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Formation and coarsening of the concertina magnetization pattern in elongated thin-film elements
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The concertina is a magnetization pattern in elongated thin-film elements of a soft ferromagnetic material. It
is a ubiquitous domain pattern that occurs in the process of magnetization reversal in the direction of the long
axis of the small element. Van den Berg and Vatvani [IEEE Trans. Magn. 18, 880 (1982)] argued that this pattern
grows out of the flux-closure domains at the sample’s tips as the external field is reduced. Based on experimental
observations and theory, we argue that in sufficiently elongated thin-film elements the concertina pattern rather
bifurcates from an oscillatory buckling mode. Typical sample widths and thicknesses are of the order of 10-100
μm and of the order of 10-150 nm, respectively. Using a reduced model that is derived by asymptotic analysis
from the micromagnetic energy and that is also investigated by means of numerical simulation, we quantitatively
predict the average period of the concertina pattern and qualitatively predict its hysteresis. In particular, we argue
that the experimentally observed coarsening of the concertina pattern is due to secondary bifurcations related to
an Eckhaus instability. We also link the concertina pattern to the magnetization ripple and discuss the effect of a
weak (crystalline or induced) anisotropy.
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I. INTRODUCTION

To our knowledge, the term concertina was introduced
by van den Berg and Vatvani in Ref. 1, p. 880. In that
paper the authors explain the formation of this domain
pattern in Permalloy thin-film elements that are fairly thick
(thickness t = 350 nm), with a rectangular cross section
(width � = 15 μm) that is not too elongated (length 60 μm).
After near saturation along the long axis, a concertina pattern
grows out of the flux-closure domains at the short edges
of the cross section during subsequent reduction of the
external field Hext, until the pattern eventually invades the
entire sample; see right image in Fig. 1. Our experimental
observations suggest that in very elongated samples (length
2000 μm, thickness 10 to 150 nm, width 10 to 100 μm) a
bifurcation is at the origin of the concertina. As a consequence,
the pattern forms simultaneously all over the sample; see
Fig. 2.

The organization of our paper is as follows: After introduc-
ing the micromagnetic energy in Sec. I A we report on van den
Berg’s explanation and further previous related work in more
detail in Sec. I B. We go on with a comparison of our results to
van den Berg’s predictions in Sec. I C. Section I D contains
a description of the experimental setup and details on the
samples that we investigate. Our analysis, that is based on the
micromagnetic energy, starts with a linear stability analysis of
the uniform magnetization under field reversal (nucleation) in
Secs. I E and I F. A bifurcation analysis is performed in Sec. I I
based on a reduced model derived from the micromagnetic

model in Sec. I H. In Section II we derive a domain-theoretical
model in the spirit of Kittel.2 Sections III A to III C address the
coarsening of the concertina pattern away from the bifurcation,
while Sec. III D addresses the stability of the pattern close to
the bifurcation. The end of Sec. III is dedicated to a discussion
of our theoretical and numerical results from an experimental
point of view. In Sec. IV we explain the discretization and the
numerical algorithms applied; let us point out that all of the
numerical results presented in this paper were obtained from
simulations of the reduced model derived in Sec. I H. The
rest of the paper is concerned with the effect of anisotropy:
We start with the effect of polycrystalline anisotropy and
the relationship between the thereby excited ripple and the
concertina in Sec. V. Finally Sec. VI deals with different effects
of uniaxial anisotropy.

A. The micromagnetic energy

In the experiment under consideration, the variation of
the applied magnetic field is on a very slow time scale so
that the magnetization always relaxes to equilibrium. Hence
our theoretical analysis is based on the micromagnetic (free)
energy so that (local) minimizers of the energy correspond
to stable configurations in the experiment. Within this model,
which was initially introduced in Ref. 3, the magnetization
of a ferromagnetic sample occupying some domain � is
described by a vector field m(x) = (m1,m2,m3)(x1,x2,x3);
see Fig. 3. (Throughout the paper we employ bold letters to
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FIG. 1. (Color online) Concertina in a very elongated (length
2 mm) sample of width 50 μm and thickness 50 nm (left) and
in a sample of width 35 μm, thickness 40 nm, and moderate
length 110 μm (right). The left image shows only the center of
the very elongated sample, i.e., less than 10% of the whole sample
length. The right image shows an entire sample with its closure
domains at the tips. As indicated by the blue arrows, the gray
scales encode the transverse component of the magnetization in the
domains. Notice that the gray scales in the different pictures are not
comparable. In particular the legend in the center has to be understood
qualitatively.

denote a vectorial quantity while italic font is used to denote
a scalar quantity, in particular some component of a vectorial
quantity.)

The micromagnetic energy E(m) is given by

E(m) = d2
∫

�

|∇m|2 dx +
∫

all space
|Hstray|2 dx

−Q

∫
�

(m · e)2 dx − 2
∫

�

Hext · m dx. (1)

The model in the form of (1) is already partially, i.e., except for
lengths, nondimensionalized (for example, the energy itself is

rescaled by Kd = J 2
s

2μ0
). The magnetization is rescaled by the

saturation magnetization so that m is a vector field of length
1. Outside of the sample, it vanishes identically:

|m|2 = 1 in the sample �,
(2)

m = 0 outside of the sample �.

Let us briefly introduce and discuss the different energy
contributions: The first contribution in Eq. (1) is the so-called
exchange energy. [The gradient acts componentwise, i.e.,
|∇m|2 = ∑3

i=1

∑3
j=1(∂imj )2.] This term favors a uniform

magnetization. The material parameter d is called the exchange
length and measures the relative strength of exchange with
respect to the stray-field energy; see below. It is defined as
d = ( A

Ks
)1/2, where A denotes the so-called exchange constant.

The exchange length is typically of the order of a few
nanometers.

FIG. 3. (Color online) We assume an idealized elongated sample
that is infinitely extended or periodic in the direction of the long axis
x1. It is of width � and thickness t . The uniform saturation mag-
netization m∗ ≡ (1,0,0) is sketched together with the homogeneous
external saturation field Hext that is applied along the long axis of the
sample.

The second contribution in Eq. (1) is the stray-field energy.
The static Maxwell equations state that the magnetization m
generates a stray field Hstray described by

∇ × Hstray = 0, ∇ · (Hstray + m) = 0, (3)

where both equations hold in the whole space and B =
Hstray + m is the magnetic induction. Hence the stray field
is generated by the divergence of the magnetization. Since the
magnetization is discontinuous at the boundary of the sample
∂� [cf. (2)], the second equation in Eq. (3) has to be understood
in the following sense:

∇ · Hstray =
{−∇ · m in the sample �,

0 outside of the sample �,
(4)

[Hstray · n] = m · n on the boundary ∂�,

where n denotes the outward-pointing normal of the boundary
of the sample, and [Hstray · n] denotes the jump that Hstray · n
experiences across the boundary ∂�. Hence we distinguish two
different sources of the stray field—in analogy to electrostatics
one commonly speaks of charges—namely,

magnetic volume charges ∇ · m in � and

magnetic surface charges m · n on ∂�.

In Sec. I F we discuss specific stray fields that are generated
by certain volume or surface charge densities; for further
details of how to solve (4) in these cases we refer the
reader to Ref. 4. Later on we will also use the following
equivalent distributional formulation of (4), which is obtained

FIG. 2. Formation of the concertina pattern in the experiment: The pictures show a section near the center of the elongated thin-film element.
The oscillatory instability grows into a domain-wall pattern which coarsens several times as the strength of the destabilizing field decreases
(from left to right). The two upper series show a sample of 30 nm thickness of low anisotropy. The two lower series show a sample of 30 nm
thickness of higher anisotropy. The widths are 30 and 50 μm, respectively.
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FIG. 4. (Color online) The scale of the external field hext.

by testing with smooth functions ζ vanishing at infinity,
namely, ∫

all space
Hstray · ∇ζ dx = −

∫
�

m · ∇ζ dx. (5)

The third contribution in Eq. (1) models a uniaxial
anisotropy, i.e., the preference for an easy axis e = (e1,e2,e3) in
a material. The material parameter Q > 0 is called the quality
factor. It measures the relative strength of anisotropy with
respect to the stray-field energy. A uniaxial anisotropy can, for
example, come in the form of crystalline or induced anisotropy.
Notice that the polycrystalline anisotropy in a material like
Permalloy can be described using a position-dependent easy
axis e(x).

The last contribution in Eq. (1) is called the Zeeman energy.
This term models the interaction and favors the alignment of
the magnetization with an external magnetic field Hext. It will
later turn out to be notationally convenient to parametrize the
external field in the form Hext = (−hext,0,0), so that saturation,
i.e., m = m∗ ≡ (1,0,0), corresponds to large negative values
of hext and so that the instability occurs at a positive value
hext = h∗

ext; see Fig. 4.
The specific material parameters for our samples can be

found in Sec. I D.

B. Previous work and van den Berg’s explanation
of the concertina

This section contains a comparison to previous work
addressing the formation of the concertina pattern and the
onset of switching, more precisely nucleation theory, for other
sample dimensions and geometries. For a general overview of
the theory of magnetic domains we refer to the introductory
chapter in Ref. 5. We mention only that first quantitative
results were obtained by Kittel2 based on energy minimization
among a reduced set of admissible ansatz functions for the
magnetization. He used this so-called domain theory to derive,
for example, the typical domain size. It is in principle the same
approach that we use for the analysis of the concertina for
strong destabilizing fields in Sec. II.

The onset of switching is traditionally analyzed in the
framework of so-called nucleation theory. This amounts to a
linear stability analysis of a stationary point of the energy,
more precisely, the diagonalization of its Hessian. Since
the contribution from the exchange energy is diagonal with
respect to Fourier cosine series whereas the contribution
from the stray-field energy is diagonal with respect to the
Fourier transform, it is typically not possible to determine
all eigenmodes and eigenvalues explicitly. Hence it became
popular to propose and study specific ansatz functions for
the modes—so-called models in the sense of Aharoni6

(Sec. 9.2.1, p. 189). This allows us to derive an upper bound
for the critical field at which the switching begins. We discuss
potentially unstable modes in Sec. I F. Our discussion shows
that there are at least four qualitatively different regimes for

FIG. 5. (Color online) The creation of a triplet (a)–(c) out of the
initial doublet as shown and sketched by van den Berg and Vatvani;
the sketch is duplicated and the images replicated from Figs. 8 and 9
in Ref. 1. (Reprinted with permission from Ref. 1. Copyright 1981,
American Institute of Physics.) The doublet in (a) was created by
applying a uniform magnetic field which pushed the central wall
of an initial Landau state toward the long edge, where it broke up.
The arrows indicate the direction of the magnetization (m1,m2). The
experimental images (d) and (e) show the buildup process of the
concertina via the repeated generation of triplets. The field-penetrated
region is hatched.

the switching—in terms of the nondimensionalized relative
width �

d
and thickness t

d
—namely, coherent rotation, buckling,

oscillatory buckling, and curling. By a refinement of the
discussion in Sec. I F (cf. Theorem 1 in Ref. 7, p. 357), we are
even able to show that there are exactly four different parameter
regimes for the nucleation. This result contradicts the claim by
Aharoni in Ref. 6, p. 200, Sec. 9.4 that there are at most three
modes for the nucleation and that buckling plays only a minor
role in nucleation. The relevance of oscillatory buckling for
the nucleation in elongated thin films was also observed by
Usov et al.,8 who investigate elongated thin samples with an
elliptical cross section.

