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Spectral signatures of magnetic Bloch oscillations in one-dimensional easy-axis ferromagnets
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Domain walls in a one-dimensional gapped easy-axis ferromagnet can exhibit Bloch oscillations in an applied
magnetic field. We investigate how exchange couplings modify this behavior within an approximation based
on noninteracting domain-wall bound states. In particular, we obtain analytical results for the spectrum and
the dynamic structure factor, and show where in momentum space to expect equidistant energy levels, the
Wannier-Zeeman ladder, which is the spectral signature of magnetic Bloch oscillations. We compare our results
to previous calculations employing a single domain-wall approximation, and make predictions relevant for the
material CoCl2 · 2H2O.
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I. INTRODUCTION

Quantum mechanics predicts that a particle in a periodic
potential will undergo oscillatory motion in response to
a constant force. This rather counterintuitive phenomenon,
known as Bloch oscillations (BO), was controversial for a
long time, but has now been experimentally demonstrated
in very clean semiconductor superlattices1 and Bose-Einstein
condensates.2

Can Bloch oscillations also exist in magnetic systems?
Kyriakidis and Loss3 discussed this possibility. They consid-
ered a system where the particle is a propagating domain-wall
excitation in an easy-axis one-dimensional ferromagnet, and
concluded that magnetic BO should indeed exist. In particular,
the blue crystalline material CoCl2 · 2H2O was identified as
a promising candidate for observing magnetic BO. Searches
using neutron scattering were performed,4,5 but did not find
evidence of BO.

Another very similar system where one can expect BO
of magnetic domain walls is the Ising model in a magnetic
field having both longitudinal and transversal components.6

Such a model is believed to be realized in CoNb2O6 where
indeed an intriguing frequency spectrum has recently been
observed.7 However, in the region of momentum space
where one expects to find the quantum-mechanical spectral
signature of BO—a spectrum with equidistant energy levels,
the so-called Wannier-Zeeman ladder (WZL)—the spectral
weight in the experiment in Ref. 7 is dominated by a strong
feature attributed to additional couplings in the Hamiltonian,
a “kinetic bound state,” stabilized by next-nearest-neighbor
interactions.7,8 Thus it appears that additional terms in the
Hamiltonian prevent BO in CoNb2O6.

This might also be the case in CoCl2 · 2H2O where the
kinetic bound state will be generated by a nearest-neighbor
spin flip exchange coupling that, indeed, is present in CoCl2 ·
2H2O,4 but neglected in Ref. 3. It is the main goal of this article
to investigate its influence on the WZL in CoCl2 · 2H2O.

Our results show that the WZL is present in certain regions
of momentum space also in the presence of the exchange
couplings. However, the neutron scattering spectral weight of
the WZL in CoCl2 · 2H2O is less than 1% of the total spectral
weight at these momenta, thus making it difficult to observe
the WZL at zero temperature in inelastic neutron scattering
experiments.

At finite temperatures, the neutron scattering signatures
of the WZL are more pronounced. We find that a relatively
high temperature is favorable as the number of domain walls
performing BO are exponentially suppressed with temperature
below the largest ferromagnetic coupling. Unfortunately, a
high temperature leads also to collisions of domain walls
that destroy BO. For CoCl2 · 2H2O, we find that this collision
rate is determined by the velocity of the kinetic bound state
and the distance between domain-walls bound states that
gets smaller as the temperature increases. A way to alleviate
this is to increase the applied magnetic field that leads to a
reduced collision rate. However, a large magnetic field makes
the intrinsic signature of BO weaker as it reduces the BO
amplitude. In searching for a compromise, we find significant
neutron scattering signatures of BO at finite frequencies in
CoCl2 · 2H2O at the temperature T = Jz/2, magnetic field
hz = 0.2Jz, and momentum transfer q = π/2 where the first
Bloch mode at ωB = 2hz carries about 12% of the total spectral
weight.

While we focus on the material parameters for CoCl2 ·
2H2O, our results are analytic and can, with minor efforts,
also be used for aiding searches for magnetic BO in other
similar materials.

II. HAMILTONIAN

We start with the spin-1/2 XYZ ferromagnetic Hamiltonian
for a chain with nearest-neighbor coupling in a magnetic field,

H = −
∑

i

(
JxS

x
i Sx

i+1 + JyS
y

i S
y

i+1 + JzS
z
i S

z
i+1 + hzS

z
i

)
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which can be written as

H = Hz + Ha + H⊥, (2)

where

Hz = −Jz

∑
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z
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FIG. 1. A spin state with a single domain wall.

with Ja = (Jx − Jy)/4 and J⊥ = (Jx + Jy)/4 and S±
i = Sx

i ±
iS

y

i are the usual raising and lowering operators. We will
assume that Jz is by far the largest coupling thus the system has
an easy axis and its behavior is Ising like. The ferromagnetic
coupling causes neighboring spins to align their z components,
and with a large Jz, the excitation energy of a state is mainly
dependent on the number of antialigned spin neighbors, or do-
main walls. Each domain wall costs an energy of Jz/2 (our Jz

is twice that of Ref. 9). Thus the ground state is approximately
the ferromagnetic state where all spins are aligned along the
z axis. In the absence of a magnetic field and other couplings,
the first excited state has a single domain wall, see Fig. 1. This
domain wall can be placed between any of the spins, implying
a macroscopic degeneracy. The Ha term lifts this degeneracy
resulting in a band dispersion describing the dynamics of
a single domain wall. This mode was first predicted by
Villain10 and was subsequently observed in neutron scattering
experiments.11,12

Kyriakidis and Loss treated a single domain wall in the
presence of a finite magnetic field and predicted BO.3 The
BO are caused by Ha together with the magnetic field that
causes the domain wall to oscillate. While the single domain
wall approximation is presumably good on short time scales
where collisions between domain walls can be ignored, it will
break down at longer time scales. In a finite magnetic field, this
time scale is likely to be very short as a domain wall and an
antidomain wall are closely bound together. The energy cost
of a domain of spins antialigned with the field is proportional
to the magnetic field times the number of spins in the domain.
Thus the magnetic field induces a linear potential between a
domain wall and an antidomain wall, which confines them in
a bound state. Therefore the low-energy excitations will not
be isolated single domain walls, but rather bound states of
domain-wall/antidomain-wall pairs that define the boundaries
of a spin cluster of overturned spins, see Fig. 2. The far-infrared
light absorption experiments on the quasi-one-dimensional
material CoCl2 · 2H2O in a magnetic field have been explained
in terms of such spin cluster excitations.9,13 In the bound state
picture, Ha and the magnetic field cause the bound state to
shrink and expand. This is what gives rise to the BO and
the WZL.

