8 × 8 matrices Ck and Dk are given explicitly
in Appendix C. To diagonalize this quadratic Hamiltonian,
we search for a Bogoliubov transformation Ak = Vk · Ãk

as described in Appendix A in terms of new bosons
ãk,f̃k,ψ̃2, . . . ,t̃

′
−1,k , for which

H � E0 + 1

2

∑
k

(ω1k + · · · + ω8k)

+
∑

k

(ω1kã
+
k ãk + · · · + ω8k t̃

′+
−1,k t̃

′
−1,k). (19)

B. Results

In the left panel of Fig. 7, we show the eight spin +
bond-wave branches of excitations along some symmetry
directions in the BZ and for x = 0.5. The spectrum consists of
two low-lying modes and six high-energy modes around E =
J33. These modes arise, respectively, from the two spin-wave
modes of the fourfold sites and the six J33-triplet modes per
unit cell. At x = 0, both the fourfold sites and the J33 dimers
are isolated and thus all modes are completely localized. In
particular, the two spin-wave modes have zero energy and the
six triplet excitations cost energy J33. The hybridization caused
by a finite x then gives rise to the dispersion structure shown
in the left panel of Fig. 7.

Of particular interest are the Goldstone modes, which
appear in the spectrum due to the fact that the variational
state breaks the continuous SO(3) symmetry. From the nature
of the variational state, one expects two Goldstone modes, one
at k = 0 and another at the ordering wave-vector Q = (π,π ).
However, the left panel of Fig. 7 shows that we actually have
three gapless modes, one at zero momentum and two at Q. The
extra gapless mode at Q appears also in the linear spin-wave
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FIG. 7. (Color online) Main results from the spin + bond-wave calculation, which captures the quadratic fluctuations around the variational
GS. Left panel: The eight branches of hybridized spin + bond-wave excitations at x = 0.5 (see text). Middle panel: GS energy per site as a
function of x. Comparison between linear spin-wave theories around the orthogonal and the mixed state (dashed lines), the spin + bond-wave
theory, and ED data from the 12- and 24-site clusters. Right panel: Various GS expectation values as a function of x. 〈Sz

a〉 stands for the local
spin length of the fourfold sites. 〈Sz

1〉0 and 〈Sz
1〉 stand for the staggered polarization on the J33 dimers in the variational GS and when we

include quadratic fluctuations, respectively, and similarly for 〈S1 · S2〉0 and 〈S1 · S2〉. The symbols are ED results from the 12- (triangles) and
24- (circles) site clusters.

dispersions (not shown here) around the orthogonal state and is
spurious in both cases. Such a spurious gapless mode appears
also in the J1-J2 model around the collinear phase in the
large-J2 regime where it may be lifted by including nonlinear
terms.36 In the present case, these nonlinear terms actually
select a different state from the orthogonal one.

We now turn to the quadratic GS energy given by

E = E0 + 1

2

∑
k

(ω1k + · · · + ω8k) . (20)

Our results as a function of x are shown in the middle panel of
Fig. 7, where we also make a comparison with the semiclassical
spin-wave energies from Sec. IV. Comparing with ED data on
finite clusters with 12 and 24 sites, we see that the present
spin + bond-wave theory gives a better agreement than the
spin-wave theory, especially at small x. However, at larger
values of x, the mixed spin + bond-wave expansion does not
deliver a better energy than the pure semiclassical expansion.

Let us now look at the spin length of the fourfold sites,
which is given by

〈
Sz

a

〉 = S − 1

Nuc

∑
k

16∑
n=9

|Vk(1,n)|2, (21)

and can also be calculated numerically by integrating over the
BZ. The result is shown in the right panel of Fig. 7 as a function
of x. We see that quadratic fluctuations destroy completely the
long-range order at the fourfold sites around x ∼ 1.5. This
means that there exist quite severe quantum fluctuations in
this regime that might destabilize the ansatz phase.

A similar conclusion arises by looking at the behavior of the
exchange energy on the J33 dimers as well as their staggered
polarization. These quantities can be calculated using the
expressions

〈S1 · S2〉 = 1
4 − u2 + (2u2 − 1)〈ψ+

2 ψ2〉 + 2u2〈t+1 t1〉, (22)〈
Sz

1,2

〉 = ±uv(1 − 2〈ψ+
2 ψ2〉 − 2〈t+1 t1〉), (23)

where we have used 〈t+1 t1〉 = 〈t+−1t−1〉 (due to time-reversal
symmetry), and

〈ψ+
2 ψ2〉 = 1

Nuc

∑
k

16∑
n=9

|Vk(3,n)|2, (24)

〈t+1 t1〉 = 1

Nuc

∑
k

16∑
n=9

|Vk(4,n)|2. (25)

The results are shown in the right panel of Fig. 7 where they are
compared to the corresponding behavior in the variational GS,
i.e., without quantum fluctuations. We see that the exchange
energy becomes quickly reduced in magnitude with x, and
it even crosses over to positive values above x ∼ 1.8. This
behavior is drastically different from the corresponding result
〈S1 · S2〉0 in the variational GS and from the ED data. Thus
the effect of quadratic fluctuations is quite strong.

VII. FULL QUANTUM S = 1/2 LIMIT: EFFECTIVE
LOW-ENERGY THEORY FOR SMALL x = J43/J33

Up to now, the spins at the fourfold sites were treated
classically or semiclassically. However, it turns out that there
are quite strong quantum-mechanical effects on these sites that
modify to a large extent the picture we have so far and bring
about rich physics that takes place at a smaller energy scale.

At J43 = 0, the system consists of isolated J33 dimers that
form singlets, and free spins (fourfold sites) that are free to
point up or down. This highly degenerate GS manifold is lower
in energy from excited states by at least J33, which is the cost
of promoting one singlet into a triplet. By switching on a
small x, the fourfold spins begin to interact with each other
through the virtual fluctuations of the threefold dimers out
of the singlet manifold. By integrating out these fluctuations,
one may derive an effective model description for the low-
energy sector using degenerate perturbation theory. Specific
details of this expansion are provided in Appendix D. Here we
summarize the main results.
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FIG. 8. (Color online) Left: Lowest-order processes in the effec-
tive model. The fourfold sites form a tilted square lattice (dashed
lines). In second order in x, J1 vanishes because of quantum
interference between two different paths (shown by arrows) with
opposite amplitude. In contrast, J2 is finite since there is a single
path. In fourth order in x, a four-spin term appears that invokes the
four spins around a square plaquette. Right: Dependence of J1, J2,
and K on x, as given by Eqs. (28)–(30).

It turns out that an expansion up to fourth order in x provides
the essential low-E physics at small x. The major interactions
between the fourfold sites are depicted in Fig. 8. The first
important insight comes already in second-order perturbation
theory, i.e., that the effective nearest-neighbor (NN) coupling
J1 vanishes due to quantum interference since the two possible
paths shown in Fig. 8 have opposite amplitude. The overall
minus sign originates in the fact that the singlet wave function
is antisymmetric with respect to the interchange of the two sites
of the J33 dimer. In contrast, there is only one possible path
connecting next-nearest-neighbor (NNN) sites, and this gives
a finite J2 coupling in second order. A nonzero J1 appears first
in third order together with a renormalization for J2. In fourth
order, in addition to a renormalization of J1 and J2, one also
obtains a four-spin exchange term that involves the spins of
each square plaquette. For a plaquette with a horizontal dimer
(see the seventh cluster in Table II), this term reads

K̂= (S1 · S2)(S3 · S4) − 1
2 (S1 · S4)(S2 · S3) + (S1 · S3)(S2 · S4)

(26)

or, in pictorial form,

K̂ =

≡ K̂h − 1
2
K̂v + K̂x .

(27)

This term is different from the usual ring exchange process26

on the square lattice. In particular, the coefficients of K̂h and
K̂v are different here (the actual relative factor of −1/2 is
not generic but is expected to be modified in higher orders
of perturbation theory), and this reflects the lack of the C4

symmetry around the center of each square plaquette in the
underlying parent Hamiltonian on the Cairo lattice. In essence,
the full symmetry of the underlying Cairo lattice is only
manifest in fourth order of perturbation theory, which is a good
reason why one should push the perturbation theory at least up

to fourth order. Finally, the coefficient of the last term K̂x is the
same as that of K̂h, and this reflects the underlying symmetry
of exchanging S2 and S3 (or S1 and S4) in all fourth-order
processes. However, this is not a generic feature, although it
might still hold up to some order higher than fourth.

Altogether, up to fourth order in x we have a low-energy
effective J1-J2-K model on the square lattice with parameters

J1 = 1
2x3 + 1

4x4, (28)

J2 = 1
2x2 + 3

4x3 − 9
8x4, (29)

K = x4. (30)

As can be seen in the right panel of Fig. 8, these functions
show a rapid increase above x ∼ 0.4, so we expect that the
fourth-order series expansion does not converge beyond x ∼
0.4–0.6.

From the above effective theory, we get the following
insights into the low-energy physics of the problem at small
x. The first insight comes from the fact that we are dealing
with a dominant J2 coupling in the square lattice. This gives
two square sublattices that are decoupled from each other and
order antiferromagnetically. Now the angle θ between the two
Néel vectors is not fixed at the classical level even when one
includes a finite J1, since the total exchange field exerted
at a given site of one sublattice from the four neighboring
spins of the other sublattice adds up to zero. In contrast, the
classical energy per site of the four-spin exchange term goes
as +KS4(cos2 θ + 2)/6, and thus the plaquette term favors the
orthogonal state with θ = π/2. However, up to this point we
have neglected quantum fluctuations. At sufficiently small x,
J1 will dominate over K and will drive quantum fluctuations,
which at the harmonic level are known20 to favor one of the
two collinear phases with θ = 0 or π [see Fig. 2(b)]. Hence
there must be a critical value of x below which the orthogonal
state becomes unstable toward the Z2 collinear phase.

It should be noted here that out of the three members of
Eq. (27), it is the combination K̂h − 1

2 K̂v that is responsible
for the selection of the orthogonal phase at the classical level,
since the energy of the third term K̂x does not depend on the
angle θ .

VIII. NONLINEAR SPIN-WAVE THEORY
IN THE EFFECTIVE MODEL

A LSW expansion around the orthogonal phase in the
effective model does not capture the instability to the collinear
phase at small x. This can be seen in the lower panel of Fig. 4,
where we have also included (by green diamonds) the results
from such a calculation (specific details are again relegated to
Appendix A) for the correction δS of the fourfold sites. We
see that δS does not show any anomaly down to x = 0 (where
it approaches the same limiting value as that obtained by LSW
theory in the full Cairo lattice model).

A LSW expansion around the collinear phase does not
work either, since the collinear phase is not the classical
minimum and the resulting Hamiltonian matrix is not positive-
definite. To stabilize the collinear state, one is then led to
include anharmonic corrections to the theory. This situation
is analogous to the case of the triangular AFM in a field,
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FIG. 9. (Color online) Left panel: Self-consistent solution for the mean-field pairing fields that appear in the interacting spin-wave theory
around the collinear phase. Middle panel: The energy [in units of J2(x)] of the second excitation mode at k = 0 and at k = (π,π ). Inset: The
BZ of the effective model is enclosed by the dashed (blue) lines and is set by the reciprocal vectors Gx and Gy . At small enough x, the effective
model reduces to the J1-J2 model on the square lattice whose unit cell contains one site only. Its BZ is enclosed by the solid (red) lines and is
set by the vectors G1 and G2. Right panel: Spin-wave dispersions from NLSWT around the collinear phase for two representative values of x.

where the up-up-down state is not the classical minimum but is
stabilized by the leading 1/S corrections to the linear theory.37

Here we have performed a similar nonlinear spin-wave
(NLSW) expansion around the collinear phase. The quartic
terms are treated by a standard mean-field decoupling based
on the following (real) pairing fields, which must be finite in
the collinear phase:

N0 = 〈a+
i ai〉 = 〈f +

i fi〉,
N1 = 〈a+

i fi〉 = 〈a+
i fi+x+y〉, (31)

L1 = 〈aifi±x〉 = 〈aifi±y〉,
L2 = 〈aiai±x〉 = 〈aiai±y〉 = 〈fifi±x〉 = 〈fifi±y〉.