Before we go on with the discussion of nucleation theory
and the mentioned paper8 we return to van den Berg and
Vatvani’s paper.1 In that reference the authors give quite a
different explanation for the formation of the concertina in not
too elongated samples where the concertina forms by a succes-
sive outgrowth of the closure domains; see Fig. 5. Combining
the explanation of the formation of the concertina pattern
therein with the insights from Refs. 9 and 10, we can give
the following updated version of the explanation presented in
Ref. 1, Secs. A and B: It is a theory about the two-dimensional
mesoscopic magnetization pattern; by two dimensional, we
understand that the magnetization is in plane, i.e., m3 = 0,
and independent of the thickness direction, i.e., m = m(x1,x2);
by mesoscopic, we understand that the walls are replaced by
sharp discontinuity curves that are charge-free in the sense that
the component of the magnetization perpendicular to the wall
does not jump; moreover, the magnetization is tangential to the
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lateral edges of the sample so that there are no surface charges.
In sufficiently large thin-film elements and for sufficiently low
external fields, Bryant and Suhl in Ref. 9 postulate that the
two-dimensional mesoscopic magnetization pattern arranges
itself in such a way that the corresponding continuous magnetic
charge density σ = −(∂1m1 + ∂2m2) generates a stray field
Hstray that expels the external field Hext from inside the sample
(as in electrostatics).

In Ref. 11 (see Ref. 10 for an efficient account), it is shown
that in the regime of sufficiently large thin-film elements (i.e.,
t � �, �t � d2 ln �

t
, and with comparable lateral dimensions

of the order ∼�), this principle extends to moderately large
fields (of strength of the order ∼ t

�
): In this case, the stray

field Hstray in general can no longer expel the external field
Hext everywhere in the sample, since the (total) charge density
σ = −(∂1m1 + ∂2m2) is limited by m2

1 + m2
2 = 1.

The charge density σ is then uniquely determined by
a convex variational problem involving only the stray-field
energy and the Zeeman energy. At least some aspects
of the mesoscopic two-dimensional magnetization pattern
(m1,m2) can be recovered from σ : The characteristics of
(m1,m2), i.e., the curves along which (m1,m2) is normal
(called trajectories in Ref. 1), have curvature given by
σ . However, due to the potential discontinuity curves of
the mesoscopic magnetization (m1,m2), this seemingly rigid
condition does not suffice to determine (m1,m2)—even the
fact that the discontinuity curves are charge-free is still
not enough. Notice that it is easy to construct a particular
solution (m1,m2) for any charge density σ via the maximal
solution of a modified eikonal equation,10 (p. 2987). On
the other hand, in the region where the external field has
penetrated, the magnetization (m1,m2) is uniquely determined
(cf. Ref. 10, p. 2987) and has no discontinuities (cf. Ref. 1,
p. 883).

Van den Berg and Vatvani give a recipe for the construction
of a solution that corresponds to the experimental observation
of a concertina pattern growing out of flux-closure domains at
the sample’s tips; see Fig. 5. The initial state in his experiments
was obtained from an earlier Landau state as the central
180◦ wall moved toward the edge where it broke up due to
the application of a large external field. For sufficiently large
external fields [Hext = (−hext,0,0), hext ∼ − t

�
], Hext + Hstray

does not vanish in the sample except in the vicinity of the two
distant edges; as a consequence walls occur only in the two
flux-closure pattern there. As the external field is reduced the
field-penetrated region shrinks as the walls invade the sample.
However, the breakup of the central wall of the Landau pattern
is not reversible: Each of the two flux-closure patterns has
a “doublet,” that is, a point on one of the long edges where
two wall segments intersect; see Fig. 5(a). The inner doublet
walls, i.e., those most distant from the short edges, fade out
in the middle (with respect to the long edges) of the cross
section; see Fig. 5(a). As the field is reduced these doublets,
where the tangential magnetization jumps from left to right,
are pinned—at least to some degree. As a consequence, each
of the two inner walls grows—necessarily in the direction of
the characteristic—till it hits the opposite edge; see Fig. 5(b).
There it generates a “triplet,” i.e., a point on the edge where
three walls meet, which preserves the orientation of the
magnetization at the edge of the sample; see the transition

from Figs. 5(b) to 5(c). As van den Berg and Vatvani explain
at the beginning of Ref. 1, p. 880, the triplet is the simplest
wall cluster that preserves the orientation of the magnetization
on the boundary of a sample. The middle wall of the triplet
must coincide with the previous one originating in the doublet.
Again, as the external field is further reduced, the two triplets
are essentially pinned, and the inner of the three walls grows
toward the opposite edge; see Fig. 5(c).

This process repeats itself [see Fig. 5(d)] until the two
half-concertina structures growing from the short edges are
linked in the middle (with respect to the short edges) of the
cross section; see Fig. 5(e). For very elongated samples of
length L � �, the linking takes place at a field strength of order
hext ∼ −t�L−2 ln t�−1—we derive this scaling by calculating
the strength of the homogeneous applied magnetic field which
can be fully compensated by the stray field of a suitable
magnetization configuration—and thus differs from the field
at the beginning of the growth process by a factor �2L−2

(up to a logarithm); see above. Speaking in mathematical
terms, van den Berg and Vatvani postulate that the positions
of doublets and triplets are essentially pinned as the field is
decreased, and appeal to continuity, i.e., the pattern should
depend continuously on the value of the external field, to
overcome the nonuniqueness of (m1,m2) mentioned in the
second paragraph of this section.

Let us finally discuss the paper by Usov et al.8 in more
detail. In this paper, the point is made that in thin films with a
sufficiently elongated cross section, nucleation does not take
place at the ends of the sample but in the middle, and that
it is in the form of an oscillatory buckling instability. This is
precisely the type of instability investigated here; cf. Sec. I F.
In fact, Ref. 8 allows us to reconcile van den Berg and Vatvani’s
picture and the picture put forward in this paper on the level
of a single geometry, namely, thin films with an elliptical
in-plane cross section. In Ref. 8, it is shown by theoretical
analysis and numerical simulation that for not-too-elongated
elliptical particles, the instability creeps in from the far ends of
the cross section, whereas in sufficiently elongated thin films,
the instability comes in the form of an oscillatory buckling
instability that is most pronounced in the middle of the cross
section.

However, there are substantial differences between the
analysis in Ref. 8 and ours: The theoretical nucleation analysis
in Ref. 8 is based on models of the unstable mode in the sense
of Aharoni (Ref. 6, Sec. 9.2.1, p. 189); the model used in
Ref. 8 is based on a (truncated) cosine series in the direction
of the width, i.e., x2, and thus is not quite suitable to capture
edge pinning, i.e., a tangential magnetization also at the lateral
edges of the film. Our theoretical nucleation analysis is based
on asymptotic modes (cf. Sec. I F; details may be found in
Ref. 12, Sec. 3, p. 338); it shows that in the sample-size regime
that is of interest to us, the so-called regime III, edge pinning
occurs, and the asymptotic unstable mode is a sine function
in x2. Moreover, the theoretical nucleation analysis in Ref. 8
predicts a period w∗ in x1 of the unstable mode that is of the
order of or larger than the film width �; whereas in regime III,
the asymptotic period is given by (32π )1/3d2/3�2/3t−1/3 in line
with the experimental observations (cf. Sec. I G). From our
point of view, the theoretical analysis in Ref. 8 resides at
the boundary between regimes III and II; cf. Sec. I F. Also
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the numerical analysis in Ref. 8 is quite different from the
one presented here. In Ref. 8, direct numerical simulation of
the Landau-Lifschitz-Gilbert equation is used—which limits
the nondimensionalized sample widths to d−1� ∼ 10; whereas
we derive a reduced model that allows us to treat the sample
widths of our experiments, i.e., d−1� in the range of 2000 to
20 000.

C. The period of the concertina and the characteristic values
of the external field: Van den Berg and Vatvani’s vs our

predictions

Obviously, our explanation for the formation of the con-
certina pattern is very different from that of van den Berg and
Vatvani. Instead of a successive outgrowth (along the sample)
of the closure domains, we explain the concertina as a simul-
taneous outgrowth (along the sample) of an unstable mode,
best captured in very elongated thin-film elements; see Fig. 2.
Indeed, our experiments were performed on thin-film elements
of thicknesses t in the range of 10 to 150 nm, widths � in the
range of 10 to 100 μm, but lengths L in the range of 2 mm.
We recorded the pattern at three different, equidistant sections,
i.e., positions x1 = L/4,L/2,3/4L, and observed qualitatively
the same pattern at the same values of the external field.