Going beyond the single domain-wall approximation also
allows the inclusion of the spin-flip exchange Hamiltonian
H⊥. The action of H⊥ on the single domain-wall state shown
in Fig. 1 produces a high-energy state having three domain
walls. In contrast when H⊥ acts on the minimal bound state—a
single overturned spin, see Fig. 2 right—it can move the whole
bound state without introducing extra domain walls, thus H⊥

FIG. 2. Two bound states.

acts directly in the low-energy Hilbert space of a single bound
state. This minimal bound state is the analog to the kinetic
bound state in CoNb2O6.

In zero magnetic field, the predictions for the neu-
tron scattering dynamic structure factor were shown to
be independent14 of whether one considered noninteracting
domain walls10 or bound states.15 However, as argued above,
this does not hold in a finite magnetic field, at least not
on longer time scales. In this paper, we will treat the
single bound state exactly in the low-energy subspace to two
domain walls and assume that thermally the system can be
well approximated by a noninteracting gas of such bound
states.

III. QUANTUM MECHANICS OF A SINGLE BOUND STATE

Let us represent a bound state of a domain wall and an
antidomain wall as the state

|j,l〉 =
∣∣∣∣ . . . ↑↑

j

↓↓ . . . ↓︸ ︷︷ ︸
l

↑↑ . . .

〉
, (3)

where the index j = 1,2, . . . ,N gives the starting position of
the down-spin cluster and l = 1, . . . ,N describes its length. N
is the total number of spins in the chain, which we will take to
be a macroscopic number. We will extend this representation of
states to l = 0 in order to also include the ferromagnetic state
|j,0〉, which is independent of j . The action of the Hamiltonian
on such a state can be written as

H |j,l〉 = (1 − δl,0){Jz|j,l〉 + hzl|j,l〉 − Ja[|j,l + 2〉
+ |j − 2,l + 2〉 + (|j,l − 2〉 + |j + 2,l − 2〉)
× (1 − δl,2)(1 − δl,1)]} − Ja(|j,2〉δl,0 + |j,0〉δl,2)

− J⊥(|j + 1,1〉 + |j − 1,1〉)δl,1, (4)

where we have neglected terms that result in more than two
domain walls.

We consider a system with periodic boundary conditions.
This ensures translational invariance and the total momentum
of the bound state will be a good quantum number. It is
thus convenient to express the Hamiltonian in the momentum
basis |p,l〉 = e−ipl/2 ∑

j e−ipj |j,l〉, where p denotes the total
momentum of the bound state (we use units where the
lattice spacing is one). Note that the ferromagnetic state
necessarily has zero momentum |p = 0,0〉. In the momen-
tum basis, the Hamiltonian is diagonal in p and acts as
follows:

H |p,l〉 = (1 − δl,0){[Jz + hzl − 2J⊥ cos p δl,1]|p,l〉
− 2Ja cos p [|p,l + 2〉 + (1 − δl,1)(1 − δl,2)

× |p,l − 2〉]} − Ja(|p,2〉δl,0 + |p,0〉δl,2)δp,0. (5)

Because Ha flips two spins, the state sectors with even and odd
values of l are decoupled. Note that H⊥ only affects the odd
l sector. This follows from the fact that H⊥ is only nonzero
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FIG. 3. Examples of the actions of Ha on particular states from
the 0 and 2 domain-wall sectors. Only cases that yield the minimal
amount of increase in domain walls are shown. Operating with Ha

are shown on the left, while the right-hand side shows the effects of
operating with H⊥. The increase in the number of domain walls is
indicated to the right of each process. Note that Ha has the ability
to move domain walls without increasing their number when acting
on a state with one or more domain walls (left side, the two lowest
processes), while H⊥ lacks this ability with the exception that it can
move a single overturned spin without creating new domain walls
(right side, the lowest process).

when it acts on the state with a single down spin, the action on
all other states produces more domain walls, see Fig. 3.

In order to solve the eigenvalue problem, we first
parametrize the energy eigenvalues as

En(p) = Jz + hzμn, (6)

where p is the total momentum, n is a positive integer, which
labels the internal excitation mode of the bound state, and
μn depends on p and coupling constants of the Hamiltonian.
Because the excitation spectrum separates into distinct sectors,
we will reserve the odd(even) n values for labeling the energy
levels in the l odd(even) sector. The energy of the nth mode is
found by determining the dimensionless quantity μn from the
following equations:

J−(μn+1)/2(x)

J1−(μn+1)/2(x)
= z, n ∈ odd, (7)

J−μn/2(x)

J1−μn/2(x)
= 0, n ∈ even, (8)

with Jν(x) being the Bessel function of the first kind of order
ν. The upper(lower) equation is obtained by considering the
odd(even) l sector. Here, we have introduced the new variables

x = 2Ja cos p

hz

, z = J⊥
Ja

. (9)

The even sector equation (8) is only valid for p �= 0. The p = 0
case will be considered separately below.