Here N0 is the on-site correction to the spin length, N1 is
the short-range correlation along the FM lines of the collinear
phase, L1 is the short-range correlation along the AFM lines
of the collinear phase, and finally L2 is the AFM correlation
between next-nearest neighbors. The mean-field decoupling
leads to a quadratic theory of the same form as Eq. (A1) and
with the matrices Ck and Dk given explicitly in Appendix A 4.

Given the presence of the two interpenetrating Néel
sublattices, which is dictated by the dominant J2 coupling,
we expect that L2 is finite even at x = 0, while both N1

and L1 should vanish at x = 0 and become finite as soon as
the order-by-disorder effect takes place. Our results from the
numerical self-consistent solution for the above pairing fields
are shown in the left panel of Fig. 9. As expected, both N0 and
L2 are finite (and strong) at x = 0 with little dependence on x,
while N1 and L1 approach zero at small x.

The right panel of Fig. 9 shows the development of a finite
gap for the second modes at k = 0 and k = (π,π ). As we
show in the inset, these momenta map to the k = (0,π ) and
k = (π,π ) mode of the BZ of the J1-J2 model, which we get
if we neglect the K term at very small x. So the restoration of
the gap at these k points is consistent with our expectation of
having two Goldstone modes in the collinear phase that, in the
BZ of the J1-J2 model, sit at k = (0,0) and at k = (π,0) (which

is the ordering vector of the state about which we performed
our semiclassical expansion). The lower panel of Fig. 9 shows
the dispersion of the two spin-wave branches along certain
symmetry directions of the BZ.

IX. EXACT DIAGONALIZATIONS IN THE CAIRO
LATTICE FOR S = 1/2

In the remaining part of the paper, we discuss our exact
diagonalization results from finite-size clusters with periodic
boundary conditions and with spin S = 1/2. We have investi-
gated both the Cairo lattice model as well as different variations
of the effective model in the square lattice.

The main results from the Cairo clusters can be summarized
as follows. At x ∼ 2, we find a GS level crossing to a
state with total spin N/6, which is the onset of the 1/3-
ferrimagnetic phase (Sec. IX B). In the opposite regime of
small x (Sec. IX C), we find a singlet GS and a low-energy
structure, which proves the presence of two nearly decoupled
sublattices, in agreement with the effective model. This is
explicitly demonstrated by comparing the spectra of the 24-site
Cairo cluster to that of the effective eight-site square cluster
(Sec. IX C 1). We also examine a number of GS properties
at small x, such as spin-spin, dimer-dimer, and vector-chiral
correlations (Sec. IX C 2), as well as the low-energy symmetry
properties of the spectrum (Sec. IX C 3). These results show a
strong competition between the collinear and the orthogonal
state at low x, and highlight the fact that the locking
between the two sublattice Néel vectors (favored by the large
J2/J1 in the effective model) takes place at large length
scales.

At intermediate x (x ∼ 1.2 for the 24-site cluster) we find
a GS level crossing to a new singlet state, accompanied by
a whole reorganization of the low-lying excitations and their
symmetries. This intermediate phase is discussed separately
in Sec. X.

104415-10



QUANTUM MAGNETISM ON THE CAIRO PENTAGONAL LATTICE PHYSICAL REVIEW B 85, 104415 (2012)

FIG. 10. (Color online) The unit cell of the Cairo pentagonal
lattice along with a clarification of the space-group symmetries. The
vectors tx and ty denote the primitive translations of the Bravais
square lattice. In addition to the C4 rotations around the fourfold-
coordinated sites, we also have the four nonsymorphic operations
(σi |τ ), which stand for reflections σi (i = x, y, d , and d ′), followed
by the nonprimitive translation τ . In the absence of the threefold sites,
this point group reduces to C4v , which is the point group of the square
lattice.

A. Finite-size clusters and symmetries of the Cairo lattice

As we mentioned above, the Cairo pentagonal lattice has
a unit cell of six sites. It turns out that the largest finite-size
cluster (with periodic boundary conditions) that has the full
point group symmetry of the infinite lattice and that is also
accessible by our computational capabilities has 24 sites (the
next symmetric cluster has 48 sites, which is too large). As we
are going to see, most of the valuable information presented
below comes from this 24-site cluster, exactly because it has
all point-group symmetries. We have also investigated clusters
with 12, 18, and 30 sites that are, however, either too small or
lack some of the point-group symmetries of the infinite lattice.

Before we present and analyze our ED results, it is also
useful to understand the space-group structure of the Cairo
lattice. Its Bravais lattice is the square lattice with primitive
translations tx and ty along the x and y axes, respectively
(see Fig. 10). Apart from primitive translations, the lattice is
also invariant under the C4 rotations around the fourfold sites
as well as under four nonsymorphic “glide” operations (σi |τ )
(i = 1–4), which are reflections followed by the nonprimitive
translation τ (see Fig. 10). Thus the point group G0 of the
Cairo lattice is isomorphic to C4v .

Next, we would like to discuss the irreducible representa-
tions (IR’s) of this space group with an emphasis on special
points in the Brilloin zone (BZ). We begin with the zero
momentum sector. The little group of k = 0 is the full point
group and its IRs are taken over from those of C4v . These are
shown in Table I, where we also show their decomposition
into IRs of the C4 subgroup, which are labeled by the angular
momenta l. Specifically, we have four one-dimensional IR’s
out of which the first two, A1 and A2, are s-wave states
(l = 0) and the remaining ones, B1 and B2, are d-wave states
(l = π ). In addition, there is a two-dimensional sector “E”
that decomposes into l = ±π/2 and will be denoted in the
following by “0.{±π/2}.”

TABLE I. Character table of the little group of k = 0, which is
isomorphic to C4v . The decompositions of the five IR’s (first column)
into modes with well-defined angular momenta l are given inside the
parentheses.

C4 (σx |τ ) (σd |τ )
E C2 C−1

4 (σy |τ ) (σd ′ |τ )

A1(l = 0) 1 1 1 1 1
A2(l = 0) 1 1 1 −1 −1
B1(l = π ) 1 1 −1 1 −1
B2(l = π ) 1 1 −1 −1 1
E(l = ± π

2 ) 2 −2 0 0 0

The little group of k = (π,π ) is also C4v . However, the IR’s
are now different from the k = 0 case, since the representation
theory for nonsymorphic groups is more involved for momenta
that sit on the BZ boundary. It turns out62 that there are only
two 2D IRs for k = (π,π ). The first combines l = 0 and l = π

while the second combines l = ±π/2. So in the following we
shall denote these IRs by “(π,π ).{0,π}” and “(π,π ).{±π/2},”
respectively.

We finally discuss the (π,0) point. Here the little group is
isomorphic to C2v but the IRs are not those of C2v since we
are again dealing with a point on the BZ boundary. Here group
theory predicts a single 2D IR63 whose members have angular
momenta l = 0 and π . By including the second member (0,π )
of the star of k, we get a single 4D IR, which we shall denote
here by “(π,0)∗.{l = 0,π}.”

B. Large-x regime: The 1/3-ferrimagnetic phase

Our ED results of the full model show that the 1/3-
ferrimagnetic state is indeed stabilized at large x. The transition
to this state can be easily identified by a GS level crossing
between the lowest S = 0 state and the lowest S = N/6 state.
For all clusters investigated, the transition occurs around the
classical point, x ∼ 2. For the 24-site cluster, which is the most
symmetric cluster, the transition takes place at x � 1.96 (see
the left panel of Fig. 11 below).

C. Small-x regime: The presence of two weakly coupled
AFM sublattices

1. Structure of the spectrum at x → 0

Figure 11 shows the low-energy spectrum of the 24-site
Cairo lattice as a function of (x − 1)/(x + 1). To highlight
the dominance of the J2 energy scale at small x and to better
examine the resulting splitting of the x = 0 GS manifold, we
have plotted the energy (always measured from the GS) in
units of x2J33 for x < 1, and in units of J43 for x > 1.

The spectrum shows the following features in the limit
of x = 0. The first excitations above the singlet GS are two
triplets with excitation energy x2J33. At energy 2x2J33, we
find all together nine degenerate states, among which we have
three singlets, five triplets, and one quintet.

To understand this structure, we turn to the effective
model description of the 24-site Cairo pentagonal cluster
(see the left panel of Fig. 12). This cluster comprises
eight fourfold-coordinated sites that form two interpenetrating
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FIG. 11. (Color online) Left panel: Low-energy spectrum in the 24-site Cairo pentagonal cluster as a function of (x − 1)/(x + 1) (bottom
x axis), where x = J43/J33 (top x axis). The energy is measured from the respective GS and is scaled with the function f (x) = J33x

2 for
x < 1 and f (x) = J43 for x > 1. Open symbols stand for Sz = 0 states while crosses denote Sz > 0 states. The legends specify the different
symmetry sectors for this cluster. The last portion of the symmetry label accounts for the parity under spin inversion, with “Sze” and “Szo”
specifying, respectively, even and odd sectors. The arrow denotes the 1/3-ferrimagnetic state (here with total spin S = 4) which becomes the
GS for x � 1.96. Right panel: Low-energy spectrum of the 24-site Cairo pentagonal cluster vs the total spin S for x = 0.8. Different symbols
correspond to different symmetry sectors as shown by the legends. The parentheses next to the legends denote the degeneracy of each sector
(apart from the Zeeman degeneracy).

square plaquettes A (sites 1, 0, 3, and 5) and B (sites 2, 4, 7,
and 6). This simplifying aspect allows us to work out explicitly
the low-energy structure of the effective model for small x.
Let us label the states of plaquette A by |S05S13SA〉, where
S05 = S0 + S5, S13 = S1 + S3, and SA = S05 + S13. Similarly,
the states of plaquette B are labeled as |S27S46SB〉. To lowest
order in x, only the J2 terms survive, which read

H2 = 2J2(S46 · S27 + S05 · S13)

= J2
(
S2

A + S2
B − S2

46 − S2
27 − S2

05 − S2
13

)
, (32)

where the factor of 2 in the first line accounts for the fact
that each J2 interaction appears twice in our cluster due to
the periodic boundary conditions. Thus the two plaquettes A

and B are decoupled from each other, and the full spectrum
E = EA + EB (rightmost panel of Fig. 12) can be obtained
by adding the two single-plaquette spectra (second and third
panels of Fig. 12) by a standard addition of angular momenta
S = SA + SB . It is then straightforward to show that the global
GS is the direct product of the two |1,1,0〉 singlets of each
plaquette and that it is s-wave (l = 0). The lowest excited states
are the triplets |1,1,1〉A ⊗ |1,1,0〉B and |1,1,0〉A ⊗ |1,1,1〉B ,
which have energy J ≡ 2J2 above the GS and angular
momentum l = 0 and π , respectively. At energy 2J , we get
three singlets, five triplets, and one quintet.