Not surprisingly, our theoretical predictions are quite
different from those in Ref. 1—already in terms of scaling.
Van den Berg and Vatvani’s explanation entails two different
scales of the external field:

(a) h
begin
ext ∼ − t

�
for the beginning of the buildup and

(b) hend
ext ∼ −t�L−2 ln t�−1 for the completion when the

external field is totally expelled from the sample.
In our case there is only one characteristic field, namely,

the critical field h∗
ext > 0, at which the simultaneous formation

of the concertina throughout the sample due to an interior
instability begins—independent of the specific position. (As
before and in the following we use an asterisk to denote
the critical field in our setting or a specific value of some
quantity close to the critical field.) This critical field is given
by h∗

ext ∼ d2/3�−4/3t2/3 (see regime III in Sec. I F) for isotropic
samples—thus since h∗

ext is positive the instability would occur
only after the field is reversed and thus when the van den
Berg and Vatvani concertina has already invaded the sample.
However, as we discuss later in detail in Sec. VI (linear effect),
the critical field is shifted in the case of a transverse anisotropy
h∗

ext � h∗
ext − Q. It turns out that even for relatively weak

transverse anisotropy the shifted critical field is negative and

FIG. 6. Concertina in Permalloy samples of width � = 100 μm
and thickness t = 30 nm (left), 80 nm (center), and 300 nm (right).
Obviously, the average period of the pattern is a decreasing function
of the thickness t .

the formation thus starts before the field is reversed. For very
elongated samples, i.e., L � �, it holds that h

begin
ext � hend

ext ,
and for the limiting case of an infinitely extended sample
hend

ext = 0. The strength of the anisotropy and the geometry of
the majority of our samples are such that hbegin

ext � h∗
ext � hend

ext ;
see Table I. We thus expect and experimentally observe the
following scenario in our very elongated samples: At h

begin
ext

the van den Berg and Vatvani buildup process starts at the tips
of the sample. As the field is reduced, the concertina grows
slowly into the sample from the tips. Meanwhile, as h∗

ext is
attained our instability occurs all over the sample—sufficiently
far away from the tips and long before the van den Berg and
Vatvani linking could take place in the center of the sample;
see Table I.

Whereas in van den Berg and Vatvani’s theory1 the
appropriate scale for the concertina width w is given by
�—in particular independent of the thickness t—it is given
by d2/3�2/3t−1/3 in our case, in qualitative accordance with
our experimental observations illustrated in Fig. 6.

D. Experimental setup and samples

In the experiments, we investigated magnetic films of
nanocrystalline Permalloy, more precisely Ni81Fe19, and
amorphous Co60Fe20B20, of various thicknesses and induced
magnetic anisotropy values. The films were deposited by
magnetron sputtering under ultrahigh-vacuum conditions. In
order to control the grain growth of the polycrystalline films, a
Ta seed (5 nm) layer was used for the Ni81Fe19 deposition. In all
cases a magnetic in-plane saturation field was applied during
film deposition to control the strength and direction of the
induced anisotropy. Using different magnetic field histories,
films of different effective induced anisotropy were obtained.

(i) A first set of samples was deposited in the presence of a
homogeneous, static magnetic field. This results in a maximal

TABLE I. Comparison of the characteristic fields h
begin
ext and hend

ext in van den Berg and Vatvani’s theory of the concertina and the critical field
h∗

ext in our instability for the samples shown in Fig. 2 (thickness t = 30 nm, length L = 2 mm). Apart from the sample of weak anisotropy and
small width (thus less deep in regime III; see Table III), the characteristic fields appear in the expected order, i.e., h

begin
ext < h∗

ext < hend
ext .

h
begin
ext h∗

ext hend
ext

Weak anisotropy (Q = 1.3 × 10−4)

� = 30 μm −1 × 10−3 4.0 × 10−5 −1.6 × 10−6

� = 50 μm −6 × 10−4 −4.2 × 10−5 −2.8 × 10−6

Stronger anisotropy (Q = 5.0 × 10−4)

� = 30 μm −1 × 10−3 −3.4 × 10−4 −1.6 × 10−6

� = 50 μm −6 × 10−4 −4.2 × 10−4 −2.8 × 10−6
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and also well-aligned induced uniaxial anisotropy. A series of
Permalloy and CoFeB samples was obtained by this method.

(ii) In a second set of samples the induced anisotropy was
strongly reduced. In order to ensure this, the films were de-
posited in a magnetic field of alternating orthogonal alignment.
The field direction was changed after approximately every
5 nm of film growth. The superposition of the so-obtained
orthogonal anisotropy axes results in a strongly reduced
induced anisotropy.

The relevant material parameters—for the comparison of
the experimental observations to the theoretical predictions—
are the following:

(a) The exchange length d for Permalloy is 5 nm and for
CoFeB 3 nm.

(b) For both materials the saturation polarization is Js ≈
1 T and the stray-field energy density is given by Kd ≈ 4 ×
105 J/m3.

(c) The uniaxial anisotropy coefficient is K
Permalloy
u ≈

200 J/m3 for the high-anisotropy Permalloy and KCoFeB
u ≈

600 J/m3 for CoFeB. For the low-anisotropy Permalloy films
we have K

Permalloy
u ≈ 50 J/m3.

(d) The quality factor Q = Ku/Kd for high- and low-
anisotropy Permalloy is 0.5 × 10−3 and 0.125 × 10−3, respec-
tively, and for CoFeB is 1.5 × 10−3.

(e) The average size of the individual grains of Permalloy
is assumed to be �grain ≈ 12–15 nm. Moreover, it is assumed
that up to a film thickness of about 30 nm, the grains display a
columnlike shape. We refer to Refs. 13 and 14 for parameter
measurements of similar samples that were deposited using
the same sputtering process in the same device.

(f) The film thicknesses range from 10 to 150 nm, the film
widths from 10 to 100 μm.

These elongated elements of length 2000 μm were pat-
terned by photolithography and subsequent ion beam etching
after film deposition was completed. The elements were
aligned, both parallel and orthogonal to the induced anisotropy
direction.

The observation of domains and magnetization processes
was carried out in a digitally enhanced Kerr microscope;
a description of this technique can be found in Ref. 5.
The longitudinal Kerr effect was applied with its magneto-
optical sensitivity direction transverse to the element axis.
The dominant wavelength of the observed concertina patterns
was computed by fast Fourier transform. The result of the
computation is in agreement with the average wavelength
determined by manually counting the folds in the images, as
soon as the concertina becomes discernible to the eye during
field reduction. The typical strength of the magnetic field,
which is applied for saturation at the very beginning, is of the
order of some milliteslas.

E. Nucleation

We are interested in the magnetization pattern in elongated
thin-film elements of width � (in the x2 direction) and
thickness t � � (in the x3 direction) that forms under slow
reversal of an external magnetic field aligned with the long
axis (the x1 axis), which is parametrized in the form of
Hext = (−hext,0,0); cf. Fig. 3. As mentioned above the minus
sign is introduced to simplify the notations so that the critical

field in the absence of anisotropy is positive; see below.
As mentioned in Sec. I C, we observe no influence of the
sample’s short edges on the formation of the concertina away
from the short edges. Since it greatly simplifies the theoretical
treatment, we therefore henceforth assume that the sample
is infinite in the x1 direction (and occasionally, for instance
in the numerical treatment, impose a large, but artificial
period in that direction); see Fig. 3. One consequence of that
assumption is that the uniform magnetization m∗ = (1,0,0)
is an exact stationary point of the energy functional (1) for
all values hext of the external field Hext of the form above.
Stationarity means that the corresponding Euler-Lagrange
equations, which express a torque balance at every point of
the sample, are satisfied. The experiments suggest that, as the
strength of the field is reduced starting from saturation, i.e.,
hext < 0, and finally reversed, a bifurcation at some critical
value h∗

ext > 0 of the external field Hext = (−hext,0,0) is at the
origin of the concertina pattern; see Fig. 2. In the following
section we present the outcome of the linear stability analysis.
Due to the unit-length constraint (2), infinitesimal variations
of m∗ are of the form δm = (0,δm2,δm3). Since the uniform
magnetization generates only Zeeman energy, the linearization
of the energy in m∗—neglecting anisotropy—is given by the
exchange energy and the stray-field energy of the infinitesimal
variation, that is, d2

∫
�

|∇δm|2dx + ∫
all space |Hstray(δm)|2dx,

augmented by the linearization of the Zeeman energy.
The latter is due to the constraint (2) given by
−hext

∫
�

(δm2
2 + δm2

3)dx, which is a consequence of the
expansion m1 = (1 − δm2

2 − δm2
3)1/2 ≈ 1 − 1

2 (δm2
2 + δm2

3).

F. Unstable modes

We start with the linear stability analysis of the uniform
magnetization by discussing potentially unstable modes
on the level of the linearization of the energy. Actually,
following Aharoni’s terminology6 ([Sec. 9.2.1, p. 189), it
would be better to speak of models instead of modes at this
point. Nevertheless we proceed in that way since finally
our models turn out to be (asymptotic) modes. We consider
at which value of the external field hext each of the modes
becomes unstable. At this so-called critical field hext = h∗

ext,
the infinitesimal release of Zeeman energy becomes larger
than the infinitesimal contributions due to exchange and
stray-field energy. We neglect uniaxial anisotropy (i.e., we set
Q = 0) for the moment, since on the level of this infinitesimal
discussion, a longitudinal or transverse anisotropy just leads
to a shift of the critical field (see Sec. VI), h∗

ext � h∗
ext + Q or

h∗
ext � h∗

ext − Q, respectively. Since the shift entails that the
sign of the critical field can change, we note that if we speak
about reducing the strength of the external field we usually
mean that the critical field is approached from saturation
(hext = −∞) if not stated differently. Similarly we say that
the external field is increased after the critical field is passed.
In this sense, the critical field is interpreted as the zero point
on the scale of the external field; cf. Fig. 4.

(I) The first mode we discuss is a coherent rotation,
i.e., δm = (0,δm2,δm3) is constant in space; see Fig. 7.
Such a mode releases Zeeman energy per length in the
x1 direction of the infinitesimal amount hext�tδA

2, where
δA = (δm2

2 + δm2
3)1/2 is the infinitesimal amplitude of the
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FIG. 7. (Color online) Coherent-rotation perturbation with gen-
erated surface charges that act like two oppositely charged wires at
distances much larger than t (left). The right image sketches the stray
field generated by two oppositely charged wires in the x2x3 plane.

coherent rotation. A coherent rotation carries no volume
charges but necessarily generates surface charges. Since the
top and bottom surfaces have larger area than the two lateral
surfaces, an in-plane rotation (δm3 ≡ 0) is favored. This mode
generates surface charges of infinitesimal density ±δA. Over
distances much larger than t , these surface charges act like two
oppositely charged wires at distance � with line charge density
tδA—also in the following if not mentioned otherwise always
infinitesimally and per length in the x1 direction. Due to dipolar
interaction of the opposite surface charges, the stray field
essentially extends up to distances ∼� away from the sample.
Therefore the dominant contribution to the energy stems from
the near stray field. It is given as the sum of the fields of
each of the “charged wires.” These fields scale and decay as
∼tδAr−1 over distances r smaller than � and larger than t from
the center of the wire. Integrating the superimposed near stray
fields of each of the oppositely charged wires, we obtain that
the coherent-rotation mode generates an infinitesimal stray
field of order ∼t2(ln �t−1)δA2. Therefore, this mode becomes
unstable when hext ∼ t�−1(ln �t−1). We note that this is the
mode considered in the Stoner-Wohlfarth model.15

(II) The second mode we consider is buckling; see Fig. 8. In
this case the magnetization avoids the lateral surface charges
by just laterally buckling in the middle of the cross sec-
tion, i.e., δm = (0,δA sin(π x2

�
),0). However, since ∇ · δm =

π�−1δA cos(π x2
�

), the surface charges of the coherent rotation
turn into volume charges. At distances much larger than t from
the cross section, these volume charges act like surface charges
on a plate of amplitude ∼�−1tδA. Since these surface charges
change sign over a distance �, they generate a stray field which
essentially extends a distance ∼� away from the cross section,

FIG. 8. (Color online) Buckling mode with generated density of
volume charges, which act like surface charges on a plate at distances
much larger than t , and the generated stray field. For reasons of a
clear presentation the field is drawn only in the region above the
sample (left). The right image shows an x2x3 section of the stray field
generated by the surface-charge density on the plate (independent of
x1) that changes sign over distance � with respect to x2. The stray
field extends roughly a distance � from the sample into space.