Both equations are of the form

J−ν(x)

J1−ν(x)
= γ, (10)

where γ is a constant. Analytical solutions of this equation
has been found in some limits.16 To get an intuitive picture
of the solutions of Eq. (10), we have plotted the left-hand
side of the equation for a particular value of x in Fig. 4
as the black solid curve. For γ → 0, relevant for the even
sector and the small z limit of the odd sector, the solutions
are gotten by the zero crossings of the curve. We see that
they occur almost exactly at positive integer values of ν,
except for the lowest value which is somewhat below 1. In
Fig. 5, we show these values of ν as a function of x for
γ = 0. To a very good approximation, ν is a positive integer

FIG. 4. (Color online) The behavior of the ratio of Bessel
functions J−ν(x = 1)/J1−ν(x = 1) as a function of ν is shown as the
black solid curve. The blue dot-dashed line marks the value γ = 2,
while the red dashed curve shows the right-hand side of Eq. (14) for
y = 3. The red circle indicates the crossing point that gives the lowest
energy solution ν0 = μ0/2 of the p = 0 even sector.

as long as ν � 1 + |x|. For the even l sector where μ = 2ν,
this implies that the solutions μn, n ∈ {2,4,6, . . .} are to a
good approximation even integers μn = n when n � 2|x| + 2.
For lower values of n, μn is generally lower and depends
on x. For small γ , relevant for the odd l sector where μ =
2ν − 1 when z is small, the solutions are very similar to the case
γ = 0. This means that the solutions μn, n ∈ {1,3,5, . . .} are
odd integers μn = n for n � 2|x| + 1. The qualitative effects
on the solutions ν of changing γ for a fixed value of x can
be inferred from Fig. 4. While the higher-energy levels do
not change substantially for this value of x, the lowest-energy
level decreases with increasing γ . In Fig. 6, we have plotted
the solutions of Eq. (10) as functions of x for a fixed value
of γ = 2. For positive x, the lowest energy state decreases
with increasing x. This decrease becomes linear at large x

and its slope can be found by writing the Bessel function

FIG. 5. (Color online) Solutions ν of Eq. (10) as a function of x

for γ = 0. The red dashed line is the line ν = 1 + |x|.
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FIG. 6. (Color online) Solutions ν of Eq. (10) as a function of x

for γ = 2. The dot-dashed blue line has slope (γ + γ −1)/2 and the
red dashed line is the line ν = 1 + x for positive x.

ratio J−ν(x)/J1−ν(x) = −{ν/x + d
dx

ln[J−ν(x)]}−1 and using
the asymptotic expression17

J−ν(−νθ ) ∼ θ−νe−ν
√

1−θ2

√−2πν(1 − θ2)1/4(1 + √
1 − θ2)−ν

(11)

valid for ν → ∞ and 0 < θ < 1. We find that the lowest-
energy state solution decreases as ν ∼ −(γ + γ −1)x/2 for
x → ∞ and γ > 1. A line with this slope is overlaid on the plot
in Fig. 6 for γ = 2. The large x limit corresponds to the limit of
vanishing magnetic field. Using the asymptotic result and the
definitions of γ and x, we get for the lowest excited state in the
limit of vanishing hz, E = Jz + hz(2ν − 1) ∼ Jz − 2J⊥[1 +
(Ja/J⊥)2] cos p corresponding to a spin wave excitation. This
result can also be obtained by second-order perturbation theory
in the limit of vanishing magnetic field when Jz � J⊥ � Ja .

Extrapolating the spin-wave line to negative x, we see that
it coincides smooth steplike behaviors of the energy levels.
These steps become sharper and higher as γ is increased and
become a step discontinuity of unit one for γ → ∞. This
feature restricts the existence of the WZL for odd n to n >

(γ + γ −1)|x| + 1 for x < 0 and γ > 1.
From these considerations, it follows that a momentum-

independent WZL

En = Jz + hzn, (12)

with integer n, is restricted to high energies where

n > 1 + 2Ja

hz

×
{

2, J⊥ � Ja,

J⊥/Ja + Ja/J⊥, J⊥ > Ja.
(13)

For p = 0, the sector with domain walls of even l will also
couple to the ferromagnetic state. Thus, at p = 0, the equation
for the energy levels in the even sector is different from the
one at p �= 0, Eq. (8). For p = 0, we get

J−μn/2(x0)

J1−μn/2(x0)
= − x0

4(y + μn)
, (14)

where y = Jz/hz and x0 = 2Ja/hz. A similar equation in-
cluding also the effects of an optical phonon at p = 0 was
obtained in Ref. 13. The equation for p = 0 has an additional
negative solution μ0 < 0 well separated from the other positive
solutions. This solution arises from the singular behavior of
the left-hand side in the vicinity of μ = −y. Figure 4 shows
a graphical solution of Eq. (14) with μ = 2ν for fixed values
x0 = 1 and y = 3. Because of the rapid variations of the ratio
of Bessel functions on the left-hand side around positive even
integer values of μ, we see that a relatively small finite value
of the right-hand side changes only slightly the even integer
solutions found for p �= 0 in the even sector. However, at low
energies, there is a crucial difference. The right-hand side has
a singularity at μ = 2ν = −y. The left-hand side is positive
for negative μ and increases as μ → −∞ while the right-hand
side is negative for μ > y before it changes sign as μ passes
y. Thus somewhere below this singularity a negative solution
μ0 will occur. This means that the ground-state energy will be
negative as J + hzμ = 0 for μ = −y. For Ja 
 Jz, we find
for the lowest-energy solution approximately

E0 = Jz + hzμ0 ≈ −Jz + 2hz

6

[
1 −

√
1 − 12J 2

a

(Jz + 2hz)2

]

≈ − J 2
a

Jz + 2hz

(15)

consistent with what is expected from second-order perturba-
tion theory.

The energy eigenfunctions are given by |n,p〉 =∑∞
l=0 ψn,l(p)|p,l〉 with coefficients

ψn,l(p) ∝
[

1 − (−1)l

2

]
J(l−μn)/2(x) (16)

valid for n odd and

ψn,l(p) ∝
[

1 + (−1)l

2

] [
J(l−μn)/2(x)(1 − δl,0)

− Ja

En(p = 0)
J(2−μn)/2(x)δp,0δl,0

]
(17)

for n even. Note that only the odd(even) l coefficients are
nonzero for odd(even) n. For small x, the Bessel function
is maximal when l = μn ≈ n. Qualitatively, this implies that
for large magnetic fields, the nth mode of the bound state
is dominated by the state having n overturned spins. This
domination is total at p = π/2, 3π/2 where x = 0.