So the multiplicities and the symmetry properties of the
spectrum at small x match exactly the ones found by ED in
the original 24-site Cairo cluster (Fig. 11). This confirms the

FIG. 12. (Color online) Left panel: The effective J1-J2-K model description of the 24-site Cairo pentagonal cluster. There are two
interpenetrating square plaquettes that consist of the sites (1, 0, 3, 5) and (2, 4, 7, 6). The J1 and J2 interactions are denoted by thin dotted and
thick solid lines, respectively, while the orientation of the K term in each J1 plaquette is denoted by a thick segment (that coincides with the
underlying J33 dimer of the Cairo lattice) at the middle. At small x, the two square plaquettes are decoupled from each other and only the J2

coupling survives (here J ≡ 2J2). The total energy spectrum (last panel) results from a direct sum of the energy spectra of the two plaquettes
(second and third panels). In addition to the spin quantum numbers, we also specify the angular momentum l with respect to C4 rotations
around the site numbered 5. All degenerate levels are split by hand for clarity.
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main picture from the effective model of having two nearly
decoupled interpenetrating square AFMs.

2. GS correlations

a. GS spin correlations. Figure 13 shows the GS spin-spin
correlations for the 24-site cluster. The left panel shows the
correlation profiles at a representative value x = 0.5, while the
right panel shows the dependence as a function of x. There are
two important features in these figures. First, there is a strong
AFM correlation between the reference site and the fourfold
sites that belong to the same subsystem. This confirms the
strong AFM J2 coupling within each sublattice.

The second feature, which remains true in the entire range
up to x = 1, is that there are almost no correlations between the
reference site and the fourfold spins belonging to a different
sublattice. This feature is consistent with the orthogonal phase
scenario in which the two Néel vectors are perpendicular to
each other (θ = π/2). It would also be consistent with the
collinear phase scenario in which the correlations actually
vanish for finite-size clusters because the GS is an equal
superposition of the two genuinely different collinear phases
(θ = 0 and π ).

Hence the spin-spin correlation data cannot establish the
critical value of x where the transition between the orthogonal
and the collinear phase takes place. For this, one would need
much larger cluster sizes since, as we know from previous
studies on the J1-J2 model,27,28 there is a very large length
scale associated with the locking between the two Néel vectors.

b. GS dimer and vector-chiral correlations. We now turn to
some other correlations that may also be used as diagnostic
tools for the collinear and the orthogonal phases. In the
collinear phase, the spins order FM in one direction and AFM
in the perpendicular direction, so the dimer-dimer correlations
along the two directions should reflect this physics.28 On the
other hand, in the orthogonal phase the spins lie in one plane
so the orthogonal phase must show a staggered signal in the
vector-chiral correlations.31,32 Figure 14 shows these two type
of correlations for the same GS at a representative value of
x = 0.1. The results show that both types of correlations are
present in the same GS and with the expected profile. As in

FIG. 13. (Color online) Left: Ground-state spin-spin correlation
profiles 〈S6 · Si〉 at x = 0.5 for the 24-site Cairo pentagonal cluster.
Filled (blue) circles denote positive correlations while open (red)
circles denote negative correlations. Right: Correlations between the
reference site (6) and the set of all symmetry-inequivalent sites of
the cluster as a function of x, up to x = 1. Note that the limiting
correlation values at x = 0 are consistent with the exactly known GS
wave function of the eight-site effective cluster (see text).

FIG. 14. (Color online) Ground-state bond nematic 〈(S1 · S2)(Sk ·
Sl)〉 and vector-chiral 〈(S1 × S2)z(Sk × Sl)z〉 correlations at x = 0.1
for the 24-site Cairo pentagonal cluster. The thick bond (1,2) is the
reference bond. Solid (blue) lines denote positive correlations and
dashed (red) lines denote negative correlations. The width of each
line is proportional to the corresponding expectation value.

the case of the spin-spin correlations, this shows that the two
phases compete with each other but the 24-site cluster is too
small to discriminate between the two.

3. Excitations: Low-energy towers of states

We next turn to the low-energy excitations and check
whether we see any signatures of the collinear and the orthog-
onal states. This is done by looking at the symmetry structure
of the so-called Anderson towers of states.38 It is by now
established, following the seminal work by Bernu et al.39,40

and Lecheminant et al.,41,42 that a given magnetic phase
in the thermodynamic limit shows up in finite-size spectra
through the clear formation of a tower of states that scale as
S(S + 1)/N and is well-separated from higher excitations. A
wave packet out of this infinite tower would be stationary
in the thermodynamic limit and would correspond to the
given classical state. Not surprisingly then, the multiplicities
and symmetry properties of this set of states are intimately
connected to the symmetries that are broken in the classical
phase and can actually be derived by group theory alone.39–44

Now, the collinear and the orthogonal phase break the full
symmetry group of the Hamiltonian in a different way, so
the structures of the corresponding towers of states should be
very different from each other. In Appendix F, we derive the
symmetry content of the two towers using group theory.

The final predictions for the lowest total spin S sectors
of the towers are given in Tables IV and V. Specifically,
the collinear phase comes with two states per total spin S,
while the orthogonal phase should show 2S + 1 states (not
related to the Zeeman degeneracy) at a given spin sector S.
The symmetry properties of these states with respect to C4

rotations as well as the four nonsymorphic operations (σi |τ )
are shown in Tables IV and V.

These towers should be now compared to the low-E
excitations of the 24-site cluster, which are shown in the
right panel of Fig. 11 as a function of the total spin S, at
a representative value x = 0.8. In the singlet sector, we find
the “0.A1” ground state, a “0.B1” state nearby, and another
“0.B2” state slightly higher in energy. The first one belongs to
the orthogonal tower, but we may also think of the pair “0.A1”
and “0.B2” as parts of the collinear tower. The “intruder” state
“0.B1” does not belong to any of the towers, and indeed at
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small enough x this state is slightly higher than the “0.B2”
state. At x = 0.8, this state has very low energy because it is
about to become the GS above x ∼ 1.2 (see Sec. X below).

Likewise, in the S = 1 sector, we find three triplets very
close in energy. Two of these belong to the twofold IR
“(π,π ).{0,π}” expected for the collinear tower, but we can
also include the third state “0.B1” to complete the three
states expected for the orthogonal tower. A similar situation
occurs in the S = 2 sector. Altogether, we find that the low-E
excitations contain both towers of states, which conforms with
the previous picture from the GS correlations that the collinear
and orthogonal phases compete with each other but the 24-site
cluster is too small to discriminate between the two.

X. THE INTERMEDIATE NONMAGNETIC PHASE

A. Identifying the relevant effective term that
drives the intermediate phase

We now turn to intermediate values of x. Looking back at
the low-E spectra shown in the left panel of Fig. 11, we see that
there is a GS level crossing in the singlet sector around x ∼ 1.2.
Similar GS level crossings are also found in the other Cairo
clusters that we studied. For the 24-site cluster, the new singlet
GS belongs to the “0.B1” sector, which belongs to neither the
collinear nor the orthogonal towers of states (Tables IV and
V), which is the first strong evidence that the system enters a
new phase.

Another piece of evidence is the reorganization of the low-E
excitation spectrum. In particular, as we see in left panel of
Fig. 15, the energies of the three lowest spin sectors form a
concave envelope, which suggests a tower of states formed
by even spin sectors only. Indeed, the magnetization (not
shown here) grows in δSz = 2 steps until we reach the 1/3-
ferrimagnetic phase. Provided that these δS = 2 excitations
form a tower that collapses in the thermodynamic limit, the

resulting state would not break time-reversal invariance, as it
happens, e.g., in a spin-nematic state.29

It turns out that we can actually learn more by tracing
the intermediate “0.B1” state back to its original place in the
x = 0 spectrum. First of all, Fig. 11 tells us that the “0.B1”
state is a member of the x = 0 GS manifold where J33 dimers
form singlets, in contrast to the 1/3-ferrimagnetic state, which
clearly is not. So the intermediate phase is more closely related
to the physics of the x = 0 limit. Secondly, we know explicitly
the low-spin states of the 24-site cluster at x = 0 and so we
may find out exactly which excitation at x = 0 evolves into
the intermediate “0.B1” phase. We find that it is the following
combination among two of the singlets with energy 2J above
the GS (see the right panel of Fig. 12):

|	〉 = 1√
2

(|1,1,0〉A ⊗ |0,0,0〉B + |0,0,0〉A ⊗ |1,1,0〉B ) .

(33)

This state has an important property (not shown explicitly
here): It minimizes simultaneously all plaquette terms of the
type Kx of Eq. (27), with eigenvalue −3/16. This provides
evidence that the instability mechanism that triggers the
transition to the intermediate phase is related to the four-spin
exchange term Kx . At the level of the effective model of
Sec. VII, this suggests that the Kx terms dominate in much
higher orders of perturbation theory in x, but we are not able
to check this explicitly.

We can still, however, make progress using only the three
couplings that we know so far from the fourth-order theory.
The idea is to compare the low-E spectrum of the intermediate
phase of the Cairo model with that of the unconstrained J1-
J2-K model as we visit different regions in the J1/J2-K/J2

plane. We have performed ED in the effective lattice model
(which has two sites per unit cell) using clusters with 8, 10,
16, 18, 20, 26, and 32 sites. The fully symmetric clusters with
8, 16, and 32 sites give the most clear and systematic evidence
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FIG. 15. (Color online) Low-E spectra as a function of total spin S for three different cases. The left is the spectra of the 24-site cluster for
x = 1.667, i.e., deep inside the intermediate phase. The middle panel shows the spectrum of the eight-site unconstrained J1-J2-K model in the
large K/J1,2 regime. The third panel shows the spectrum of the eight-site effective model, but this time we have kept only the Kx term among
the three plaquette terms of Eq. (26). The pairs of numbers inside the parentheses indicate the total spins SA and SB of the two sublattices,
which are separately conserved in this SU(2) × SU(2) model. In all three cases, the ovals indicate the sequence of GS’s visited by the system
in a field, while the different symbols follow the same convention as in the right panel of Fig. 11.
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FIG. 16. (Color online) First two panels: Low-E spectra as a function of total Sz for the 16- and 32-site clusters using only the effective
Kx plaquette term. Here all energies are measured for the GS energy E0(Sz). The ovals indicate the sequence of GS’s visited by the system in
a field while the pairs of numbers inside the parentheses indicate the total spins SA and SB of the two sublattices in these states. Note that for
the 32-site case, the 1/2-magnetization states with (SA,SB ) = (0,8) and (8,0) are not the GS’s. Right panel: Magnetization process in a field
for the clusters with 8, 16, and 32 sites.

so we shall only discuss these clusters here. We begin with the
eight-site effective cluster since it can be directly compared to
the 24-site Cairo cluster (the fourfold sites of the latter form
the eight-site effective cluster). By an inspection of the low-E
spectra in various regions of the J1/J2-K/J2 plane, we have
located the region of large K/J1,2 as the one with very similar
low-E spectral features to that in the intermediate phase. This
is demonstrated by the first two panels of Fig. 15.

Given now the special role of Kx regarding the above state
|	〉 [see Eq. (33)], we next check what happens if among the
three terms included in K [see Eq. (26)] we keep only the
Kx term. The corresponding eight-site spectrum is shown in
the third panel of Fig. 15 and demonstrates that the spectrum
retains the same features at low energies whether we keep
only Kx or not. This shows that Kx is indeed the most relevant
plaquette term for the intermediate phase.