FIG. 9. (Color online) Oscillatory buckling mode and generated
surface charges and stray field—for reasons of clarity drawn only in
the region above the sample. Compared to Fig. 8, the opposite charges
are now at closer distance w∗, so that the stray field extends roughly
only a distance w∗ into space. Moreover, the dominant components
of the stray field are h1 and h3.

as in the case of mode I. We note that a surface charge distribu-
tion on a plate generates a field whose jump across the plate is
given by the charge density itself. One hence obtains that the
stray field is of the form ∼�−1tδAg(x�−1), for some generic
function g, i.e., a function g that is independent of the param-
eters under consideration. Hence the buckling mode generates
a stray-field energy ∼t2δA2, which is smaller only by a loga-
rithm than in the case of the previous mode of coherent rotation.
Moreover, since |∇δm|2 = π2�−2δA2 cos2(π x2

�
), the mode

generates exchange energy ∼d2�−1tδA2. Since the release of
Zeeman energy scales as ∼hext�tδA

2 as in the case of the first
mode above, this mode becomes unstable at hext ∼ d2�−2 in the
regime t � d2�−1 and at hext ∼ t�−1 in the regime t � d2�−1.

Let us point out that the difference in stray-field energy
between the two modes I and II comes from the different
behavior of the near stray field: In the case of the buckling
mode, the stray-field energy is (slightly) smaller since opposite
charges are distributed toward the center of the sample and
thus are closer together. This leads to a smaller near stray field
as compared to coherent rotation where the charges are well
separated at distance �.

(III) The third mode we discuss is oscillatory buckling;
see Fig. 9. This mode further reduces the stray-field energy
through a modulation of the lateral buckling in the x1 direction,
i.e., δm = (0,δA sin(π x2

�
) sin(2π x1

w
),0) with a wavelength w

that satisfies t � w � �. Since w � t , the volume charges
generated by this mode act like surface charges of amplitude
∼�−1tδA over distances much larger than t from the cross
section. However, these surface charges change sign over a
distance w � �, so that the generated stray field extends only
over a distance ∼w away from the cross section. Hence this
mode generates a stray-field energy ∼�−1t2wδA2, which is
substantially less than the stray-field energy of the two prior
modes for w � �. However, since w � �, the exchange energy
is now dominated by the oscillation in the x1 direction, which
leads to an infinitesimal exchange energy ∼d2�w−2tδA2.
Hence the wavelength w which leads to the minimal infinites-
imal total stray-field energy and exchange energy of order
∼d2/3�−1/3t5/3δA2 is given by w∗ ∼ d2/3�2/3t−1/3. This is
consistent with our assumption t � w � � provided d2�−1 �
t � (d�)1/2. The oscillatory buckling mode becomes unstable
at a field strength of order hext ∼ d2/3�−4/3t2/3.

(IV) The fourth mode we consider is curling. This
mode avoids charges altogether by an x3-dependent
magnetization, i.e., δm = (0,δA sin(π x2

�
) cos(π x3

t
),

δA�−1t cos(π x2
�

) sin(π x3
t

)). The exchange energy in this
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TABLE II. Overview of the four different regimes and the
corresponding scaling of the critical field.

Regimes I–IV h∗
ext(modes I–IV)

t

d
� ( �

d
)−1 ln−1[( �

d
)−1] ∼t�−1(ln �t−1)

( �

d
)−1 ln−1[( �

d
)−1] � t

d
� ( �

d
)−1 ∼d2�−2

( �

d
)−1 � t

d
� ( �

d
)1/2 ∼d2/3�−4/3t2/3

( �

d
)1/2 � t

d
� �

d
∼d2t−2

case is dominated by the gradient in the x3 direction, which
scales as ∼d2�t−1δA2. Hence the curling mode becomes
unstable at hext ∼ d2t−2.

The discussion above shows that there are (at least) four
different parameter regimes for the nucleation, expressed in
terms of the two nondimensional parameters t/d � �/t ; see
Table II. The regimes are characterized by a certain scaling
of the critical field h∗

ext(
t
d
, �
d

) in the sense that one of the
modes becomes unstable as the external field passes the
corresponding field, while the other three modes are still stable;
see Fig. 10. In particular, the oscillatory buckling mode is the
first mode to become unstable at a field h∗

ext ∼ d2/3�−4/3t2/3

in the regime d2�−1 � t � (d�)1/2, i.e., h∗
ext(mode III) <

min{h∗
ext(mode I),h∗

ext(mode II),h∗
ext(mode IV)}. Note that the

different scalings of h∗
ext pairwise coincide at the crossover

between two regimes.
We finally point out that a refinement of the above discus-

sion rigorously shows that there are exactly four regimes; cf.
Theorem 1 in Ref. 7, p. 357. Hence, in the sense of Aharoni
the four models turn out to be asymptotic modes.

FIG. 10. Phase diagram for the four regimes for nucleation. The
boundaries of the different regimes are obtained from Table II by
representing �/d as a function of t/d at the regime boundaries; for
example, the boundary between regimes III and IV is then given by
the graph �/d = (t/d)2. Inside each region the corresponding mode
is the first mode to become unstable, i.e., the corresponding strength
of the critical field of the mode is smaller than the strength for the
other three modes. The shaded region corresponds to samples whose
thickness t is larger than their width �.

TABLE III. Parameters ε = d2�−1t−1 and δ = d−1/2�−1/2t char-
acterizing regime III for typical sample sizes where the exchange
length is given by d = 5 nm. Regime III is equivalent to ε � 1
and δ � 1. For our samples this is simultaneously best matched for
� = 150 μm and t = 10 nm.

� t 10 nm 150 nm

10 μm ε = 0.25 × 10−3 ε = 0.0167 × 10−3

δ = 0.0447 δ = 0.6708
100 μm ε = 0.025 × 10−3 ε = 0.0017 × 10−3

δ = 0.0141 δ = 0.2121

G. Period of the unstable mode: Experiment vs theory

Clearly, the regime of interest for us is regime III, i.e., the
oscillatory buckling regime characterized by d2�−1 � t �
(d�)1/2; see Table III. In this regime, an asymptotic analysis
of the linearization of the energy on the basis of the above
discussion shows that the (first) unstable mode is indeed
asymptotically of the form

δm =
(

0,δA sin

(
π

x2

�

)
sin

(
2π

x1

w

)
,0

)
; (6)

cf. Theorem 1 in Ref. 12, p. 389, and see also below. Based on a
refinement of the prior linear stability analysis, one can confirm
the asymptotic behavior of w∗ and determine in addition the
numerical factor given by

w∗ ≈ (32π )1/3d2/3�2/3t−1/3. (7)

So far we have learned that in regime III at field strengths
h∗

ext ∼ d2/3�−4/3t2/3 there is a bifurcation in the direction of the
unstable mode δm = (0,δA sin(π x2

�
) sin(2π x1

w∗ ),0). We claim
that the concertina pattern grows out of this unstable mode.
If so, the experimentally observed period w∗

expt should be
close to the period w∗ of the unstable mode. Defining and
determining w∗

expt are delicate: As hext increases (after the
critical field h∗

ext is passed), there is usually a continuous
transition from the magnetization ripple (see Sec. V) to the
concertina pattern, which is far from exactly periodic, and
which coarsens subsequently (see Sec. III). As w∗

expt we
take the average period as soon as the concertina pattern is
discernible to the eye. Figure 11 shows the result of this
comparison for a broad range of sample dimensions � and
t and (therefore) a fairly broad range of periods w∗: The
ratio of the smallest width � compared to the largest is 5;
the ratio of the smallest thickness t compared to the largest
is 15. The smallest period w∗ is expected for a thick film of
small width, the largest period for a thin film of large width,
differing by a factor close to 6 (neglecting the prediction for
broken or defective samples); cf. Fig. 11, bottom. The ratio
w∗

expt

w∗ of the experimental period with respect to the prediction
ranges around 2; cf. Fig. 11, top. We basically see this as a
confirmation of our hypothesis, namely, that the concertina
grows out of the oscillatory buckling. Notice that the deviation
has a clear trend: w∗

expt is larger than w∗. We give an explanation
for this systematic deviation in Sec. III.
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FIG. 11. The theoretical period of the unstable mode is in good
agreement with the measurements: The upper image shows the ratio
of the experimentally observed period and the period of the unstable
mode. The white patches correspond to broken or defect-ridden
samples. The lower displays the ratio of the period w∗ and the smallest
period at all, i.e., w∗(� = 50 μm,t = 150 nm). Both images share the
same color map (grayscale).