These energy wave functions are orthogonal when the
variable μn obeys one of the Eqs. (7), (8), or (14) due to
the Bessel function property18

∞∑
k=1

Jk+ν(x)Jk+μ(x)

= x

2

J1+ν(x)J1+μ(x)

ν − μ

[
Jν(x)

J1+ν(x)
− Jμ(x)

J1+μ(x)

]
. (18)
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IV. DYNAMIC STRUCTURE FACTOR

Having the eigenfunctions |n,p〉 and energies En(p), we
can calculate the dynamic structure factor, which at zero
temperature, is

Sαα′
(q,ω) =

∑
n

〈0,0|Sα
−q |n,q〉〈n,q|Sα′

q |0,0〉

× δ{ω − [En(q) − E0(0)]}, (19)

where |0,0〉 is the ground state and we have restricted the
intermediate states to the states |n,q〉 in the zero and two
domain-wall sectors that restricts the energy transfer ω < 2Jz.
In the following, we will consider Sxx , Syy , and Szz separately.

For Sxx and Syy , it is convenient to consider the raising
and lowering operators S± = Sx ± iSy . Expressed in terms of
these the transverse dynamic structure factors, Sxx and Syy are

Sxx = 1
4 [(S+− + S−+) + (S−− + S++)],

Syy = 1
4 [(S+− + S−+) − (S−− + S++)].

The ground state has zero momentum and can for Ja 
 Jz be
approximated by the ferromagnetic state |FM〉 where all spins
point along the magnetic field. The calculation is simplified
greatly by this approximation as then the structure factors S−−,
S++, and S+− are zero, which follows from S+|FM〉 = 0
implying that Sxx = Syy = 1

4S+−. The action of S− on the
ferromagnetic state creates a state with one down spin, thus it
belongs to the odd sector, and will have rather high energy, of
the order Jz + hz. Using the eigenfunctions, we find

S+−(q,ω) =
∞∑

n=1

δ[ω − En(q)] In(q),

where In is normalized relative intensity of the nth mode,

In(q) = |ψn,l=1(q)|2∑
l |ψn,l(q)|2 . (20)

Using the expression for the wave functions and the following
Bessel function identity

∞∑
l=l0

J 2
l−ν(x) = −x

2
J 2

l0−ν(x)
∂

∂ν

[
Jl0−ν−1(x)

Jl0−ν(x)

]
(21)

with l0 an integer, the intensity can be expressed in the form

In(q) =
{
x

∂

∂μ

[
Jμ/2(x)

Jμ/2+1(x)

]}−1 ∣∣∣∣
μ=−μn

, (22)

where μn is the solution of Eq. (7) for the odd domain
length l.

For larger values of Ja/Jz, it is no longer adequate to
approximate the ground state with the ferromagnetic state.
Taking into account the exact nature of the ground state
gives additional contributions to S+− and the corresponding
intensity becomes

I+−
n (q) =

[
C0

0C
n
1 (q) + 2

∑
l>0

C0
l C

n
l+1(q) cos(ql/2)

]2

, (23)

where we have used the following notation for the normalized
wave functions:

Cn
l (q) = ψn,l(q)√∑

l |ψn,l(q)|2 . (24)

We will omit the momentum label for the ground state C0
l as

it has zero momentum. The leading terms of the intensity give
the contribution

I+−
n (q) ≈ (

C0
0

)2
In(q) + 4C0

0C0
2C

n
1 (q)Cn

3 (q) cos(q). (25)

In this case, we also get nonzero contributions to S−+ and to
S−−,S++ which cause Sxx to be different from Syy . In the
same notation as above, their contributions are

I−+
n (q) =

∣∣∣∣∣C0
1C

n
0 (0)δq,0 + 2e−iq/2

∑
l>1

C0
l C

n
l−1(q) cos(ql/2)

∣∣∣∣∣
2

,

I++
n (q) =

[
C0

0C
n
1 (q) + 2

∑
l>0

C0
l C

n
l+1(q) cos(ql/2)

]

×
[
C0

1C
n
0 (0)δq,0 + 2

∑
l>1

C0
l C

n
l−1(q) cos(ql/2)

]
,

I−−
n (q) = [I++

n (q)]∗,

where the ∗ means complex conjugation. Approximating these
with their leading terms, we get

I−+
n (q) ≈ [

C0
1C

n
0 (0)δq,0 + 2C0

2Cn
1 (q) cos q

]2
, (26)

I++
n (q) ≈ C0

1C
n
0 (0)

[
C0

0C
n
1 (0) + 2C0

1Cn
2 (0)

]
δq,0

+ 2C0
0C0

2

[
Cn

1 (q)
]2

cos q. (27)

Applying the operator Sz to the ground state does not
change the parity of l, thus all contributing intermediate states
have even n. It is convenient to split off the ground-state
contribution as it has zero momentum and frequency, it
represents the squared magnetization, and write

Szz(q,ω) = 1

4

[
N − 2

∑
l

l
(
C0

l

)2

]2

δq,0δ(ω)

+
∑

n

δ[ω − En(q)] I zz
n (q), (28)

where

I zz
n (q) =

[∑N
l=2 C0

l C
n
l (q) sin(ql/2)

]2

sin2(q/2)
. (29)

The leading contribution of the sum is

I zz
n (q) = 4E0

2

J 2
a

|ψn,l=2(q)|2∑
l |ψn,l(q)|2 cos2(q/2)

≈ 4J 2
a

(Jz + 2hz)2
cos2(q/2) I ev

n (q), (30)

where the introduced intensity I ev
n corresponds to contribution

from the states with even n and can be written as

I ev
n (q) =

{
x

∂

∂μ

[
Jμ/2(x)

Jμ/2+1(x)

]}−1 ∣∣∣∣
μ=−μn

, (31)
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where μn is the solution of the Eq. (8) for the even domain
length l.

V. FINITE TEMPERATURE

At finite temperatures, the dynamic structure factor will
in addition to transitions out of the ground state also get
contributions that depend solely on the excited states. In
particular, there will be contributions at low frequencies
corresponding to the spacing between energy levels. It was
these temperature-induced contributions that were the focus
of the neutron scattering experiments in Refs. 4 and 5. We will
consider such temperature-induced contributions at relatively
low frequencies ω < Jz.