B. The Kx model

For the above reasons, we shall restrict ourselves to the Kx

model in the following. The Hamiltonian reads

HKx
=

∑
plaquettes

(Sα · Sγ )(Sβ · Sδ), (34)

where the sum is over all plaquettes of the square lattice,
and (α,β,γ,δ) label the spins around a plaquette clockwise.
This model can be thought of as a 2D generalization of the
well-studied45–49 1D spin-orbital model.

We first discuss the classical limit of this model. It is easy
to show (and we have also checked it by classical Monte
Carlo simulations) that the energy can be minimized by any
collinear configuration with “3up-1down” or “3down-1up”
spins in every plaquette. In particular, starting from one such
GS we can generate others by flipping all the spins along any
horizontal or vertical line of the square lattice. This leads to

a subextensive number of GSs (with variant magnetizations)
that are not related by global spin rotations. So the classical
limit is highly frustrated and thus we anticipate rich physics
from thermal (not studied here) or quantum fluctuations.

It is natural that the above classical GS manifold appears
also if we use Ising spins in Eq. (34). Actually, as found by
Rojas et al.,10 the same GSs arise also in the Ising version of
Eq. (1).

Turning now to the quantum limit, let us denote by A and
B the two interpenetrating square sublattices of the full square
lattice [in Fig. 18 of Appendix E, the A and B sublattices
consist of the (α,γ ) and (β,δ) bonds, respectively]. This model
has a C4 rotation symmetry around the center of the plaquettes,
contrary to the full J1-J2-K model. More importantly, the
model has an enlarged SU(2) × SU(2) symmetry since we can
make independent spin rotations in the two sublattices A and
B without changing the energy. So the total spins SA and
SB of the two sublattices are good quantum numbers. This
also means that within a fixed (SA,SB) manifold the energy is
independent of the total spin S. In addition, the model has a
Z2 invariance under interchanging the two sublattices A and
B, so the manifolds (SA,SB) and (SB,SA), with SA �= SB , must
be degenerate.

Let us now try to establish some systematic spectral features
in the Kx model by looking at the larger 16- and 32-site
symmetric clusters. Their spectra are shown in the first two
panels of Fig. 16 as a function of total Sz. All energies are now
measured from the GS energy E0(Sz) so that we can better
retrieve the details of the spectra. The states that are visited by
the system in the presence of a magnetic field are highlighted
by ovals (tower of states in the following), while the pairs of
numbers inside the parentheses show the total spins (SA,SB )
in these states.

All towers of states, including the one for eight sites
(third panel of Fig. 15), exhibit common features. Apart from
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the singlet GS with (SA,SB ) = (0,0), and the fully polarized
state (N/4,N/4), all other states show a twofold degeneracy,
which is related to the Z2 symmetry mentioned above. More
importantly, there is a very clear difference between the states
below and above 1/2 magnetization. The tower below 1/2
comprises only states with even S, while above 1/2 we have
δS = 1 steps. This is also demonstrated in the third panel of
Fig. 16, which shows the magnetization process in a field.
Altogether, these results reveal two different states above and
below 1/2 magnetization.

The physics above 1/2 magnetization can be easily under-
stood by noting that the corresponding states have either SA

or SB equal to N/4. Thus one of the two subsystems is fully
polarized above the 1/2 magnetization. It is straightforward to
show that in this case the Kx model reduces to the two-spin
exchange model in the other sublattice with a nearest-neighbor
coupling equal to Kx/4. We have checked that the tower of
states above the 1/2 magnetization matches exactly (both in the
symmetries and the actual energies) the corresponding tower
of states of the square lattice AFM with half the number of
sites and a nearest-neighbor coupling equal to Kx/4.

The physics below 1/2 magnetization is much more
interesting. We first note that the tower below 1/2 contains
states where both SA and SB are even, and that one of the
two is always zero. This suggests that the SU(2) symmetry is
broken down to U(1) only in one of the two sublattices. That is,
we have some kind of spin nematic state in one sublattice and a
spin liquid state in the other sublattice. In addition, the angular
momentum alternates between l = 0 (s wave) and l = π (d
wave) as we go down in Sz starting from the 1/2-magnetization
state, which is s-wave. Hence the zero-field GS is s-wave for
16 and 32 sites but it is d-wave for eight sites, which conforms
with the d-wave property of the intermediate “0.B1” state in
the 24-site Cairo cluster.

The alternation between s-wave and d-wave GS symmetry
at low magnetizations is exactly what happens in the model
studied by Shannon et al. in Ref. 29, and suggests that the
intermediate spin-nematic phase has a d-wave symmetry. We
have checked this numerically by a calculation of the GS bond-
nematic correlations of the type 〈(S+

i S+
j )(S−

k S−
l )〉, where (i,j )

and (k,l) denote two different bonds of the lattice. The results
are shown in Fig. 17 and confirm the presence of a d-wave
signal in one sublattice only. The correlations between bonds
of different sublattices vanish exactly because the GS belongs
to the sector (SA,SB) = (0,0).

Let us now try to identify the low-E degrees of freedom
that could give rise to such a nematic state. Since we are
dealing with spins 1/2, we need some composite degrees of
freedom that can sustain a finite quadrupolar order parameter.
For the spin-nematic phase of Ref. 29, these might be the
triplets formed on nearest-neighbor bonds,29 or the plaquette
S = 2 states, as discussed by Ueda and Totsuka.50 In the
present case, we can also identify some triplet degrees of
freedom by considering the effect of Kx on a single plaquette
(α,β,γ,δ). It is easy to see that there are two possible
ways to minimize the energy, either by forming a singlet
on the (α,γ ) bond and a triplet on the (β,δ) bond or vice
versa. Both states have energy −3/16 and have total spin
S = 1, so they can indeed sustain a finite quadrupolar order
parameter.

K
x
−model, N=32, GS bond−nematic correlations

FIG. 17. (Color online) GS nematic correlations 〈(S+
i S+

j )(S−
k S−

l )〉
for the Kx model in the 32-site cluster. The cluster is denoted by the
(green) rectangle. The think (black) line is the reference bond (ij ).
The solid (blue) lines denote the bonds (kl) with positive correlations
while the dashed (red) lines denote negative correlations. The width
of the bonds is proportional to the actual strength of the correlations,
the largest of which is equal to 0.0228. Note that there are no
correlations between the reference bond and bonds belonging to a
different sublattice.

Now, there are two factors that impose nontrivial constraints
on the way these triplet degrees of freedom interact with each
other in the full lattice. The first is that, by their nature, the
two triplet GSs impose that a triplet in one diagonal bond must
come with a singlet on the other diagonal bond. The second
complication is that any given site participates in four plaquette
interactions. One approach that deals with the first problem
(but not with the second) is to perform a strong-coupling
expansion around the limit where only 1/4 of the plaquettes
have a finite Kx and are decoupled from each other (see
Fig. 18).50,51 The details of this approach are provided in
Appendix E and follow closely in spirit the treatment by
Lecheminant and Totsuka51 of a very similar situation in a two-
leg ladder system where a different pair of plaquette triplets
emerges at low energies. This approach delivers an effective
model that is similar to the well-known Kugel-Khomskii
Hamiltonian52 for orbital degenerate systems. Here the role
of the orbitals is played by the two types of triplets.

A natural variational treatment of this effective model
delivers a spin-nematic GS of a novel kind where both types of
triplets are entangled (see Appendix E). Despite this success,
there are two problems with this wave function. The first is
that both sublattices of the square lattice participate in this
state (see Appendix F4 for the symmetry decomposition of
this state), while the numerical tower of states suggest that the
symmetry breaking occurs only in one sublattice. The second
problem is that the variational state breaks translational
invariance, which is also in disagreement with the numerical
tower of states. In particular, the d-wave character of the
correlations is built-in from the outset since, by construction,
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FIG. 18. The plaquettized version of the square lattice. Thick
diagonal bonds denote the strong Kx terms, while dashed ones are
treated with first-order perturbation theory.

the “plaquettized” lattice distinguishes between the two
different directions in each sublattice (see Appendix E).64

XI. SUMMARY

In this paper, we have presented an extensive analytical
and numerical study of the Heisenberg model on the Cairo
pentagonal lattice. We have shown that by tuning the spin S and
the ratio x of the two inequivalent exchange couplings of the
lattice, we can drive the system through a number of competing
phases, some of which have a strong quantum-mechanical ori-
gin. We have demonstrated that the rich physics of this model
arises, to a large extent, from the presence of two inequivalent
sites in the Cairo lattice. To highlight this central feature and
to better understand the nature of the various phases, we have
followed a series of different approaches that build quantum
fluctuations in a gradual way starting from the classical limit.

The classical phase diagram contains three phases: the
orthogonal phase for x <

√
2, the 1/3-ferrimagnetic phase

for x > 2, and a mixed non-coplanar phase for
√

2 < x < 2
that combines the orthogonal and the ferrimagnetic. The
orthogonal state is the configuration found experimentally for
the Bi2Fe4O9 compound,13 which suggests that this phase is
quite robust in a more extended parameter space compared to
our symmetric version of the model.

In the quantum S = 1/2 limit, we have found an underlying
order-by-disorder mechanism that is active at small x and
that stabilizes a collinear magnetic configuration. The 1/3-
ferrimagnet phase seems to survive quantum fluctuations down
to S = 1/2 in the large-x regime. On the other hand, the mixed
phase becomes unstable for low enough S and disappears
completely from the phase diagram for S = 1/2.

Our ED results provide strong evidence of a new intermedi-
ate phase with spin-nematic correlations. We argued that this
phase is stabilized by an effective four-spin plaquette interac-
tion that first appears in fourth-order perturbation theory in x.
This term has an enlarged SU(2) × SU(2) symmetry structure
similar to spin-orbital models, and favors two species of triplet
GSs on a single plaquette. The symmetry structure of the
low-E spectra in the corresponding plaquette model suggests

that these triplet degrees of freedom order in a nontrivial
fashion, whereby one of the two square sublattices forms a
translationally invariant spin-nematic structure with d-wave
symmetry (similar to the one found by Shannon et al.29), while
no symmetry breaking seems to occur in the second sublattice.

One of the novel aspects of the intermediate phase is its
response under a magnetic field. The sublattice where the spin-
nematic order takes place responds by developing a dipolar
moment until full saturation. At this point, which corresponds
to 1/2 moment of the full system, the low-energy physics of
the second sublattice effectively reduces to that of the square-
lattice Néel AFM.

A simple physical picture for the intermediate phase is still
lacking. We have discussed, e.g., a strong-plaquette expansion
that builds upon the low-energy triplet degrees of freedom of a
single plaquette. A variational treatment of the resulting model
does deliver a spin-nematic phase, but this seems to entangle
both sublattices, and in addition it has symmetry properties
that are not compatible with our low-energy spectra from ED.
It is our hope that further studies will shed more light in this
direction.