H. A reduced energy functional

In the forthcoming section we start with an investigation of
the type of bifurcation. For the moment we continue to neglect
anisotropy, although it may affect the type of bifurcation as
we shall discuss in Sec. VI. In order to understand the type
of bifurcation we now first pass to a reduced model adapted
to our regime III: The form of the unstable mode suggests
that the out-of-plane component and the dependence on the
thickness variable are negligible, i.e., we assume m3 ≡ 0
and m = m(x1,x2), respectively. Since the unstable mode
varies faster in the x1 direction than in the x2 direction, we
neglect |∂2m|2 with respect to |∂1m|2 in the exchange energy
density. Since the oscillation in the sign of the charge density
is on smaller length scales in the x1 direction than in the

x2 direction, we neglect h2
2 with respect to h2

1 + h2
3 in the

stray-field energy density, where Hstray = (h1,h2,h3). Finally,
since we are interested in small deviations from m∗ = (1,0,0),

we expand m1 =
√

1 − m2
2 ≈ 1 − m2

2
2 , so that we may neglect

|∇m1|2 with respect to |∇m2|2 in the exchange energy density.
We also use this approximation in the charge density and in
the Zeeman energy. Hence (up to an additive constant) we are
left with the reduced energy

E0(m2) ≈ d2t

∫
�′

(∂1m2)2dx1dx2 +
∫

all space

(
h2

1 + h2
3

)
× dx1dx2dx3 − hextt

∫
�′

m2
2 dx1dx2, (8)

where the stray field Hstray = (h1,0,h3) is determined via

∂3h1 − ∂1h3 = 0, (9)∫
all space

(h1∂1ζ + h3∂3ζ )dx1dx2dx3

= t

∫
�′

(
−m2

2

2
∂1ζ + m2∂2ζ

)
dx1dx2 for all ζ. (10)

Notice that (9) is just the condition that the stray field is
rotation-free for a stray field independent of x2 with vanishing
x2 component [cf. (3)], while (10) is a consequence of the
alternative formulation (5). Here, �′ denotes the in-plane cross
section of our sample, � = �′ × (0,t).

We note that the stray-field energy is finite only if m2

vanishes at the lateral long edges, i.e., m2(x1,x2) = 0 for
x2 = 0,� (as is true for the unstable mode). Notice that (9)
and (10) can be written as

∂1h1 + ∂3h3 = 0 for x3 
= 0,
(11)

[h3] = t

(
−∂1

m2
2

2
+ ∂2m2

)
for x3 = 0,

where [h3] denotes the jump h3 experiences across x3 = 0.
This formulation shows that x2 is just a parameter in the equa-
tions for the stray field, which behaves like a two-dimensional
stray field in the corresponding x1x3 plane generated by

the charge density t(−∂1
m2

2
2 + ∂2m2) that amounts to a “line

charge” in the corresponding x1x3 plane.
Furthermore, the only nonquadratic term in the energy

comes from the nonlinear charge distribution t(−∂1
m2

2
2 +

∂2m2). This allows us to derive the scaling of the amplitude
of the magnetization: It should be such that both terms in
the charge distribution balance. Since in view of the unstable
mode the typical x1 scale of variations of m2 is given by w∗ ∼
d2/3�2/3t−1/3, whereas the typical x2 scale of variations of m2

is given by the sample width �, the contributions ∂1
m2

2
2 and ∂2m2

balance, provided the amplitude of m2 scales as d2/3�−1/3t−1/3.
This suggests the following nondimensionalization of length
and reduced units for the stray field and the magnetization:

x1 = d2/3�2/3t−1/3x̂1, x2 = �x̂2, x3 = d2/3�2/3t−1/3x̂3,

h1 = d2/3�−4/3t2/3ĥ1, h3 = d2/3�−4/3t2/3ĥ3, (12)

m2 = d2/3�−1/3t−1/3m̂2.

The scaling of the space variable x3 was chosen as the typical
length scale of the stray field in the ambient space and not as
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the sample’s thickness so that the condition that the stray field
is rotation-free (9) is inherited. The scaling for the stray field is
just the one that we obtained in the discussion of the oscillatory
buckling mode in Sec. I F. We also rescale the external field
using the scaling of the critical field obtained in the discussion
of the oscillatory buckling mode:

hext = d2/3�−4/3t2/3ĥext, (13)

The energy itself is rescaled using the scaling of the energy
density that is obtained from the same discussion so that the
rescaled energy becomes independent of �

d
and t

d
:

E = d8/3�−1/3t2/3Ê0. (14)

Hence we obtain the reduced rescaled energy functional

Ê0(m̂2) =
∫

�̂′
(∂̂1m̂2)2dx̂1dx̂2 +

∫
all space

(
ĥ2

1 + ĥ2
3

)
dx̂1dx̂2dx̂3

− ĥext

∫
�̂′

m̂2
2dx̂1dx̂2. (15)

The reduced rescaled stray field is determined by

∂̂1ĥ1 + ∂̂3ĥ3 = 0 for x̂3 
= 0,

[ĥ3] =
(

−∂̂1
m̂2

2

2
+ ∂̂2m̂2

)
for x̂3 = 0.

The reduced rescaled formulation shows that the reduced
energy functional contains just one nondimensional parameter,
namely, the reduced external field ĥext, instead of four
parameters (exchange length, sample dimensions, and hext) for
the full model. Moreover, the vector field m = (m1,m2,m3),
a function of three variables (x1,x2,x3), has been replaced
by the scalar function m̂2, a function of two variables (x̂1,x̂2).
Finally, the computation of the stray field is a two-dimensional
computation [in (x̂1,x̂3) only, with x̂2 as a parameter] instead of
a three-dimensional one. All this simplifies both the theoretical
treatment and the numerical simulation. For clarity, we will
mostly discuss our results in the rescaled variables (15)—and
only occasionally return to the original variables, mostly for
comparison with the experiment, for which all quantitative
results have to be reexpressed in the original variables, and
when we take into account anisotropy.

In Theorem 3 in Ref. 16, p. 233, we rigorously show
that the reduced energy functional is the scaling limit of the
renormalized full micromagnetic energy in regime III.

I. Bifurcation

We now return to the issue of the type of bifurcation
on the level of the reduced model. In contrast to the three-
dimensional micromagnetic energy, the Hessian of the reduced
model in m̂2 ≡ 0—which corresponds to the uniform mag-
netization m ≡ (1,0,0) in the full model—can be explicitly
diagonalized, and the first unstable mode is given by m̂∗

2 =
sin(πx̂2) sin(2π x1

ŵ∗ ), where ŵ∗ = (32π )1/3 in agreement with
(6) and (7). The reduced critical field is given by

ĥ∗
ext = 3

(
π

2

)4/3

. (16)

In order to determine the type of bifurcation, we have
to investigate the energy functional Ê0 close to the one-

dimensional subspace {Am̂∗
2} generated by the unstable mode

m̂∗
2. Because of the invariance of both the energy Ê0 and

the unstable mode m̂∗
2 under the transformation (m̂2 � −m̂2

and x̂2 � 1 − x̂2), all odd terms in the amplitude A in the
expansion of Ê0(Am̂∗

2) vanish. In particular the cubic term
vanishes so that the bifurcation is degenerate.

This degeneracy of the bifurcation means that, at the critical
field strength ĥ∗

ext, the first nonvanishing term in the expansion
of Ê0(Am̂∗

2) with respect to A is at least quartic. Hence it
is not sufficient to consider Ê0 restricted to the linear space
{Am̂∗

2}; it has to be analyzed along a curve {Am̂∗
2 + A2m̂∗∗

2 } in
configuration space. Indeed, the curvature direction m̂∗∗

2 affects
the quartic term in the expansion and has to be determined
such that Ê0 is minimal. This minimization problem of the
coefficient of the quartic term is quadratic in m̂∗∗

2 and thus can
be solved explicitly. We obtain

m̂∗∗
2 = − 1

10

(
2

π

)1/3

sin(2πx2) sin

(
4π

x1

ŵ∗

)
,

which leads to a negative coefficient of the quartic term in the
expansion of Ê0, namely,

Ê0(Am̂∗
2 + A2m̂∗∗

2 ) ≈ (ĥext − ĥ∗
ext)

(
π

2

)1/3

A2 − π

640
A4.

(17)

The negative quartic coefficient implies that the bifurcation
is subcritical or of first order. Subcriticality entails that close
to m̂2 ≡ 0 there are only unstable stationary points for ĥext

slightly below ĥ∗
ext, and no stationary points close to m̂2 ≡ 0

for ĥext slightly above ĥ∗
ext; see Fig. 12.

At first sight it is surprising that the stray-field energy
contribution to Ê0, which gives rise to the only quartic term
in m̂2, and clearly is non-negative, may nevertheless allow
for a negative coefficient in front of the quartic term in the
expansion (17). This comes from the fact that the two terms

in the charge density −∂̂1
m̂2

2
2 + ∂̂2m̂2 interact, giving rise to

a cubic term in m̂2 (quartic in A), which indeed allows
for cancellations. The way in which this operates is better
understood in physical space: The term m̂∗∗

2 in Am̂∗
2 + A2m̂∗∗

2
(the curvature direction in configuration space) induces a tilt
of the symmetric charge distribution of Am̂∗

2; see Fig. 13. This
tilt brings opposite charges closer together, thereby reducing
the stray-field energy—while increasing the exchange energy
to a lesser amount.

Since the bifurcation is first order, it is not obvious whether
minimizers of the reduced energy functional can be related to
the unstable mode. In particular, this finding sheds doubt on
our hypothesis that the concertina pattern inherits the period of

FIG. 12. (Color online) Energy landscape close to the bifurcation.
The loss of stability at the critical field leads to a first-order phase
transition—on a large scale, however, the energy is coercive.

104407-10



FORMATION AND COARSENING OF THE CONCERTINA . . . PHYSICAL REVIEW B 85, 104407 (2012)

FIG. 13. (Color online) Unstable mode {m̂∗
2} and additional cur-

vature correction {Am̂∗
2 + A2m̂∗∗

2 }, A = 0.1, with generated charges
on the domain [0,ŵ∗) × (0,1). The values are normalized by the
maximum so that the grayscale reaches from −1 to 1.

the unstable mode. It is not even obvious whether minimizers
of the reduced energy functional exist at all. However, one can
show that the reduced energy is coercive for all values of the
external field ĥext; see Theorem 4 in Ref. 16, p. 236. This im-
plies that there always exists a global minimizer of the reduced
energy—which corresponds to a local minimizer of the origi-
nal energy (1); see Theorem 5 in Ref. 16, p. 237—in particular
for fields larger than the critical field. But it is not immediately
clear how these minimizers relate to the unstable mode.

It is natural to resort to numerical simulations; details
on the discretization and the algorithms are provided in
Sec. IV. To confirm the conjecture that the unstable mode
in regime III is indeed related to the concertina pattern,
we use a numerical path-following algorithm in order to
compute the bifurcation branch. Figure 14 shows the outcome
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FIG. 14. (Color online) Numerical simulations: The ŵ∗-periodic
branch close to the bifurcation and the pattern at the indicated fields
(increasing average amplitude 〈m̂2

2〉1/2 from left to right). By 〈m̂2
2〉1/2

we denote the spatial root mean square of m̂2, i.e., the amplitude of
the average magnetization. The grayscales encode the m2 component
but are not comparable. The whole spectrum is considered so that the
structure of the pattern can best be resolved; bright regions correspond
to m̂2 < 0, dark regions to m̂2 > 0. The computational domain is
�̂ = [0,ŵ) × [0,1].