At finite temperature, entropic factors make it favorable
to break up a spin domain, thus inducing domain walls. The
magnetic field confines pairs of domain walls leading to a
picture of the finite-temperature state as consisting of several
bound states; short spin-down domains, interspaced by longer
spin-up domains. To handle these thermal states, we will
use the exact quantum-mechanical treatment of an isolated
bound state and neglect the interaction between different bound
states. We expect the quality of this noninteracting bound
state approximation to be good on time scales shorter than
the typical collision time between bound states. This collision
time can be estimated by the mean distance between the bound
states, which is the typical size of a spin-up domain, divided
by the velocity of a bound state. The typical length of a spin-up
domain ξ↑ in units of the lattice spacing can be estimated from
the emptiness formation probability for the Ising model in a
magnetic field19 and gives

ξ↑ = 1

1 − α↑
, (32)

where

α↑ = eβhz/2

cosh(βhz/2) +
√

sinh2(βhz/2) + e−βJz

, (33)

where β is the inverse temperature. Using this and the
maximum velocity of a spin-down bound state vmax, we expect
the independent bound state approximation to be good for
frequencies

ω >
2πvmax

ξ↑
. (34)

The bound-state velocity vn(p) = ∂En(p)
∂p

is largest for low-
lying energy modes. For higher-energy modes, the dispersion
becomes flatter and their velocity approaches zero. For
the n = 1 mode, the energy varies as E1(p) ≈ −2J⊥[1 +
(Ja/J⊥)2] cos p for J⊥ > Ja at low momenta p, which implies
a maximum velocity v1 = 2J⊥[1 + (Ja/J⊥)2]. For J⊥ < Ja ,
the n = 1 mode behaves almost as the n = 2 mode, which
for 2Ja/hz < 1, has a maximum velocity v2 ≈ 2J 2

a /hz that
increases for smaller fields and approaches v2 ∼ 4Ja . Thus
the maximum velocity of a bound state is vmax = max(v1,v2).

The above validity criterion (34) takes into account the
center of mass motion of the bound states. In addition, the
quantum-mechanical uncertainty in the size of a bound state
can also ruin the noninteracting bound state approximation.
From the wave functions, we estimate the size uncertainty to

be ±2Ja/hz, which implies that adjacent bound states have
nonoverlapping boundaries when

4Ja/hz < ξ↑. (35)

Keeping in mind these restrictions, we can write down the
dynamic structure factor at low frequencies ω < Jz in the
independent bound-state approximation as

Sαα′
(q,ω) =

∑
p,m,m′

nm,pSαα′
m′m(p,q)

× δ {ω − [Em′(p + q) − Em(p)]} , (36)

where

Sαα′
m′m(p,q) = 〈m,p|Sα

−q |m′,p + q〉〈m′,p + q|Sα′
q |m,p〉

and nm,p is the occupation number of a bound state with
internal energy index m and momentum p. Its functional
form depends generally on the statistics of these excitations,
but is expected to behave at low temperatures as nm,p ≈
e−β[Em(p)−E0(0)]κ(β), where κ is close to unity for T < Jz.

The action of the operator Sz on a state with a spin-down
cluster of l spins and momentum p is

Sz
q |p,l〉 = N

2
|p,l〉δq,0 − 1 − eiql

1 − eiq
|p + q,l〉, (37)

which implies that the matrix elements Szz
mn is given by the

expression

Szz
mn = δq,0

[
N

2

∑
l

Cn
l (p)Cm

l (p) −
∑

l

lCn
l (p)Cm

l (p)

]2

+ (1 − δq,0)
1

sin2 q/2

[∑
l

Cn
l (p)Cm

l (p + q) sin
ql

2

]2

.

(38)

This expression is rather difficult to deal with analytically for
general values of the parameters. However, in the region of
parameters where we expect the spectrum to be the WZL,
we can evaluate it analytically. Focusing on this region where
2Ja/hz 
 1 and J⊥ < Ja , we get, see Appendix,

Szz(q,ω) = κ(β)e−β(Jz+hz)

1 − e−βhz

N∑
k=−N

Gk(q) δ(ω − 2hzk), (39)

where the contribution from each mode for q �= 0 is

G0(q) = J 2
0 (ζ )

cosh(βhz) − cos q

eβhz + 1

2
,

Gk(q) = J 2
k (ζ )

2 sin2(q/2)

{
1, k > 0,

eβ2hzk, k < 0,

and the argument of the Bessel function is ζ = 2Ja

hz
| sin q|.

For q = 0, we get also a contribution from the ground-state
magnetization squared:

G0(0) =
(

N

2

)2

− N

1 − e−βhz
+ 1

2

eβhz + 1

cosh(βhz) − 1
,

Gk(0) = 1

2

(
2Ja

hz

)2

⎧⎪⎨
⎪⎩

1, k = 1,

e−β2hz , k = −1,

0, |k| > 1.
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Thus there are contributions for ω = 2hzk, where k is an
integer. The 2hz reflects the fact that Sz does not change the
parity of l. If we introduce the Bloch frequency ωB = 2hz,
this gives a result similar to the expression found in Ref. 3.
However, the temperature-dependent factors are different. In
particular, we get a prefactor e−βJz , which is a consequence of
the occupation number of bound states. This is in contrast
to the factor e−βJz/2 expected in the single domain-wall
approximation. A noteworthy feature of Eq. (39) is that
increasing the magnetic field moves the spectral weight to
lower Bloch frequencies. This follows from the fact that the
maximum of the Bessel function squared Jk(ζ ) for fixed ζ

occurs when k ≈ ζ − 1.
For the transverse dynamic structure factor, we find

S+−
mn (p,q) =

[
Cn

0 (0)Cm
1 (q)δp,0 + 2

∑
l>0

Cn
l (p)Cm

l+1(p + q)

× cos

(
ql − p

2

)]2

. (40)

This expression can also be evaluated analytically in the region
where the spectrum is the WZL, see Appendix,

S+−(q,ω) = κ(β)e−βJz

eβhz − 1

∑
k

δ[ω − hz(2k + 1)]

× 2J 2
k (ζ )

{
1, k > 1/2,

eβhz(2k+1), k < 1/2,
(41)

where ζ = 2Ja

hz
| sin q| and k is an integer variable. For the

transverse structure factor, the excitations occur at frequencies
that are an odd multiple of hz, a consequence of the fact that
S− changes the parity of l, the number of overturned spins.