On a more general level, this study demonstrates that
pentagonal lattice models can feature a wealth of strong
correlation phenomena. Compared to the well-explored
triangle-based models (triangular, kagome, etc.), here we
have a qualitatively different degree of frustration and
complexity since the low-energy physics is not related to the
local single-pentagon physics in any obvious way. Hence
pentagonal lattice models are interesting in their own right
and provide a distinct platform for exploring and realizing
novel phases of matter in frustrated magnetism.
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APPENDIX A: SPIN-WAVE THEORY (LSWT)

1. General procedure

Here we outline the general procedure for diagonalizing the
quadratic bosonic Hamiltonians obtained from LSWT around
the three classical ground states. The Cairo pentagonal lattice
has six sites (two fourfold- and four threefold-coordinated)
per unit cell. So we introduce six bosonic operators denoted
by ai,bi,ci,di,ei,fi to describe the harmonic fluctuations on
each site of the ith unit cell. Quite generally, up to quadratic
order the semiclassical expansion gives

H = Ecl + δE1 + S

2

∑
k

A+
k · Hk · Ak, (A1)

where δE1 is a constant (see below),

A+
k = (a+

k ,b+
k ,c+

k ,d+
k ,e+

k ,f +
k ,a−k,b−k,c−k,d−k,e−k,f−k),

(A2)

104415-17
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and Hk = (
Ck Dk

D+
k CT

−k

), where both Ck and Dk are 6 × 6

matrices. To diagonalize the Hamiltonian, we search for a
new set of bosonic operators Ãk given by the generalized
Bogoliubov transformation Ak = Vk · Ãk , such that the matrix
V+

k HkVk ≡ �k becomes diagonal. The transformation must
also preserve the bosonic commutation relations, which can
be expressed compactly as g = g̃ = Vk · g · V+

k , where g is
the “commutator” matrix,

g = Ak · A+
k − [(

A+
k

)T · AT
k

]T =
(

16 0
0 −16

)
, (A3)

and 16 stands for the 6 × 6 identity matrix. The above two
conditions give

(gHk) · Vk = Vk · (g�k) ≡ Vk · �′
k, (A4)

which is an eigenvalue equation in matrix form (the columns
of Vk contain the eigenvectors of gHk).

One can further show34 that if Hk is semidefinite-positive,
then �k = (ωk 0

0 ωk
), where ωk is a diagonal matrix with non-

negative entries ω1k–ω6k . This in turn leads to

H= Ecl + δE1 + δE2 + S
∑

k

(ω1kã
+
k ãk + · · · +ω6kf̃

+
k f̃k),

(A5)

with δE2 = S
2

∑
k (ω1k + · · · + ω6k), which represents the

total zero-point energy from all harmonic oscillators in the
theory. The total quadratic correction to the GS energy is then
given by δE = δE1 + δE2.

We now turn to the quadratic correction to the local spin
lengths. Let us consider the spin Sa operator inside the unit
cell i = (0,0,0). We have

Sz
a = S − a+

i=0ai=0 = S − 1

Nuc

∑
k,q

a+
k aq, (A6)

where Nuc = N/6 is the number of unit cells. Using the
transformation Ak = Vk · Ãk , we get

Sz
a = S − 1

Nuc

∑
k,q

∑
nm

Vk(1,n)∗Vq(1,m)Ã+
k (n)Ãk(m). (A7)

In the vacuum GS, the only nonvanishing expectation values
are of the type 〈ãkã

+
k 〉 = 1. Thus from the above sum we may

keep only terms with n = m = 7 − 12 and k = q. Namely,

〈
Sz

a

〉 = S − 1

Nuc

∑
k

12∑
n=7

|Vk(1,n)|2, (A8)

and similarly for the threefold sites,

〈
Sz

b

〉 = S − 1

Nuc

∑
k

12∑
n=7

|Vk(2,n)|2. (A9)

2. LSWT in the Cairo pentagonal lattice

In the following, we provide the explicit expressions of the
6 × 6 matrices Ck and Dk defined above. We shall make use
of the following definitions: kxy = kx + ky , q± = x

2 (1 ± 1√
2
),

z± = 1±i sin θ ′(x)√
2

, and x± = x
2 ± 1.

In the orthogonal phase Ecl = Nεortho, δE1 = Nεortho/S,

Ck =

⎛
⎜⎜⎜⎜⎜⎜⎝

2
√

2x q− q− q− q− 0
q−

√
2x + 1 0 0 0 q−eikxy

q− 0
√

2x + 1 0 0 q−eiky

q− 0 0
√

2x + 1 0 q−
q− 0 0 0

√
2x + 1 q−eikx

0 q−e−ikxy q−e−iky q− q−e−ikx 2
√

2x

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(A10)

Dk = −

⎛
⎜⎜⎜⎜⎜⎝

0 q+ q+ q+ q+ 0
q+ 0 0 eiky 0 q+eikxy

q+ 0 0 0 e−ikx q+eiky

q+ e−iky 0 0 0 q+
q+ 0 −eikx 0 0 q+eikx

0 q+e−ikxy q+e−iky q+ q+e−ikx 0.

⎞
⎟⎟⎟⎟⎟⎠ .

For the 1/3-ferrimagnetic phase, we find Ecl = Nεferri, δE1 = Nεferri/S, and

Ck =

⎛
⎜⎜⎜⎜⎜⎝

4x 0 0 0 0 0
0 2x − 1 0 eiky 0 0
0 0 2x − 1 0 e−ikx 0
0 e−iky 0 2x − 1 0 0
0 0 eikx 0 2x − 1 0
0 0 0 0 0 4x

⎞
⎟⎟⎟⎟⎟⎠ , Dk = −

⎛
⎜⎜⎜⎜⎜⎝

0 x x x x 0
x 0 0 0 0 xeikxy

x 0 0 0 0 xeiky

x 0 0 0 0 x

x 0 0 0 0 xeikx

0 xe−ikxy xe−iky x xe−ikx 0

⎞
⎟⎟⎟⎟⎟⎠ . (A11)
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Finally, in the mixed phase Ecl = Nεmixed, δE1 = Nεmixed/S, and

Ck =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2x2 z+x− z−x− z+x− z−x− 0
z−x− 3 0 x2−2

2 eiky 0 −z+x−eikxy

z+x− 0 3 0 x2−2
2 e−ikx z−x−eiky

z−x− x2−2
2 e−iky 0 3 0 −z+x−

z+x− 0 x2−2
2 eikx 0 3 z−x−eikx

0 −z−x−e−ikxy z+x−e−iky −z−x− z+x−e−ikx 2x2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A12)

Dk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 z−x+ z+x+ z−x+ z+x+ 0
z−x+ 0 0 4−x2

2 eiky 0 −z+x+eikxy

z+x+ 0 0 0 4−x2

2 e−ikx z−x+eiky

z−x+ 4−x2

2 e−iky 0 0 0 −z+x+
z+x+ 0 4−x2

2 eikx 0 0 z−x+eikx

0 −z+x+e−ikxy z−x+e−iky −z+x+ z−x+e−ikx 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A13)

3. LSW theory around the orthogonal phase in the effective model

The unit cell of the effective model has two sites whose corresponding bosonic operators are labeled by ai and fi . So the
dimension of the corresponding matrices Ck and Dk is equal to 2. For the theory around the orthogonal phase, these matrices are
given by

Ck =
(

4(J2 − K̃) J1p(k)
J1p(−k) 4(J2 − K̃)

)
(A14)

and

Dk = −
(

2(J2 − K̃)r(k) J1p(k)
J1p(−k) 2(J2 − K̃)r(k)

)
, (A15)

where K̃ = KS2, r(k) = cos kx + cos ky , and p(k) = (1 + eikx + eiky + ei(kx+ky ))/2. Finally, the classical GS energy per site is
ε′

ortho/S
2 = −2J2 + K̃ , while δE1

N
= −2J2 + 2K̃ .

4. Nonlinear spin-wave theory around the collinear phase of the effective model

The explicit forms of the 2 × 2 matrices Ck and Dk that enter the mean-field decoupled quadratic theory of Sec. VIII are the
following:

Ck =
(

4J2 + 4K̃(λ − 2) + ξ1/S [J1 + K̃(1 − λ) + ξ2/S](1 + eikxy )

[J1 + K̃(1 − λ) + ξ2/S](1 + e−ikxy ) 4J2 + 4K̃(λ − 2) + ξ1/S

)
, (A16)

Dk =
(

2(K̃ − J2 + ξ5/S) cos kx + 2(K̃ − J2 + ξ4/S) cos ky [−J1 + K̃(1 − λ) + ξ3/S](eikx + eiky )

[−J1 + K̃(1 − λ) + ξ3/S](e−ikx + e−iky ) 2(K̃ − J2 + ξ5/S) cos kx + 2(K̃ − J2 + ξ4/S) cos ky

)
, (A17)

where we have introduced the parameters

ξ1 = 4N0[3(2 − λ)K̃ − J2] − 2N1[3K̃(1 − λ) + J1] − 2L1[3K̃(1 − λ) − J1] + 4L2(J2 − 3K̃),

ξ2 = N1[(9 − 5λ)K̃ + J1] − N0[3K̃(1 − λ) + J1] − 4L1K̃ − 2(1 − λ)K̃L2,

ξ3 = L1[(9 − 5λ)K̃ − J1] − N0[3K̃(1 − λ) − J1] − 4N1K̃ − 2(1 − λ)K̃L2, (A18)

ξ4 = L2[K̃(5 − 2λ) − J2] + N0(J2 − 3K̃) + 2λK̃L1 − 2K̃N1,

ξ5 = L2[K̃(5 − 2λ) − J2] + N0(J2 − 3K̃) + 2λK̃N1 − 2K̃L1.

APPENDIX B: QM PROBLEM OF A SINGLE AFM DIMER
IN A STAGGERED FIELD

The minimization of the variational ansatz described in
Sec. V showed that the fourfold spins remain coplanar and
orthogonal to each other up to x = 2. In this configuration,

the two exchange fields that are exerted on the two sites of
each J33 bond are antiparallel and have magnitude hs = √

2Sx

(where we have used a length S for the classical fourfold
spins). One then realizes that this problem is equivalent to
that of an AFM dimer in the presence of a staggered field.
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A similar situation appears for the experimental compound
Cu2Cd(BO3)2 in Ref. 53.

The Hamiltonian of an AFM dimer in a staggered field hs

is given by

H = JS1 · S2 − hs

(
Sz

1 − Sz
2

)
. (B1)

Importantly the staggered field does not commute with the
exchange interaction, and therefore it can polarize the system
immediately. This is in contrast to the case in which we have
a uniform field, where one must exceed the singlet-triplet gap
J to polarize the system. The triplets |t1〉 = |↑↑〉 and |t−1〉 =
|↑↓〉 are eigenstates of H with energy J/4, while the singlet
|s〉 = |↑↓〉−|↓↑〉√

2
and the triplet |t0〉 = |↑↓〉+|↓↑〉√

2
are admixed as

follows: H|t0〉 = J
4 |t0〉 − hs |s〉 and H|s〉 = − 3J

4 |s〉 − hs |t0〉.
A straightforward diagonalization in this manifold gives the
following eigenstates and eigenvalues:

|ψ1〉 = u|s〉 + v|t0〉,ε1 = −J/4 −
√

J 2/4 + h2
s , (B2)

|ψ2〉 = v|s〉 − u|t0〉,ε2 = −J/4 +
√

J 2/4 + h2
s , (B3)

with u = cos θ , v = sin θ , and tan(2θ ) = 2hs/J . As expected,
|ψ1〉 → |s〉 for hs → 0, while for hs � J , |ψ1〉 → |↑↓〉. The
GS expectation values of the local polarizations and the
exchange energy are given by

〈ψ1|Sz
1,2|ψ1〉 = ±uv, (B4)

〈ψ1|S1 · S2|ψ1〉 = − 3
4u2 + 1

4v2. (B5)

APPENDIX C: QUADRATIC FLUCTUATIONS AROUND
THE VARIATIONAL GS

Here we provide the explicit form of the 8 × 8 matrices
Ck and Dk that appear in Eq. (17). The various constants that
appear below are defined as follows: q = x

√
SM/4, y± =

q(v ± u), ξ± = 1 ± 1/
√

2,

Ck =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4xvuM√
2

0 −r(eikx + 1) −(ξ+y−eikx + ξ−y+) ξ−y+eikx + ξ+y−
0 4xvuM√

2
r(e−iky + 1) −(ξ+y−e−iky + ξ−y+) ξ−y+e−iky + ξ+y−

−r(e−ikx + 1) r(eiky + 1) ε2 − ε1 0 0
−(ξ+y−e−ikx + ξ−y+) −(ξ+y−eiky + ξ−y+) 0 1/4 − ε1 0

ξ−y+e−ikx + ξ+y− ξ−y+eiky + ξ+y− 0 0 1/4 − ε1

r(e−iky + 1) −r(eikx + 1) 0 0 0
−(ξ+y−e−iky + ξ−y+) −(ξ−y+eikx + ξ+y−) 0 0 0

ξ−y+e−iky + ξ+y− ξ+y−eikx + ξ−y+ 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. . .