FIG. 15. Numerical simulations: The ŵ∗-periodic concertina
pattern exhibits a clear scale separation as ĥext increases; ĥext =
6.84,23.2,40.1,57.3 from left to right. The grayscales linearly encode
the m̂2 component and are comparable. The computational domain is
�̂ = [0,ŵ) × [0,1].

of the numerical simulations. As expected, due to the coercivity
of the energy functional, we find a turning point as we follow
the bifurcation branch. The turning point is located at a field
which is just slightly—about 1%—smaller than the critical
field. After the turning point the configurations become stable,
at least under perturbations of the same period.

As the field increases beyond the turning point, the unstable
mode develops into a domain pattern of concertina type with
its typical scale separation between the wall width and the
domain size; see Fig. 15. We thus find a continuous transition
from the unstable mode to the concertina pattern, confirming
our hypothesis.

We recall that in order to compare the computed config-
urations to the experiment one first has to redo the rescaling
of length, magnetization, and the external field as in Eq. (12)
and (13) using the particular sample dimensions � and t and
the exchange length d. Due to the anisotropic rescaling of
x1 and x2, this will in particular change the angles of the
configuration. Notice also that in the oscillatory buckling
regime [d2�−1 � t � (d�)1/2] values of the order of m̂2 ∼ 1
will turn into m2 � 1, since d2/3�−1/3t−1/3 � 1 is equivalent
to the lower bound characterizing regime III; see (12) and
Table III. In principle, the grayscales of the configurations
which encode the transverse component of the magnetization
could also be compared to the grayscales in the experiment.
However, quantitative processing is involved and is beyond the
scope of the present work.

The numerical simulations lead to the conjecture that the
magnetization in a perfectly homogeneous, isotropic sample
exhibits a first-order phase transition from the uniformly
magnetized state to the concertina state of period w∗ at the
critical field. Clearly this does not explain the systematic
deviation of the average wavelength in the experimental
measurements from the theoretical prediction. Before we
address this deviation we now introduce a sharp-interface
model, so-called domain theory, that is used to investigate the
further transformation of the concertina for large external fields
ĥext � 1, in particular its coarsening; see Secs. III A, III B,
and III C. Our explanation of the coarsening will also provide
an understanding of the initial deviation of the period; see
Sec. III D.

II. DOMAIN THEORY

In the numerical simulations, we observe for large external
fields a clear scale separation between domains, where the
magnetization is almost constant, and walls, in which the
magnetization quickly turns; cf. Fig. 15. This suggests the
application of a sharp-interface model, namely, domain theory.
In the following we first discuss admissible ansatz functions
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FIG. 16. (Color online) Domain theory: The mesoscopic charge-
free ansatz function.

and then derive their energy within domain theory. This leads to
a model which depends on only a small number of parameters
in configuration space; the model is used in Secs. III and VI
in order to get a better understanding of the coarsening of the
concertina. The application of such an approach dates back
to Kittel2 who could thereby already estimate characteristic
length scales of domain patterns.

On a mesoscopic scale, the computed magnetization is close
to a piecewise constant magnetization of amplitude m̂0

2, i.e.,
m̂2 = ±m̂0

2 in the quadrangular domains and m̂2 = 0 in the
triangular domains, as indicated in Fig. 16. We observe that
the angles in the pattern are related to the amplitude of the
magnetization m̂0

2 (cf. Fig. 15); approximately we have that
tan α = 2m̂0

2. This is related to the fact that the (reduced) stray-
field energy is strongly penalized for large fields, as we shall
explain now. In fact, the piecewise-constant magnetization of
that form is a distributional solution of

−∂̂1

(
m̂2

2

2

)
+ ∂̂2m̂2 = 0, (18)

which means that the normal component of the vector field

(− m̂2
2

2 ,m̂2) is continuous across the interfaces—this is a
version of the Rankine-Hugoniot condition in the theory of
conservation laws. This condition obviously holds in the case
of vertical walls. In the case of diagonal walls the condition

0 =
[

n̂ ·
(

− m̂2
2

2
,m̂2

)]
= n̂ ·

(
−1

2

(
m̂0

2

)2
,m̂0

2

)
, (19)

where n̂ denotes the normal of the diagonal wall as depicted in
Fig. 16, is equivalent to tan α = 2m̂0

2. Therefore the piecewise-
constant magnetization satisfying (19) mesoscopically carries
no stray-field energy. Of course, on a microscopic scale
Eq. (18) does not hold: The continuous transition in the wall
generates a right-hand side, i.e., dipolar charges. Note that
walls have to form since (18) does not allow for nontrivial
smooth solutions with boundary data m̂2 = 0.

Within domain theory we therefore consider piecewise-
constant magnetizations of concertina type of period ŵ and of
amplitude m̂2 = ±m̂0

2 in the quadrangular and m̂2 = 0 in the
triangular domains, such that (19) holds. Since the angles are
fixed by (19), admissible configurations are characterized by
two parameters, namely, the amplitude of the magnetization
m̂0

2 and the width of the folds ŵ.
The energy which discriminates between these solutions

is given by the total wall energy, which is an appropriate

line-energy density integrated over the interfaces, augmented
by Zeeman energy. We will see that the specific line energy
is a function of the jump [m̂2] = 2m̂0

2 of the magnetization
across the vertical wall—notice that the jump represents
an infinitesimal version of the wall angle. Using the shear
invariance of the reduced energy functional, namely,

x̂1 = sx̂2 + x̃1, x̂2 = x̃2, m̂2 = m̃2 − s, (20)

a diagonal wall can be transformed into a vertical wall for the

choice of s = ± m̂0
2

2 . Hence it suffices to derive the specific line
energy by restricting the reduced energy functional (exchange
and stray-field energy) to one-dimensional (depending on x̂1

only) transitions with boundary data ±m̂0
2 in the case of vertical

walls and ± m̂0
2

2 in the case of diagonal walls. The optimal
transition layers are low-angle Néel walls whose line-energy
density scales as

êwall

(
[m̂2]

2

)
= êwall

(
m̂0

2

) ≈ π

8

(
m̂0

2

)4
ln−1 ŵtail

ŵcore
, (21)

where ŵtail and ŵcore are the two characteristic length scales
of the Néel wall. The tails of the Néel wall decay only
logarithmically and spread as much as possible. In the case of
the concertina pattern, they are limited only by the neighboring
walls—thus ŵtail ≈ ŵ

4 . A more careful inspection shows that
the core width decreases with increasing jump size; more
precisely, ŵcore ∼ (m̂0

2)−2 (see Ref. 17, Sec. 3.5.5). Hence we
obtain

êwall
(
m̂0

2

) ≈ π

8

(
m̂0

2

)4
ln−1

[
ŵ

(
m̂0

2

)2]
. (22)

The quartic dependence of the line energy with respect to
m̂0

2 in Eqs. (21) and (22), respectively, is not surprising. It
is known5, Sec. 3.6.4] that the dominant energy contribution
of the Néel wall comes from the stray-field energy generated
by the charges in the logarithmically decaying tails. Since the
stray-field energy is quadratic in the stray field and the stray
field is quadratic itself in m2 for a one-dimensional profile
independent of x2 [see (11)], the line energy (22) is to leading
order quartic in m2. The occurrence of two characteristic length
scales and the logarithm in Eq. (21) are more subtle; see
Refs. 18 and 11, Sec. 6.

Let us mention for completeness that, undoing the rescaling
(12) and (13), we find that (22) turns into

ewall
(
m0

2

) ≈ π

8
t2

(
m0

2

)4
ln−1

[
d−2tw

(
m0

2

)2]
. (23)

Within the class of admissible magnetizations, the domain-
theoretical energy becomes a function of only three parame-
ters, namely, m̂0

2, ŵ, and ĥext. To see this, notice that one period
of the pattern in Fig. 16 contains

(a) two vertical walls of length 1 − ŵ

m̂0
2

and of jump size

2m̂0
2, leading to an energy contribution of 2 (1 − ŵ

m̂0
2
) êwall(m̂0

2),

(b) four diagonal walls that can be shear-transformed to
vertical walls of length ŵ

m̂0
2

and of jump size m̂0
2, leading to an

energy contribution of 4 ŵ

m̂0
2
êwall(

m̂0
2

2 ), and

(c) two quadrangular domains of total area ŵ − ŵ2

m̂0
2
, leading

to a Zeeman energy of −ĥext(m̂0
2)2 (ŵ − ŵ2

m̂0
2
).
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The actual reason for considering the projected length in
the case of diagonal walls is the anisotropic rescaling of the
domain. Notice that the triangular domains do not contribute to
the Zeeman energy since m̂2 ≡ 0 within these regions. Hence,
the total domain energy per period in rescaled variables is
given by

Êdomain
(
m̂0

2,ĥext,ŵ
)

= 2

(
1 − ŵ

m̂0
2

)
êwall

(
m̂0

2

) + 4
ŵ

m̂0
2

êwall

(
m̂0

2

2

)

− ĥext
(
m̂0

2

)2
(

ŵ − ŵ2

m̂0
2

)
. (24)

Within the original scaling the domain-theoretical energy takes
the form of

Edomain
(
m0

2,hext,w
)

= 2

(
� − w

m0
2

)
ewall

(
m0

2

) + 4
w

m0
2

ewall

(
m0

2

2

)

−hext
(
m0

2

)2
t

(
w� − w2

m0
2

)
. (25)

First of all we apply (24) in the next section to derive the
optimal amplitude of the ŵ∗-periodic concertina pattern as a
function of the external field ĥext by optimizing the energy in
m̂0

2. Of course, domain theory is applicable and thus a good
approximation only for the reduced model for ĥext � 1, in
which case there is a clear scale separation between walls and
domains. Figure 17 shows that in this case domain theory is in
good agreement with our numerical simulations of (15).