VI. COBALT CHLORIDE

CoCl2 · 2H2O is a quasi-one-dimensional anisotropic spin-
1/2 magnet, proposed in Ref. 3 as a candidate exhibiting
BO in a magnetic field. CoCl2 · 2H2O has a dominant
ferromagnetic coupling Jz along the chains, which was
determined from far-infrared absorption spectroscopy9 to
be Jz = 36.5 K. Other intrachain couplings Jx and Jy are
smaller but nonzero. The values of these couplings as well
as other interchain couplings have been inferred both from
far-infrared spectroscopy9 and from spin wave analysis of
neutron scattering experiments.4,5,20 In this paper, we use the
following values to describe CoCl2 · 2H2O:

Jz = 36.5 K, Ja = 3.8 K, J⊥ = 5.43 K. (42)

An important consequence of interchain couplings in CoCl2 ·
2H2O is that they cause the spins to order antiferromagnetically
below TN = 17.3 K. This implies that in the antiferromagnetic
phase below TN , the magnetic field hz used here should be
interpreted as a sum of the external applied magnetic field and
an internal field, which arises due to the magnetic moments of
neighboring chains.9

We have plotted the energy levels En(p) for the above
couplings in Fig. 7. The WZL is present at low energies
in the momentum region around p = π/2 (3π/2) and is
bounded by the red dashed and blue dot-dashed curves, which

FIG. 7. (Color online) Energy levels vs momentum computed
with the parameters in Eq. (42) for a magnetic field hz/Jz = 0.05.
The dot-dashed blue curve corresponds to the asymptotic dot-dashed
line drawn in Fig. 6 but with γ = 1.43, and the red dashed curve
corresponds to the red dashed line in Fig. 6.

correspond to the asymptotic lines drawn in Fig. 6. For energies
E > Jz + 2hz + 4Ja , the spectrum is the WZL for p = 0
and for E > Jz + hz + 2J⊥[1 + (Ja/J⊥)2], it extends also to
the region above π so that the spectrum is the WZL for all
momenta. For regions of energies where the spectrum is not
WZL for all momenta, it is possible to see from Fig. 7 that the
even levels are symmetric around π/2 while the odd levels lack
this symmetry property. This is a consequence of the skewness
of levels seen in Fig. 6.

In order to see the effects of J⊥, we have in Fig. 8 also
plotted the energy levels when J⊥ = 0 for comparison.21 We
see that the main effect of J⊥ is to lower the energy of
the lowest odd level and to shift the low-energy odd levels
in the region π/2 < p < 3π/2 so that they almost coincide
with the even levels. The even levels are unaffected by J⊥.

The zero temperature transverse dynamic structure factor
S+− at hz/Jz = 0.05 is shown in Fig. 9. Only transitions to
odd n levels have nonzero intensity and it is seen that most of

FIG. 8. (Color online) Energy levels vs momentum computed
with J⊥ = 0, Ja/Jz = 0.104, and hz/Jz = 0.05. The red dashed curve
corresponds to the red dashed lines in Fig. 5 and marks the lower
boundary of the WZL.
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FIG. 9. Gray-scale plot of S+−(q,ω) vs q and ω at T = 0 for
J⊥/Jz = 0.149, Ja/Jz = 0.104, and hz/Jz = 0.05.

the spectral weight occurs for transitions to the spin-wave-like
state n = 1. The intensities of higher excited levels are weak
in the momentum region around p = π/2 where we expect
to see the WZL. Exactly at p = π/2, the size of the bound
state is a good quantum number, thus higher excited bound
states with n > 1 have no amplitude to have the size l = 1,
which is the dominant intermediate state generated by neutron
scattering on a ferromagnetic state. Any intensity of n > 1
levels at p = π/2 reflects how the ground state deviates from
being fully ferromagnetic. For the coupling constants relevant
for CoCl2 · 2H2O, the probability for finding all spins up in
the ground state is roughly 99%, so fluctuation corrections to
the ground state are small and the integrated spectral intensity
above the n = 1 mode is less than 1%. In Fig. 10, we show
how the intensities Eq. (23) of the different levels vary for
two momenta q = 0 and q = π . For q = 0, the intensities
drop exponentially with frequency, but for q = π , the intensity
decreases only slightly before it increases up to the energy
where the WZL sets in and then drops rapidly. This also reflects
the fact that the main contribution comes from transitions to
the l = 1 state.

FIG. 10. Intensities I+−(q) vs ω at T = 0 for J⊥/Jz = 0.149,
Ja/Jz = 0.104, and hz/Jz = 0.05. The results for two momenta are
shown, q = 0 (open circles, dashed line) and q = π (solid circles,
solid line). The lines are guides to the eye.

FIG. 11. Gray-scale plot of Szz(q,ω) vs q and ω at T = 0 for
J⊥/Jz = 0.149, Ja/Jz = 0.104, and hz/Jz = 0.05. The intensity of
the plot has been increased by a factor 28 in order to make it visible
on the same gray scale as used in Fig. 9.