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r(eiky + 1) −(ξ+y−eiky + ξ−y+) ξ−y+eiky + ξ+y−
−r(e−ikx + 1) −(ξ−y+e−ikx + ξ+y−) ξ+y−e−ikx + ξ−y+

0 0 0
0 0 0
0 0 0

ε2 − ε1 0 0
0 1/4 − ε1 0
0 0 1/4 − ε1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C1)

and

Dk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −r(eikx + 1) ξ−y−eikx + ξ+y+ −(ξ+y+eikx + ξ−y−)
0 0 r(e−iky + 1) ξ−y−e−iky + ξ+y+ −(ξ+y+e−iky + ξ−y−)

−r(e−ikx + 1) r(eiky + 1) 0 0 0
ξ−y−e−ikx + ξ+y+ ξ−y−eiky + ξ+y+ 0 0 0

−(ξ+y+e−ikx + ξ−y−) −(ξ+y+eiky + ξ−y−) 0 0 0
r(e−iky + 1) −r(eikx + 1) 0 0 0

ξ−y−e−iky + ξ+y+ ξ+y+eikx + ξ−y− 0 0 0
−(ξ+y+e−iky + ξ−y−) −(ξ−y−eikx + ξ+y+) 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. . .

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

r(eiky + 1) ξ−y−eiky + ξ+y+ −(ξ+y+eiky + ξ−y−)
−r(e−ikx + 1) ξ+y+e−ikx + ξ−y− −(ξ−y−e−ikx + ξ+y+)

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (C2)
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APPENDIX D: STRONG-COUPLING EXPANSION
AT SMALL x = J43/J33

Here we provide some details of the degenerate perturbation
theory around x = 0 discussed in Sec. VII. For x = 0, the
nearest-neighbor threefold sites form isolated singlets and
the fourfold sites are free to point up or down. For finite x,
the fourfold sites begin to interact with each other through the
virtual fluctuations of the J33 bonds out of the singlet manifold.
The resulting effective Hamiltonian acts on the fourfold
sites only and can be obtained by degenerate perturbation
theory around x = 0. This expansion can be organized in a
linked cluster way as for nondegenerate perturbation theory.54

The effective Hamiltonian is a sum of contributions from
a sequence of finite clusters of sites. For each given order
of perturbation theory, only clusters up to a given size may
contribute.

More explicitly, an nth-order process that lives on a given
cluster g can be obtained by

H(n)
eff =

r1+···+rn−1=n−1∑
r1,...,rn−1�0

c{r}PVR(r1)V · · ·VR(rn−1)VP. (D1)

Here P is the projection in the unperturbed manifold, Q =
1 − P , R0 = (E0 − QH0Q)−1 is the resolvent operator, E0

is the unperturbed energy, R(0) = −P , while R(r�1) = (R0)r .
Finally, the coefficients c{r} can be found tabulated (up to sixth
order) in Ref. 55.

We have performed the above expansion up to fourth order
in x using all relevant clusters. In order to avoid having to
subtract processes that live on the subclusters of g,54 we
enforce that we only keep processes that invoke all elements
of the cluster g. The first column of Table II shows all clusters
that generate a finite interaction between the fourfold sites
(written explicitly in columns 2–4). By including all possible
ways that we can embed each cluster on the lattice, one obtains
the corresponding contribution to the effective couplings J1,
J2, and K (columns 5–7).

1. Polarization on the threefold sites
The above effective description lives in a projected Hilbert

space where pairs of NN threefold sites pair up forming
exact singlet wave functions. However, the true GS of the
problem has also a nonvanishing component on the orthogonal
manifold. This component must be taken into account if we
want to find, e.g., the polarization on the threefold sites.
Specifically, as soon as the fourfold sites order magnetically,
they will exert a finite exchange field on the threefold sites.
For example, in the orthogonal phase the total exchange field
will be staggered in all dimers and thus it will immediately
admix a triplet component into the singlet GS and give rise
to a finite (staggered) polarization. This is in contrast to the
uniform field case in which one must exceed a critical value
(the singlet-triplet gap J ) in order to polarize an AFM dimer.

The component of the GS wave function out of the singlet
manifold Q|�〉 can be expressed as

Q|�〉 = RVP|�〉, (D2)

where R = (E − QHQ)−1 is the full resolvent. Thus

|�〉 = (1 + RV ) |P�〉 = √
z0 (1 + RV ) |�0〉, (D3)

where |�0〉 is the normalized GS of the effective model (times
the product of J33 singlets), and z0 = 1/(1 + 〈�0|VR2V |�0〉)
plays the role of a “wave-function renormalization factor”
(specifically 1 − z0 measures the degree of admixture inside
the GS from states outside the unperturbed GS manifold).

Now, the GS expectation value of the magnetization say at
site 1 of a given dimer is then given by

〈
Sα

1

〉 = 2z0Re〈�0|Sα
1 RV |�0〉. (D4)

To lowest order in V , we may replace z0 � 1 and R � R0,
which leads to the standard expression from linear-response
theory. In particular, the result coincides with the linear order
contribution found for the problem of an AFM dimer in a
staggered field studied in Appendix B.

We should remark here that in the collinear phase, the total
exchange field vanishes in half of the J33 dimers; see, e.g.,
the site labeled by ci in Fig. 2(b). So the polarization in these
dimers must grow quadratically and not linearly with x.

APPENDIX E: STRONG-COUPLING APPROACH
IN THE Kx MODEL

Here we give the details of the strong-coupling expansion
around the limit where 1/4 of the plaquettes are decoupled
from each other. Following the notation of Fig. 18, an isolated
strong plaquette has the two triplet GSs with energy −3/16:∣∣ψm

1

〉 = |s〉αγ ⊗ |tm〉βδ,
∣∣ψm

2

〉 = |tm〉αγ ⊗ |s〉βδ, (E1)

where |s〉 is the singlet and |tm〉 are the three S = 1 triplets
(m = ±1,0). So we have a GS manifold with degeneracy 6Np ,
where Np = N/4 is the number of strong plaquettes. The
splitting of this manifold by the interplaquette Kx terms can
be captured by first-order degenerate perturbation theory. The
resulting effective model can be written in a convenient form by
introducing a pseudospin τ = 1/2 and a spin T = 1 object in
each strong plaquette. The direction of the pseudospin denotes
which of the two types of triplets is taken, while the spin T = 1
object carries the physical spin of the plaquette. This approach
follows closely in spirit the treatment by Lecheminant and
Totsuka51 of a very similar situation in which a different pair
of plaquette triplets emerges at low energies in a two-leg ladder
model. The interplaquette interactions are always of the type
(Sα · Sγ )(Sβ · Sδ), where α,β,γ,δ do not all belong to the
same strong plaquette. In particular, there are two-plaquette
interactions (see Fig. 18)

V1x = (Sα′ · Sγ )(Sβ · Sδ′ ) =
∑
n,m

Sn
βSm

γ Sm
α′S

n
δ′ , (E2)

V1y = (Sα · Sγ ′)(Sβ · Sδ′ ) =
∑
n,m

Sn
βSm

α Sm
γ ′S

n
δ′ , (E3)

and four-plaquette interactions (see Fig. 18)

V2 = (Sα · Sγ ′)(Sβ ′′ · Sδ′′′ ). (E4)
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TABLE II. (Color online) Local effective terms that are generated up to fourth order in the strong-coupling expansion in x = J43/J33. Only
the nine clusters that give finite terms are shown (cf. first column). Dashed (solid) lines denote J43 (J33) couplings. The last three columns show
the total contribution of each cluster to J1, J2, and the amplitude K of the plaquette term of Eq. (27).

Cluster 2nd 3rd 4th contr. to J1 contr. to J2 contr. to K

− 3
16

− 3
32

− 3
256

3
64

1
2
s1 ·s2

3
4
s1 ·s2

1
4
s1 ·s2 + 3

128
1
2
x2 + 3

4
x3 + 1

4
x4 1

2
x2 + 3

4
x3 + 1

4
x4

− 1
2
s1 ·s2 − 1

4
s1 ·s2

1
8
s1 ·s2 + 15

128
− 1

2
x2 − 1

4
x3 + 1

8
x4

3
8
s1 ·s2

3
8
x4

+ 1
16

s2 ·s3

− 5
16

s1 ·(s2 + s3)
2 × ( 1

16
− 5

16
)x4 2 × (− 5

16
)x4

+(s1 ·s2)(s3 ·s4)

+(s1 ·s3)(s2 ·s4)

−1

2
(s1 ·s4)(s2 ·s3)

x4

− 1
8
s1 ·s2 6 × (− 1

8
)x4 6 × (− 1

8
)x4

1
8
s1 ·s2 6 × 1

8
x4

Total contributions: 1
2
x3 + 1

4
x4 1

2
x2 + 3

4
x3 − 9

8
x4 x4

So in the following, we shall treat these interactions with first-
order perturbation theory, i.e., we shall write down an effective
Hamiltonian that is formally given by

Heff = PV P, (E5)

where P = ∏
p Pp is the projection operator that projects into

the GS manifold, and

Pp =
∑

m=±1,0

(∣∣ψm
1

〉〈
ψm

1

∣∣ + ∣∣ψm
2

〉〈
ψm

2

∣∣)
p

. (E6)

To continue, we introduce a pseudospin τ = 1/2, whose
direction specifies the type of the triplet, and a spin T = 1
object that carries the total physical spin of the plaquette. This
defines the following mapping:

∣∣ψm
1

〉 → |↑〉 ⊗ |T m〉, ∣∣ψm
2

〉 → |↓〉 ⊗ |T m〉. (E7)

It is straightforward to show that the pseudospin operators
are the following scalar operators of the original spins of the
plaquette:

τz = 1
2 (−Sα · Sγ + Sβ · Sδ), (E8)

τx = Sα · Sβ + Sγ · Sδ = Sα · Sδ + Sβ · Sγ , (E9)

τy = Nβδ · Sα × Sγ + Nαγ · Sβ × Sδ, (E10)

1 = −2(Sα · Sγ + Sβ · Sδ), (E11)

where Nαγ = Sα − Sγ and Nβδ = Sβ − Sδ .
We now turn to the operators that are needed for the deriva-

tion of the effective Hamiltonian. The following relations hold
for single-site operators:

P SαP = P Sγ P = |↓〉〈↓| ⊗ 1
2 T = (

1
2 − τz

) ⊗ 1
2 T,

P SβP = P SδP = |↑〉〈↑| ⊗ 1
2 T = (

1
2 + τz

) ⊗ 1
2 T.
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For operators on the bond (β,γ ), we find

P
(
Sn

βSm
γ + Sm

β Sn
γ

)
P = 1

2τx ⊗ (
Qnm − 2

3δnm
)
, (E12)

P (Sβ × Sγ )P = 1
2τy ⊗ T, (E13)

where we have introduced the quadrupolar tensor of the spin
T = 1 object:

Qnm = T nT m + T mT n − 2
3T (T + 1)δnm. (E14)

Similarly for the bond (α,δ),

P
(
Sn

αSm
δ + Sm

α Sn
δ

)
P = 1

2τx ⊗ (
Qnm − 2

3δnm
)
, (E15)

P (Sα × Sδ)P = − 1
2τy ⊗ T, (E16)

and for the bond (α,β),

P
(
Sn

αSm
β + Sm

α Sn
β

)
P = − 1

2τx ⊗ (
Qnm − 2

3δnm
)
, (E17)

P (Sα × Sβ)P = 1
2τy ⊗ T. (E18)

Finally, the corresponding mappings for the bond (γ,δ) are the
same as that of (α,β).