Before we go on with the analysis of domain theory let us
emphasize that the experimentally observed concertina is of
course not of uniform period and equal amplitude as is our
domain-theoretical ansatz above. As shown in Fig. 18, there
are also oblique piecewise-constant weak solutions of (18).
Nevertheless this class of ansatz functions is very rigid: An
elementary calculation shows that the location of the interior
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FIG. 17. (Color online) Domain theory and numerical simula-
tions: The domain-theoretical prediction for the rescaled optimal
amplitude (dashed) and the computed amplitude based on the reduced
model (solid); corresponding values on the left axis. For the reduced
model we display the amplitude, i.e., the maximal value which is
attained in the quadrangular domain. The right axis indicates the
value of the relative error (dot dashed).

FIG. 18. Domain theory: Generalized tilted ansatz function.

triplet A0 is uniquely determined by the jump condition (19),
if the distances between the boundary triplets A2 and A1 and
m̂1

2 and m̂2
2 on both sides are given. Hence the continuation of

the pattern is uniquely determined if either the amplitude in the
next quadrangular domain or the location of the next triplet,
i.e., the width of the next quadrangular domain, is prescribed.

III. COARSENING OF THE CONCERTINA PATTERN

A. Domain theory: The optimal period of the concertina
pattern for large external fields

Experiments show an increase in the average concertina
period w as the external field hext is increased after the pattern
has formed; see Fig. 2. The general tendency that the optimal
period w is an increasing function of hext can be understood
on the basis of domain theory in the reduced variables m̂0

2,
ĥext, and ŵ. By optimizing the energy per unit length with
respect to the period ŵ and the amplitude m̂0

2 of the transverse
component, we obtain the following scaling of the optimal
period of the pattern as a function of the external field:

ŵa(ĥext) ∼ ĥext ln ĥext, ĥext � 1. (26)

In particular we find that the optimal period increases with
increasing field ĥext—the a in wa indicates absolute minimizer.
Domain theory also yields the (same) scaling behavior for the
optimal transverse component of the magnetization:

m̂2a(ĥext) ∼ ĥext ln ĥext, ĥext � 1. (27)

We note that both scalings have also been confirmed by a
rigorous asymptotic analysis of the reduced energy functional
(15) which does not rely on a simple concertina ansatz; cf.
Theorem 1 in Ref. 19, p. 147. Moreover, numerical simulations
of the reduced energy show that the optimal period increases
with ĥext also for external fields close to the critical field;
see Fig. 19. The optimal period shown in this diagram was
computed by minimizing the energy per unit length with
respect to both the magnetization and the period, for varying
external field.

B. Coarsening: A modulation instability

Although the above analysis predicts that the optimal period
ŵa increases as the field ĥext increases, it does not explain why
and in what way a concertina pattern of period ŵ becomes
unstable as ĥext increases. We will see that both the increasing
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FIG. 19. (Color online) Numerical simulations: The optimal
period of the concertina pattern as a function of the external field
computed on the basis of the reduced model.

period for large fields and the deviation of the initial period
close to the critical field from that of the unstable mode
are due to an instability under long-wavelength modulations
of the pattern. The mechanism behind the instability is the
following: Given ĥext and a period ŵ, an optimization in the
transverse component m̂2 yields the result that the optimal
energy per period Êopt(ĥext,ŵ) is a concave function of ŵ if
ĥext is sufficiently large. The concavity suggests—as depicted
in Fig. 20—that the concertina pattern of a uniform period
ŵ becomes unstable toward perturbations which increase
the period to ŵ + ε and the corresponding amplitude of
the transverse component to m̂0

2(ŵ + ε) in some folds, and
decrease the period to ŵ − ε and the amplitude to m̂0

2(ŵ − ε)
in other folds. This modulation eventually leads to the collapse
of the smaller folds, i.e., coarsening. However, in view of the
nonlocal character of the stray-field energy, it is not clear
whether this simplified picture, i.e., that the energy of the
modulation amounts to the modulation of the energy, applies.
As we shall see in Sec. III C, a modulation of the period on
a very long length scale overcomes this objection. Thus the
concavity of the minimal energy implies an instability under
long-wavelength modulations of the pattern.

In order to derive the concavity of the minimal energy, we
apply domain theory for large external fields in Sec. III C and

FIG. 20. (Color online) Concavity of the minimal energy per
period implies an instability under modulation of the wavelength.

an extended bifurcation analysis close to the critical field in
Sec. III D. We will see that both asymptotics match the results
of the numerical simulation of our reduced model.

Let us mention that the modulation instability of the
concertina pattern is closely related to the so-called Eckhaus
instability, which was discovered in the context of nonlinear
instabilities in convective systems leading to a change in
wavelength of the observed periodic pattern; cf. Ref. 20.

C. Bloch-wave theory: Instability with increasing field

As indicated above, not only the optimal period but also
the coarsening can be explained on the basis of domain theory
for large external fields ĥext � 1. This relies on the optimal
energy per period minm̂2 Êdomain(m̂2,ĥext,ŵ). For periods ŵ

much smaller than the optimal period at some value of the
external field ĥext, i.e., ŵ � ĥext ln ĥext, we find that

min
m̂2

Êdomain(m̂2,ĥext,ŵ) ∼ −ĥ2
extŵ

2 ln(ĥextŵ
2). (28)

In particular, the optimal energy per period in Eq. (28) is
concave in the period ŵ. Although domain theory therefore
suggests an instability under wavelength modulation for
periods which are much smaller than the optimal period, it
is too rigid to allow for such a type of perturbation, even in the
class of generalized ansatz functions; cf. Fig. 18.

It is rather on the level of the reduced model that it
can be seen that the concavity translates into an instability
(despite the potentially long-range interactions via the stray
field). Indeed, a Bloch-wave analysis of the reduced model
shows that the concavity is in a one-to-one correspondence
with an instability under long-wavelength modulations of the
pattern. In the Bloch-wave analysis one considers Nŵ-periodic

eigenfunctions of the Hessian of the form δm̂2 = e−ix̂1 k̂1 δm̂
k̂1
2

with wave number k̂1 = 2π
Nŵ

and N some large integer, and

where δm̂
k̂1
2 is ŵ-periodic with respect to x̂1, i.e., one considers

sinusoidal modulations of some suitable ŵ-periodic function.
An asymptotic expansion of

Hess Ê0(m̂2)
(
e−ix̂1 k̂1δm̂

k̂1
2

) = λk̂1e−ix̂1 k̂1 δm̂
k̂1
2 (29)

for small wave numbers k̂1 � 1, i.e., N � 1, shows that the
first eigenvalue can be related to the second derivative of the
optimal energy per period Êopt = minm̂2 Ê. More precisely,
one can show that the eigenvalue possesses the expansion

λk̂1 ≈ c0 k̂2
1

d2

dŵ2
Êopt(ĥext,ŵ) for k̂1 � 1,

where c0 denotes a constant that depends on m̂2; see Ref. 21,
Theorem 5.1. This rigorously shows that the concavity of
Êopt(ĥext,ŵ) with respect to the period ŵ implies that the
concertina pattern of a given period ŵ is unstable. Domain
theory predicts that the marginally stable period ŵs , i.e.,
ŵs such that d2

dŵ2 Êopt(ĥext,ŵs) = 0, scales as ŵs ∼ ĥext ln ĥext

[cf. (28)]—we note that the s in ws stands for marginally
stable. Figure 21 displays the optimal and the marginally
stable periods computed on the basis of the reduced energy
functional. Figure 22 shows that the computation of the optimal
and the marginally stable periods on the basis of domain theory
matches the numerical simulations on the basis of the reduced
model.
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FIG. 21. (Color online) Numerical simulations: Comparison of
the optimal and marginally stable periods of the concertina pattern
as a function of the external field, both computed on the basis of the
reduced model. In the region below the red (lower) curve the minimal
energy per period is concave and thus a concertina of that period is
unstable and coarsens.

D. Bifurcation analysis: Instability for small fields

The numerical computations (see Fig. 21) show that the
optimal energy per period is concave not only for large external
fields as predicted by domain theory. In fact, we extract from
our numerical data that d2

dŵ2 Êopt(ĥext,ŵ
∗) is negative also for

small external fields up to the turning point. This is consistent
with the numerical computation of the eigenvalue λN based
on the asymptotic expansion of Eq. (29). Hence, the Bloch-
wave analysis implies that the ŵ∗-periodic concertina pattern
is unstable under long-wavelength modulations close to the
critical field.

This qualitatively explains the trend in the deviation of
the initial concertina period w∗

expt from the period of the
unstable mode; see Sec. I G. Close to the critical field, the
concavity can be confirmed with the help of an asymptotic
bifurcation analysis. To see this, we extend our ansatz from
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ŵa(ĥext)
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FIG. 22. (Color online) Numerical simulations and domain the-
ory: The optimal and marginally stable periods computed on the basis
of the reduced model (dashed) match the predictions on the basis of
domain theory in the regime ĥext � 1.

Sec. I I and take into account small deviations of the wave
number, k̂ = k̂∗ + δk̂. As we have seen in Eq. (17) in Sec. I I,
the quartic coefficient in the energy expansion, namely, π

640 , is
small compared to the second-order coefficient and the scale
of the reduced external field. Due to that degeneracy it is
necessary to additionally take into account a contribution of
cubic order in the perturbation of m̂2 = 0, i.e., we use the
extended ansatz

m̂2 ≈ Am̂∗
2 + A2m̂∗∗

2 + A3m̂∗∗∗
2 .

Optimization of the coefficients in the expansion of the energy
with respect to A subsequently in m̂∗∗

2 and m̂∗∗∗
2 leads to an

expansion of the energy density of the form

k̂

2π
Ê0(Am̂∗

2 + A2m̂∗∗
2 + A3m̂∗∗∗

2 )

≈ 1

4
[ĥ∗

ext(k̂) − ĥext]A
2 − c4(k̂)A4 + c6(k̂)A6,

where c4(k̂∗) = π
640

k̂∗
2π

in accordance with (17). Hence, under
the assumption that c4(k̂∗) ≈ 0.001 05 is small, the energy
density to leading order can be approximated by

k̂

2π
Ê0(Am̂∗

2 + A2m̂∗∗
2 + A3m̂∗∗∗

2 )

≈ 1

4

(
d2

dk̂2
ĥ∗

ext(k̂)|k̂=k̂∗
δk̂2

2
+ δĥext

)
A2

−
(

c4(k̂∗) + d

dk̂
c4(k̂)|k̂=k̂∗δk̂

)
A4 + c6(k̂∗)A6. (30)

The numerical values of the coefficients are given by

d2

dk̂2
ĥ∗

ext(k̂)|k̂=k̂∗ = 3,
d

dk̂
c4(k̂)|k̂=k̂∗ ≈ −0.0217,

c6(k̂∗) ≈ 0.000 207.