The behavior of the longitudinal dynamic structure factor
Szz for parameters relevant for CoCl2 · 2H2O is shown in
Fig. 11. Here, only excitations to even n levels are nonzero
which implies that Szz is independent of J⊥. The total spectral
weight of Szz(q �= 0) is however much smaller than for S+−
because it is proportional to the probability for finding two
overturned spins in the ground state. This is reflected by the
small factor J 2

a /(Jz + 2hz)2 in Eq. (30).
For finite T , the validity of the noninteracting bound-state

approximation for CoCl2 · 2H2O used here is constrained
mostly by J⊥. Its relatively large value causes the n = 1
bound state to have the largest velocity which according to
the inequality (34) gives a lower bound on the frequency
for which our approach is valid. If we require that this
lowest frequency equals the Bloch frequency ωB = 2hz, the
noninteracting bound-state approximation will be valid in the
temperature/magnetic field region shaded dark gray in Fig. 12
for the parameters relevant for CoCl2 · 2H2O. We do not expect

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

T Jz

h z
J z

FIG. 12. Region of validity of the noninteracting bound state
approximation using the parameters in Eq. (42). The region where
the inequality (35) holds is shaded in light gray (which also overlaps
entirely the dark gray region). The region where the noninteracting
approximation can be used for frequencies down to the Bloch
frequency ωB = 2hz, inequality (34), is shown in dark gray.
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FIG. 13. (Color online) Szz(q = π/2,ω) vs ω/Jz for T = Jz/2,
hz/Jz = 0.2, and parameters from Eq. (42). The red dashed curve is
the corresponding WZL result Eq. (39) using the same parameters.
In order to generate the plot, δ functions were approximated by a
Gaussian distributions with variance 10−4. The vertical axis values
are in multiples of κ(β = 2/Jz), a number of order unity.

our results to apply outside this region as a treatment of
bound-state collisions is needed there.

In order to see finite temperature signatures of BO, a
high temperature is needed to thermally occupy the bound
state levels. However, at high temperatures, the validity of
our approach is restricted to large magnetic fields, as seen
from Fig. 12. Increasing the magnetic field has the disad-
vantage that the weights of the finite frequency Bloch peaks
become small Eq. (39), thus weakening the signatures of BO.
Therefore a judicial choice of temperature and magnetic field
must be made to make observations possible.

The optimal magnetic field for the first resonance at ωB

is hz ∼ Ja . We will use a larger magnetic field, hz = 0.2Jz,
as that allows our approach to be used up to a temperature
T ≈ Jz/2. We find that for Szz the maximum intensity of the
finite frequency WZL transitions occur at q = π/2. In Fig. 13,
we have plotted our analytical result Eq. (38) numerically. We

FIG. 14. (Color online) S+−(q = π/2,ω) vs ω/Jz using the same
parameters as in Fig. 13. The red dashed curve is the corresponding
WZL result Eq. (41) using the same parameters. Delta-functions were
approximated by a Gaussian distributions with variance 10−4. The
vertical axis values are in multiples of κ(β = 2/Jz), a number of
order unity.

compare this with the expression obtained in the WZL limit
Eq. (39) using the same parameters. We see a clear peak at
the Bloch frequency ωB = 2hz also when the conditions for
the WZL are suboptimal as is the case with the parameters in
Eq. (42). The WZL calculation (red dashed line) overestimates
the weight of the peaks, but do reasonably capture their relative
intensities. For higher temperatures, the WZL expression
matches Eq. (38) better as then more emphasis is put on the
higher-energy part of the spectrum which is more WZL-like for
all momenta. We wish to emphasize that the thermally induced
transitions here come with an overall factor e−βJz which makes
them difficult to observe at low temperatures.

In Fig. 14, we have plotted S+− using the same parameters
as in Fig. 13. Peaks at frequencies corresponding to odd
multiples of the magnetic field are clearly seen among other
peaks caused by the dispersion of the lowest-energy modes.

VII. CONCLUSION

In this work, we have investigated the possibility of
observing spectral signatures of magnetic BO in a one-
dimensional anisotropic ferromagnetic spin system placed in
a magnetic field. This system was considered previously3 but
within an approximation where only a single domain wall was
included. We argue that the single domain-wall approximation
is insufficient at a finite magnetic field. Instead, we consider
a bound state of a domain wall and an antidomain wall; a
spin cluster of adjacent spins antialigned with the magnetic
field,9 and treat the thermal state as a noninteracting gas of
such excitations. This allows us to also include the effects
of the additional coupling J⊥, which probably is present in
most anisotropic materials that have a nonzero value of Ja .
For instance, in CoCl2 · 2H2O for which neutron scattering
searches for BO have been made, J⊥ is bigger than Ja .

We have treated the quantum mechanics of the bound
state and obtained its energy levels and wave functions. The
spectrum in a magnetic field will be split by the magnetic field
essentially into modes corresponding to the size (number of
overturned spins) of the bound state. In the momentum region
around p = π/2 (p = 3π/2), the energy levels are equidis-
tantly spaced down to the lowest energies. This corresponds to
the WZL. For other momenta the exchange couplings, Ja and
J⊥, cause dispersion of the low-lying energy levels. This effect
diminishes for higher energies and the spectrum becomes the
WZL above a threshold energy for all momenta.

We have also calculated the neutron scattering dynamic
structure factor at zero and low temperatures. At zero tempera-
ture, the expected response occurs at high frequencies and there
should be considerable chances of seeing the magnetic field
splitting of the spectrum. However, it will be difficult to see the
WZL because of the low spectral weight in this region. This is
because neutron scattering flips a single spin and couples most
strongly to the bound states that have a significant amplitude of
having a single down-spin cluster, which has a dispersion that
is heavily influenced by J⊥. The longitudinal channel is not
influenced by J⊥, but is much weaker at nonzero momentum.

Detecting BO at finite temperatures with neutron scattering
seems more promising. However, the thermal occupation
number of bound states implies that these signatures will be
suppressed at low temperatures as e−βJz . This might be the
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reason for the nonobservation of BO in the neutron scattering
experiments.4,5 Nevertheless, it might still be possible that
neutron scattering on CoCl2 · 2H2O can be used to observe
signatures of BO provided a careful selection of temperature
and magnetic field is being made. In that respect, care must be
taken so as to secure a big enough thermal population of bound
states, a large intensity of the finite frequency resonance(s),
and a regime where collisions of bound states do not destroy
the BO.

APPENDIX: WZL STRUCTURE FACTORS

Let us calculate the dynamic structure factors at finite
temperature in the limit where the spectrum is the WZL, that is
hz � 2Ja and J⊥ 
 Ja . In this limit, En(p) = Jz + hzn and
the wave functions are Bessel functions of integer order

Cn
l (p) = 1 + (−1)l−n

2
J l−n

2
(x0 cos p), (A1)

where x0 = 2Ja/hz 
 1. In the limit x0 → 0, these wave
functions are normalized to unity. This also holds approxi-
mately at small finite x0, which follows from the property
of Bessel functions:

∑∞
k=−∞ J 2

k (x) = 1 and the fact that
contributions from higher Jk(x0) decrease rapidly with k for
small x0. Thus only small errors are introduced by extending
the sum to −∞ at small finite x0.