Using the above mappings, we may write down the first-
order effect from the interplaquette interactions. We have

PV1xP = 1
8τxτ

′
x ⊗ (

Q · Q′ + 2
3

) + 1
8τyτ

′
y ⊗ T · T′,

(E19)

where the vector Q contains the following elements of the
quadrupolar tensor:30

QT =
(

1

2
(Qxx − Qyy),

√
3

2
Qzz,Qxy,Qyz,Qxz

)
. (E20)

An equivalent way to write the above interaction is

PV1xP = 3
8 (τxτ

′
x − τyτ

′
y) ⊗ �S=0 + 1

8 (τxτ
′
x + τyτ

′
y) ⊗ Pij ,

(E21)

where

�S=0 = 1
6 (Q · Q′ + 2

3 − T · T′) (E22)

is the projector into the total singlet state, and

Pij = 1
2

(
Q · Q′ + 2

3 + T · T′) = −2�S=1 + 1 (E23)

is the permutation operator, which switches the states of two
triplets.30

To switch from V1x to V1y , we need to map α ↔ γ in
both plaquettes, which corresponds to |↑〉 → −|↑〉, and thus
τ± → −τ± and τx,y → −τx,y . Since we need to do this in both
plaquettes, the minus signs cancel each other and thus PV1yP

has exactly the same form as PV1xP .
The remaining four-plaquette interaction term, denoted by

V2 above, gives

PV2P = (
1
2 − τz

) (
1
2 − τ ′

z

) (
1
2 + τ ′′

z

) (
1
2 + τ ′′′

z

)
⊗ 1

24 (T · T′)(T′′ · T′′′). (E24)

It is interesting to note that the spin-1 portion of this interaction
looks exactly the same as the original four-spin interaction Kx ,
but now the four sites have spin 1 and not 1/2.

1. Symmetries

The original Hamiltonian has an SU(2) × SU(2) symmetry,
i.e., we can rotate all spins labeled by α and γ independently
from the spins β and δ.65 The corresponding generators are
the total spins of the two sublattices,

SA =
Np∑
p=1

Sαγ (p), SB =
Np∑
p=1

Sβδ(p) (E25)

and the group elements are parametrized by two vectors �A

and �B :

R(�A,�B) = Ra(�A)Rb(�B) = e−i(SA·�A+SB ·�B ), (E26)

or, more explicitly R(�A,�B) = ∏
p Rp(�A,�B), with

Rp(�A,�B) = |↑〉p〈↑| ⊗ e−iTp ·�B + |↓〉p〈↓| ⊗ e−iTp ·�A .

(E27)

As expected, all the effective terms written above retain the
SU(2) × SU(2) invariance of the original Kx model. To see
this, e.g., for the term PV1xP , it is convenient to make use of
Eq. (E21) rather than Eq. (E19).

2. Quantum-mechanical solution for
two neighboring plaquettes

For two neighboring plaquettes p1 = (1234) and p2 =
(5678) and for both open and periodic boundary conditions,
the QM GS is the following:

|ψ〉 = 1√
2

(|↑1↑2〉 − |↓1↓2〉) ⊗ |T1 = 1,T2 = 1,T = 0〉.
(E28)

The GS energy is −3/16, i.e., |ψ〉 minimizes fully the
interplaquette interaction. We should note here that in this wave
function, the spin-1 objects make a singlet with 〈T1 · T2〉 = −2
and 〈Q1 · Q2 + 2/3〉 = 4. The latter value is twice what we
would get by using a product state of two parallel director
wave functions.

3. Classical variational solution to V eff
1 = P(V1x + V1 y)P

In the following, we shall present a variational treatment
of the terms V1x and V1y , disregarding PV2P . The variational
wave function is a product of plaquette wave functions with a
pseudospin portion and a spin-1 portion. The pseudospin-1/2
portion is treated classically, i.e., it is parametrized by two
direction angles θ,φ. On the other hand, the spin-1 portion
is parametrized by a complex vector d = u + iv, with the
constraints u2 + v2 = 1 and u · v = 0.30

A numerical minimization of this variational state delivers
a GS in which the τ = 1/2 pseudospins order AFM in a Néel
state with their moments along the x axis, while the spin-
1 objects develop a ferro-quadrupolar ordering without any
dipolar moment. Choosing the common director along the z

axis, we can write this state explicitly as

|z,z〉 ≡
Np∏
p=1

[|s〉αγ ⊗ |z〉βδ + (−1)Q·Rp |z〉αγ ⊗ |s〉βδ

]
, (E29)
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where Q = (π,π ) is the Néel ordering wave vector of the
pseudospins. We should note here that one can actually
generate a continuous family of equivalent variational wave
functions by SU(2) × SU(2) rotations of |z,z〉. These states
are of the general form

|da,db〉 ≡
Np∏
p=1

[|s〉αγ ⊗ |db〉βδ + (−1)Q·Rp |da〉αγ ⊗ |s〉βδ

]
,

(E30)

where now we have two (in general) different directors
pointing along da and db in the two sublattices. By symmetry,
all these wave functions give the same variational energy and
so we can choose any one of them to work with.

In the following, we take the state |z,z〉 and look at the
nematic order parameters for the initial spin-1/2 degrees of
freedom. Using the relations

PS±
α S±

γ P = |↑〉〈↑| ⊗ 1
2 (T ±)2, (E31)

PS±
β S±

δ P = |↓〉〈↓| ⊗ 1
2 (T ±)2, (E32)

and 〈
τx = ± 1

2

∣∣ ( 1
2 + τz

) ∣∣τx = ± 1
2

〉 = 1
2 , (E33)〈

τx = ± 1
2

∣∣ ( 1
2 − τz

) ∣∣τx = ± 1
2

〉 = 1
2 , (E34)

and looking back at Fig. 18, we find

〈S+
αi

S+
γi
〉 = 〈S+

βi
S+

δi
〉 �= 0, (E35)

but, e.g., 〈S+
α3

S+
γ4

〉 = 0. There are two important points to note
here. First, according to Eq. (E35), the above variational GS
has a finite spin-nematic order parameter in both sublattices.
However, this is not in line with our ED results in the full
Kx model, since the low-E tower of states suggests that the
spin-nematic ordering occurs only in one of the two sublattices
(see Sec. X B). Secondly, the fact that 〈S+

α1
S+

γ1
〉 is not equal to

〈S+
α3

S+
γ4

〉 is in line with the d-wave symmetry shown in Fig. 17.
However, as we comment in Sec. X B, this result is to some
extent artificial since the bonds (α1,γ1) and (α3,γ4) become
inequivalent once we plaquettize our lattice.

Finally, we discuss the influence of an external magnetic
field. Here the field reduces the symmetry of the Hamiltonian
down to U(1) × U(1). Following Refs. 56, 57, and 30, we
expect that an infinitesimal field will pin the two directors on
the xy plane and will also induce a finite longitudinal dipolar
moment in both sublattices. This picture is confirmed by a
numerical minimization of the corresponding variational state
in a field. In particular, we find that the spin-1 objects become
fully polarized at a critical field Hc = Kx/32.

APPENDIX F: TOWER OF STATES SPECTROSCOPY

1. Method

Here we provide the group-theory derivation of the low-
energy tower of states corresponding to some of the states that
we encountered in this work. The method is quite general and is
based on the following recipe from group theory. By applying
all elements of a symmetry group G on a given state |c〉, we
generate a family (or orbit) of symmetry-equivalent states. By

FIG. 19. (Color online) Classical collinear and orthogonal states.

construction, this family of states provides a representation O
of G and can be decomposed into IRs Dα of G as follows:

O(g) =
⊕

α

mαDα(g), (F1)

where the number of times a given IR labeled by α appears in
this decomposition is given by the well-known formula58–60

mα = 1

|G|
∑
g∈G

χα(g)Tr[O(g)]∗. (F2)

Let us now assume that the starting state |c〉 is a classical
magnetic state (i.e., a site-factorized product of coherent states
where each spin points to some fixed direction), and let
us choose G = Gr × SO(3) as the product of a real space
group Gr times the global SO(3) rotations in spin space.
The generated orbit O is then a continuous family of states
and its decomposition into symmetry sectors can be obtained
from Eq. (F2) if we can find a way to calculate the trace
Tr[O(g)] for each g ∈ G. For finite systems, this is quite an
involved task given that one first needs to find an orthonormal
basis that spans the orbit. One alternative method is to use
projection operators (which project onto specific rows of
irreducible representations), but this relies on performing a
number of numerical integrations over the group manifold for
each symmetry sector and finite cluster separately.

A much better alternative is to keep Eq. (F2), but make use
of the thermodynamic limit. Here the generated orbit of the
classical states themselves gives an orthonormal basis because,
in contrast to the finite-size case, two classical states that are
related even by an infinitesimal global rotation are strictly
orthogonal to each other. One immediate consequence of this
feature is that out of the continuous sum over g in Eq. (F2),
only a much smaller (and usually discrete) subset of operations
give a nonvanishing trace. Specifically, these are the operations
h that leave the state |c〉 invariant up to a global phase, namely
h|c〉 = eiφh |c〉. These elements form a subgroup Hc of G,
called the stabilizer of |c〉. The above orthonormal basis is
actually in one-to-one correspondence with the elements of
the factor group G/Hc, and Eq. (F2) reduces to66,67

mα = 1

|Hc|
∑
h∈Hc

e−iφhχα(h). (F3)

This is our central formula for the derivation of the tower of
states for a magnetic state.

A few important comments are in order here. First, the
above derivation remains valid whether we take for G the
complete group of the Hamiltonian or any subgroup of it.
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Second, one should always check whether the orbit generated
by the elements of G covers the full family of classical states
that we want to consider. For example, the family of the
collinear states that are stabilized for large J2/J1 comprises
two subfamilies of states. In the first (second), the spins are
FM (AFM) along the line y ′ of Fig. 19 and AFM (FM) along
the line x ′. These two sets are not related to each other by a
global rotation in spin space nor by any primitive translation of
the lattice. So if we take G = SO(3) alone or G = T ⊗ SO(3)
(where T is the translation group), we generate two distinct
invariant orbits and each one must be decomposed separately.
In contrast, the above two sets of collinear states can be mapped
to each other by a C4 spatial rotation. So if we include C4 in
G, then the generated orbit will comprise both sets of states
and so we have to do the decomposition just once.

Our final comment on Eq. (F3) is about the phase factors
eiφh . We may understand the origin and significance of these
phase factors by taking as an example the two-sublattice Néel
AFM on the square lattice where half of the spins point along
+z and the other half along −z. Then one element of the
stabilizer is a combination of a C2 spin rotation around, e.g.,
the y axis with a spatial operation that maps one sublattice to
the other (e.g., a translation by one lattice constant). In this
case, we pick up a phase factor of eiπ/2 from the action of
the spin rotation on each spin site. With an even number N of
spins, this gives eiφh = (−1)N/2. The same phase factor arises
for a C2 spin rotation around any axis on the xy plane. Overall
we get a different decomposition for the square-lattice Néel
AFM depending on whether N = 4p or N = 4p + 2 (where
p is an integer).68

In the following, we shall make use use of the central
formula (F3) to decompose the orthogonal and the collinear
families of states into IRs of the group G = T C4⊗ SO(3).
Then we shall derive some further symmetry properties by
including the glide operations (σi |τ ) as well.

2. Orthogonal phase

For the orthogonal state, we take the global spin orientations
shown in Fig. 19(b). The stabilizer of this state consists of the
following operations h:{

t2n
x t2m

y ,t2n+1
x t2m+1

y

} ⊗ {E,C2},{
t2n+1
x t2m

y ,t2n
x t2m+1

y

} ⊗ {E,C2} ⊗ Rz(π ),{
t2n
x t2m

y ,t2n+1
x t2m+1

y

} ⊗ {
C4,C

−1
4

} ⊗ Ry(π ),{
t2n+1
x t2m

y ,t2n
x t2m+1

y

} ⊗ {
C4,C

−1
4

} ⊗ Rx(π ),

TABLE III. Phase factors eiφh that appear in the symmetry
decomposition of the orthogonal and the collinear phase (see Fig. 19).
Here hs stands for the spin-space portion of the given symmetry
operation h of the stabilizer Hc.

Orthogonal Collinear

hs eiφh hs eiφh

R(0) 1 R(0) 1
Rz(π ) (−i)N Rx(φ) 1
Rx,y(π ),Rz(±π/2) (−1)N/4 Ra(π ) (−1)N/2

TABLE IV. Group theory predictions for the content of the low-
lying tower of states in the orthogonal phase.

S 0 1 2 3 4

0.A1(l = 0) 1 1 2
0.A2(l = 0) 1 1 1
0.B1(l = π ) 1 1 1
0.B2(l = π ) 1 1 1
(π,π ).{l = 0,π} 1 1 2 2
Total 1 3 5 7 9

where n,m = 1, . . . ,L/2, and Rx,y,z(π ) are spin rotations by
π around the axes x, y, and z shown in Fig. 19. The phase
factors eiφh are provided in Table III. In the following, we
shall consider systems in which the number of sites N is such
that all phase factors reduce to 1.

Adding the contributions from the above operations h and
using χS(R(0)) = 2S + 1 and χS(π ) = (−1)S , we find that
the only nonvanishing integers mk,l,S are those for k = 0 and
(π,π ), with

mk=0,l,S = 1
4δl,{0,π}[2S + 1 + (−1)S(1 + 2eil)],

mk= (π,π ),l,S = 1
4δl,{0,π}[2S + 1 − (−1)S].

We note in particular that

m′
S ≡

∑
k,l

mk,l,S = 2S + 1, (F4)

so we have 2S + 1 different total S states for each given
S. This important result can also by a decomposition of
the classical states into IRs of SO(3) alone. The orthogonal
state breaks all global spin symmetries, and so the stabilizer
consists only of the identity R(0), whose character gives the
(2S + 1) multiplicity (see Table IV). We should remark here
that the above symmetry structure has also been reported for
the orthogonal phase found in Ref. 32.

a. Inclusion of glides (σi |τ )

So far we have not exploited the four nonsymorphic
operations (σi |τ ) of the lattice. The states with k = (π,π )
belong necessarily to the two-dimensional IR “(π,π ).{0,π}.”
So it is sufficient to discuss the states with k = 0 only. In
addition to the elements of the stabilizer listed above, now
we may add the following symmetries that involve a glide
operation:{

t2n
x t2m

y ,t2n+1
x t2m+1

y

} ⊗ (σx,y |τ ) ⊗ Rz(−π/2),{
t2n
x t2m

y ,t2n+1
x t2m+1

y

} ⊗ (σd,d ′ |τ ) ⊗ Ry ′ (π ),

TABLE V. Group theory predictions for the content of the low-
lying tower of states in the collinear phase.

S 0 1 2 3 4

0.A1(l = 0) 1 1 1
0.B2(l = π ) 1 1 1
(π,π ).{l = 0,π} 1 1
Total 2 2 2 2 2
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{
t2n+1
x t2m

y ,t2n
x t2m+1

y

} ⊗ (σx,y |τ ) ⊗ Rz(π/2),{
t2n+1
x t2m

y ,t2n
x t2m+1

y

} ⊗ (σd,d ′ |τ ) ⊗ Rx ′ (π ),

where Rx ′,y ′ (π ) are spin rotations by π around the x ′,y ′
directions shown in Fig. 19. By including these operations
in the stabilizer group, we get the following multiplicities at
zero momentum:

mk=0,�,S = 1
16 {(2S + 1)[χ�(E) + χ�(C2)]

+ (−1)S[χ�(E) + χ�(C2) + 4χ�(C4)]

+ 2(−1)S[χ�(σd |τ ) + χ�(σd ′ |τ )]

+ 2χS(π/2)[χ�(σx |τ ) + χ�(σy |τ )]},
where � labels the IRs of C4v shown in Table I. In Table V, we
show the specific multiplicities for the lowest four total spin
sectors S.

3. Collinear phase

We turn now to the collinear phase with the global spin
orientations shown in Fig. 19(a). As we mentioned above, by
including the spatial C4 rotation in the group G we generate an
orbit that includes both sets of collinear states. The stabilizer of
any member of this orbit consists of the following operations:{

t2n
x t2m

y ,t2n+1
x t2m+1

y

} ⊗ {E,C2} ⊗ {Rx(φ)},{
t2n+1
x t2m

y ,t2n
x t2m+1

y

} ⊗ {E,C2} ⊗ {Ra(π )},
where a is any axis perpendicular to the direction x of the
spins (see Fig. 19), and φ ∈ [0,2π ). Again, in the following
we are considering system sizes N such that all phase factors
eiφh corresponding to the collinear phase (see Table III) reduce
to 1. We have |{Rz(φ)}| = |{Ra(π )}| = ∫ 2π

0 dφ = 2π , and

1

2π

∫ 2π

0
dφχS(Rz(φ)) = 1

2π

∫ 2π

0
dφ

sin
(
S + 1

2

)
φ

sin φ

2

= 1

(F5)

for integer S (this is our case since we consider clusters with
an even number of sites), and similarly

1

2π

∫ 2π

0
dφχS(Ra(π )) = 1

2π

∫ 2π

0
dφ(−1)S = (−1)S.

(F6)

So we find that the only nonvanishing integers mk,l,S are those
with k = 0 and (π,π ) with

mk=0,l,S = δl,{0,π}
1 + (−1)S

2
,

mk=(π,π),l,S = δl,{0,π}
1 − (−1)S

2
,

and in particular

m′
S ≡

∑
k,l

mk,l,S = 2, (F7)

so we have two different total S states for each given S, one
with l = 0 and another with l = π . This result also follows
from the decomposition of the classical states into IRs of
SO(3) alone. Here the stabilizer consists of the U(1) rotations

{Rx(φ)}, whose weighted integral over the character gives 1.
An extra factor of 2 comes from the fact that we have to
consider each family of collinear states as a separate orbit
(representation) since, as we mentioned above, they are not
related to each other by SO(3) alone.

a. Inclusion of glides (σi |τ )

Let us now exploit the four nonsymorphic operations (σi |τ )
of the lattice in order to make further predictions for the
symmetry properties of the collinear tower of states under
these operations. As we did above, it is sufficient to discuss the
states with k = 0 that appear for even values of S here. Since
the collinear tower has only two states per spin sector S, it is
sufficient to look at the decomposition of the classical family
of collinear states into IRs of C4v alone, i.e., disregarding the
operations in spin space and the translations. To this end, one
needs the corresponding (stabilizer) subgroup of C4v with the
operations that leave a given collinear state invariant. It is easy
to check that this is the C2v subgroup that comprises in addition
to E and C2 the glides (σd |τ ) and (σd ′ |τ ). Using the characters
shown in Table I, one then finds that only the IRs A1 and
B2 should appear in the tower of states when k = 0. This is
because only A1 and B2 remain invariant under the action of
(σd |τ ) and (σd ′ |τ ). So for each even value of S, we have one
A1 and one B2 state. The first is symmetric with respect to
all nonsymorphic operations, while B2 is even with respect to
(σd |τ ) and (σd ′ |τ ) but odd with respect to (σx |τ ) and (σy |τ ).

4. The spin-nematic variational state of Appendix E3

Here we derive the spin symmetry decomposition of the
spin-nematic variational state |z,z〉 of Eq. (E29). To this end,
we first need to find the subgroup of SU(2) × SU(2) rotations
that leave the state |z,z〉 invariant up to a global phase. One set
of operations that belong to the stabilizer is the U(1) × U(1)
rotations around the z axis,

R(φa,φb) = Ra(φaz)Rb(φbz). (F8)

Another set of operations is that of simultaneous π rotations
C∞v × C∞v in the two sublattices around any pair na,nb of
axes in the xy plane,

R(πna,πnb) = Ra(πna)Rb(πnb). (F9)

This can be shown by first noting that a π rotation around
an axis in the xy plane reverses the sign of a triplet |t0〉, e.g.,
e−iπSx |t0〉 = −|t0〉. Hence, to restore a plaquette wave function
of the type

|ψp〉 = 1√
2

(|s〉αγ |t0〉βδ ± |t0〉αγ |s〉βδ) (F10)

[see Eq. (E29)], we must perform a π rotation in both
sublattices A and B. Since this gives a minus sign for a single
plaquette, we get an overall phase of (−1)Np , where Np = N/4
is the number of strong plaquettes.

Having established the stabilizer of the state |z,z〉, we may
now make use of Eq. (F3) in order to decompose it into
symmetry sectors of SU(2) × SU(2), which are labeled by
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the total spins SA and SB of the two sublattices. For clusters
with even N/4, we get

mSA,SB
= 1

2 [1 + (−1)SA+SB ]. (F11)

So, the tower of states corresponding to the variational state
|z,z〉 must consist only of sectors with even SA + SB . The
numerical spectra for the Kx model (see Fig. 16) show a
different symmetry pattern in the tower of states, so we believe
that the variational state of Appendix E3 does not describe the
GS of the Kx model.

5. U(1) spin-nematic phase

The numerical tower of states shown in Fig. 16 consists
of sectors (SA,SB) where one of the two spins is zero and
the other is an even integer. The first suggests that the
symmetry breaking occurs in one sublattice only, while the
second suggests a spin-nematic state with U(1) symmetry. To
demonstrate this, we provide a simple derivation of the tower

of states for a U(1) spin-nematic phase corresponding to a
product of an even number of directors, all pointing along the
z axis.

The stabilizer consists of global rotations around the z axis
as well as global π rotations C∞v around any axis on the xy

plane. Given Eqs. (F5) and (F6) above for the corresponding
characters, we arrive at

mS = 1 + (−1)S

2
, (F12)

namely, only even sectors S participate in the tower. Further-
more, the fact that we get a single state per even S in the tower
of states is related to the U(1) symmetry of the spin-nematic
state described here. If the directors are not collinear, as
it happens, e.g., in the antiferro-quadrupolar phase of the
S = 1 bilinear-biquadratic model in the triangular lattice,56

then a more complicated multiplicity appears in the tower of
states.
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