For Szz(q �= 0,ω), the matrix elements (38) become

Szz
mn

∣∣
q �=0 = 1

sin2 q/2

{∑
l>0

J l−n
2

(x0 cos p)

× J l−m
2

[x0 cos(p + q)] sin
ql

2

}2

, (A2)

where the sum over l goes over even(odd) integers when n

and m both are even(odd), otherwise every term in the sum is
zero. It is convenient to introduce a new integer-valued variable
t = (l − n)/2 and rewrite the sum in the form

∑
t>− n

2

Jt (x0 cos p) Jt+ n−m
2

[x0 cos(p + q)] sin

[
q

(
t + n

2

)]

= J n−m
2

(ζ ) sin

[(
p − π

2

)
n − m

2
+ q

n

2

]
, (A3)

where we introduced a new variable ζ = x0| sin q|. The sum
over the product of Bessel functions was performed by
extending the sum to negative −∞, which only induces small
errors when x0 
 1, and then using Graf’s addition theorem17

∞∑
k=−∞

Jk+ν(u) Jk(v)
sin
cos (kφ) = Jν(w)

sin
cos (νχ ) (A4)

with the relations w =
√

u2 + v2 − 2uv cos φ, w cos χ = u −
v cos φ, and w sin χ = v sin φ.

The dynamic structure factor Szz for q �= 0 in the inde-
pendent bound-state approximation can then be written in the

form

Szz(q,ω)|q �=0 = κ(β)

sin2 q/2

∑
m,n

e−β(Jz+hzn) δ[ω − (m − n)]

× J 2
n−m

2
(ζ )

{
1/2, n �= m,

sin2
(
q n

2

)
, n = m,

(A5)

where integration over momentum p was performed for integer
values of n and m variables∫ 2π

0

dp

2π
sin2

[(
p− π

2

)
n − m

2
+ q

n

2

]
=
{

1/2, n �= m,

sin2
(
q n

2

)
, n = m.

No transitions between the even and odd sectors are allowed,
thus it is convenient to introduce a new integer-valued variable
k = (m − n)/2 that describes the energy difference between
the states involved in the transition.

We can reorder the double sum as

∑
m,n

=
(∑

m�n

+
∑
m<n

)∑
n

=
∑
m�n

∑
n

+
∑
m

∑
n>m

=
∑

n

∑
k�0

+
∑
m

∑
k<0

, (A6)

that allows us to rewrite the dynamic structure factor in the
case of nonzero energy transitions, k �= 0, in the following
form:

Szz|q �=0,ω �=0 = κ(β)

2 sin2(q/2)

e−βJz

eβhz − 1

∑
k �=0

δ(ω − 2hzk)J 2
k (ζ )

×
{

1, k > 0,

eβ2hzk, k < 0,
(A7)

where we used the expression for the sum of the first N terms
of a geometric series

N∑
n=1

e−βhzn = e−βhz
1 − e−βhzN

1 − e−βhz
≈ 1

eβhz − 1
. (A8)

For the zero mode, k = 0, in order to find the sum in Eq. (A5),
we can use the following identity

∞∑
n=1

sin2(an)e−bn = 1

1 − e−b

sin2 a

2

1 + e−b

cosh b − cos 2a
, (A9)

which can be proved using Euler’s formula and sum of terms
of geometric series. This gives the contribution to the zero
mode

Szz
∣∣

q �=0
ω=0

= κ(β)e−βJz
1 + e−βhz

1 − e−βhz

δ(ω)

2

J 2
0 (ζ )

cosh(βhz) − cos q
.

(A10)

Finally, combining together Eqs. (A7) and (A10), we obtain
the dynamic structure factor:

Szz(q,ω)|q �=0 = κ(β)e−β(Jz+hz)

1 − e−βhz

N∑
k=−N

Gk(q) δ(ω − 2hzk),

(A11)
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where the contribution from each mode is

G0 = J 2
0 (ζ )

cosh(βhz) − cos q

eβhz + 1

2
, (A12)

Gk = J 2
k (ζ )

2 sin2(q/2)

{
1, k > 0,

eβ2hzk, k < 0,
(A13)

and the argument of the Bessel function is ζ = 2Ja

hz
|sin q|.

The leading contribution to the dynamic structure factor
S+− comes from transition between states with nonzero
momentum p. Then the matrix element in Eq. (40)
becomes

S+−
mn (p,q) = 4

{∑
l>0

J l−n
2

(x0 cos p)J l+1−m
2

[x0 cos(p + q)]

× cos

(
ql − p

2

)}2

, (A14)

where the sum over l is over even(odd) integers when n is
even(odd) and m is odd(even). Introducing the new integer
variable t = (l − n)/2 and summing over the product of Bessel

functions using Graf’s addition theorem gives∑
t>− n

2

Jt (x0 cos p)Jt+ n−m+1
2

[x0 cos(p + q)]

× cos

[
q

(
t + n

2

)
− p

2

]

= J n−m+1
2

(ζ ) cos

[(
p − π

2

)
n − m + 1

2
+ p

2
+ q

n

2

]
.

(A15)

Since the only allowed transitions are between different parity
sectors it is convenient to introduce the integer-valued quantity
k = (m − n − 1)/2. The integral over momentum is∫ 2π

0

dp

2π
cos2

[(
π

2
− p

)
k + p

2
+ q

n

2

]
= 1

2
.

After reordering of the double sum, we finally obtain

S+−(q,ω) = κ(β)e−βJz

eβhz − 1

∑
k

δ[ω − hz(2k + 1)]

× 2J 2
k (ζ )

{
1, k > 1/2,

eβhz(2k+1), k < 1/2,
(A16)

where ζ = 2Ja

hz
| sin q| and k is an integer.
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