Notice that c6(k̂∗) is positive, confirming the numerically ob-
served turning point of the ŵ∗-periodic branch. Obviously, the
asymptotic expansion displays an asymmetric behavior in δk̂;
the energy decreases for δk̂ < 0. Based on the expansion (30),
one can characterize the optimal wave number and the optimal
period. We note that the concavity of the minimal energy per
period as a function of the period is equivalent to the concavity
of the energy density as a function of the wave number k̂:

d2

dŵ2
Ê0(ŵ) = k̂3

(2π )2

d2

dk̂2

[
k̂Ê0

(
2π

k̂

)]
.

Figure 23 shows the optimal period and the marginally stable
period calculated on the basis of (30). We read off that the
ŵ∗-periodic concertina pattern is indeed unstable at the critical
field.

A comparison between Figs. 21 and 23 shows that the
predictions on the basis of the asymptotic expansion differ
from the optimal and the marginally stable periods computed
on the basis of the reduced model; compare for example the
scale of the external field. This deviation is related to our
assumption that the quartic coefficient is small so that the
energy can be approximated by (30). On the other hand, Fig. 24
shows that the asymptotics match the reduced model if we add
a quartic contribution + Q̂

4

∫
m4

2 to the reduced energy, where
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FIG. 23. (Color online) Bifurcation analysis: The optimal and
marginally stable periods as functions of the external field obtained
on the basis of the extended bifurcation analysis.

the value of the parameter Q̂ is such that the contribution
cancels c4(k̂∗) in Eq. (30) (which happens for Q̂ ≈ 0.03). We
will see later that such an additional quartic contribution has a
physical meaning if we take into account a uniaxial anisotropy;
see Sec. VI. It turns out that Q̂ is an appropriately rescaled
quality factor Q.

E. Numerical bifurcation analysis: Type of secondary
instability and downhill path in energy landscape

With the help of a bifurcation-detection algorithm we are
able to compute the field at which the ŵ∗-periodic concertina
becomes unstable under Nŵ∗-periodic perturbations while we
follow the primary branch. Figure 25 shows the secondary
critical fields; as expected (see Sec. III D and Fig. 21) the
secondary instability approaches the turning point as the
integer N increases. We note that the secondary instability
is reached for finite N .
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FIG. 24. (Color online) Numerical simulations and bifurcation
analysis: The prediction on the basis of the reduced model (dashed)
matches the prediction on the basis of the extended bifurcation
analysis for a near-degenerate value of Q̂ = 0.0295 close to Q̂∗ ≈
0.03; cf. Sec. VI.
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FIG. 25. (Color online) Numerical simulations: The appearance
of the secondary instability under Nŵ∗-periodic perturbations as a
function of N ; the markers indicate the occurrence of the instability
for N = 2, . . . ,8 (right to left). The critical field for N = 8 is 5.602.

In the following we want to study the way in which the
concertina pattern becomes unstable. We first present the
outcome of the computation of the secondary bifurcation
branches; Fig. 26 shows part of the bifurcation diagram. We
point out that, due to the symmetries of the pattern, the
bifurcations are not simple in the sense that more than one
branch bifurcates.

The symmetries of the pattern can be identified as linear
representations of the dihedral group D2N , where N indicates
the number of folds. The secondary bifurcation branches are
computed with the help of a numerical branch-switching algo-
rithm which is adapted to the problem of multiple bifurcations.
Generically, there are two distinct types of branch: branches
along which rotational symmetry is broken and reflectional
symmetry is conserved and vice versa (see Fig. 27). In the case
of the first type of branch, a fold collapses as two neighboring
faces disappear; in the case of the second type of branch, the
number of folds decreases as one face disappears and the two
adjacent faces merge. During the coarsening process, the width
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4
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FIG. 26. (Color online) Numerical simulations. Bifurcation dia-
gram for 4ŵ∗ perturbations: The bifurcation branches that connect
the ŵ∗-periodic (blue solid) and the 4

3 ŵ∗-periodic (orange dashed)
branches. The magnetization patterns at the indicated fields are shown
in Fig. 27.
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FIG. 27. (Color online) Numerical simulations: Reflectional-
symmetric with respect to center wall (top two rows) and rotational-
symmetric with respect to the midpoint of the white face (bottom
two rows) magnetization patterns on the unstable bifurcation branch
connecting the ŵ∗-periodic and the 4

3 ŵ∗-periodic branches. The
central fold collapses (top); the white face disappears and two
adjacent black faces merge (bottom). The computational domain is
�̂ = [0,4ŵ) × [0,1].

of the remaining folds is adjusted. Let us point out that the first
instability of the ŵ-periodic concertina under Nŵ-periodic
perturbations in the end leads to the collapse of exactly one
fold, reducing the total number of folds from N to N − 1; see
Fig. 25.

F. Wavelength modulation in the experiments

In the experiments, the x1 wavelength of the modulation is
restricted by the finite sample size. Moreover, inhomogeneities
and defects of the material, in particular those at the edges of
the cross section, strongly affect the formation of the pattern.
This is reflected by the fact that walls occur at the same pinning
sites when the experiment is rerun. The existence of pinning
sites hence leads to an effective modulation wavelength that
is just a small multiple N of the wavelength of the pattern. In
particular we expect that pinning sites have a stabilizing effect
and therefore prevent coarsening. Therefore, the seemingly
artificial numerical simulation for small and moderate N (cf.
Fig. 25) may be more relevant for the experiment than the
Bloch-wave analysis, i.e., N ↗ ∞ (cf. Sec. III C).

G. Domain theory: Instability for decreasing field

The experiments also show that the concertina period ŵ

decreases with decreasing external field ĥext. This has a simple
explanation on the level of domain theory, too. Suppose that
the concertina period had increased at several coarsening
events during the increase of the field. As the decreasing
external field ĥext drops below its optimal scaling given the
period ŵ, that is, for ŵ � ĥext ln ĥext, the optimal concertina
pattern does not suffer a long-wavelength instability, but
instead degenerates in the sense that the closure domains
invade the whole cross section. Simulations of the reduced
model confirm this scenario predicted by domain theory; see
Fig. 28, which shows a pattern of period 5ŵ∗ close to the
turning point: The numerical backward cycle, in which we start
at the multiply coarsened state and then after minimization
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FIG. 28. (Color online) Numerical simulations: The coarsened
concertina pattern degenerates as the external field is reduced. The
numerical simulations confirm the prediction based on domain theory:
The pattern degenerates at the turning point of the branch. The
computational domain is �̂ = [0,5ŵ) × [0,1].

repeatedly decrease the external field by a fixed increment,
shows that the coarsened pattern stays stable up to the turning
point that coincides with the moment at which the pattern
degenerates as mentioned above. Depending on the initial level
of coarsening, either the period is then reduced or we reach
the uniformly magnetized state after the minimization.

H. Conclusion: Hysteresis and scattering of data

Summing up, domain theory in conjunction with a Bloch-
wave argument indicates that the concertina pattern of period
w is present or stable at a given field hext if and only if
w ∼ �2t−1hext ln(d−2/3�4/3t−2/3hext), which is confirmed by
the numerical simulations. In particular we expect that the
height of the triangular domains (∼ w

m0
2
) is close to constant

as the external field increases; cf. (26) and (27). If the period
deviates by a (large) factor from that expression, it becomes
unstable. On the other hand, this analysis also suggest that there
is a range of w ∼ �2t−1hext ln d−2/3�4/3t−2/3hext for which the
concertina pattern is stable; see Fig. 29. This may explain
some of the scatter in the experimental data and the pattern’s
hysteresis.

Figure 29 displays the marginally stable period [below the
red (lowest) curve the minimal energy per period is concave
and thus the concertina of smaller period unstable as the field
increases] and the optimal period depending on the external
field. The top green curve indicates the turning points of the
ŵm-periodic branches, i.e., the smallest external field for which
a concertina of a certain maximal period ŵm exists—the m

in ŵm indicates maximal. Observe that the maximal period
ŵm on the basis of domain theory and on the basis of the
reduced model coincide for large external field, too. The
region bounded by ŵs and ŵm corresponds to the range of
stable periods. Figure 30 displays an expected hysteresis loop
deduced from numerical simulations. Figure 31 shows a real
hysteresis loop as experimentally observed.
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FIG. 29. (Color online) Numerical simulations: The marginally
stable (bottom curves), optimal (middle curves), and maximal period
(top curves) of the concertina pattern as functions of the external field
ĥext. The dashed and solid curves depict the results on the basis of the
reduced model and on the basis of domain theory, respectively.

IV. DISCRETIZATION AND NUMERICAL SIMULATIONS

The numerical simulations are based on a finite-difference
discretization of the reduced rescaled energy functional (15).
The transverse component m̂2 is approximated on a uniform
Cartesian grid. The discretization of the exchange, anisotropy
and Zeeman energy is straightforward. In the case of nonlinear

charge density σ̂ = −∂̂1
m̂2

2
2 + ∂̂2m̂2 our choice of a finite-

difference stencil is motivated by the inheritance of the shear
invariance (20). The stray-field energy can efficiently be
computed using fast Fourier transform with respect to x̂1.
For an introduction to the discretization scheme, see Ref. 17,

Sec. 3.2. Note that the computation of the energy and related
quantities, such as the gradient or Hessian, can be parallelized
since the nonlocality is only with respect to one dimension. For
the parallelization we decompose the computational domain
into horizontal slices with respect to x̂2.

We apply numerical simulations to compute (local) min-
imizers and stationary points. The naive approach using
steepest-descent algorithms for the computation of minimizers
is slow and even fails close to bifurcation points. The iterative
path-following techniques that we apply in order to compute an
approximation to a branch of stationary points are adapted to
such situations; cf. Ref. 22. The local tangent tn at a stationary
point (m̂n,ĥn

ext) of the branch is used to obtain a predictor
for the next point on the branch (mn+1

2 ,hn+1
ext ); see Fig. 32.

Within the corrector step the predictor is orthogonally (to the
tangent) projected onto the branch. This step amounts to the
solution of a nonlinear equation, more precisely an augmented
Euler-Lagrange equation:

( ∇m̂2Ê0(m̂n+1
2 ,ĥn+1

ext )[(
m̂n+1

2 ,ĥn+1
ext

) − pn+t
] · tn

)
= 0.

A bifurcation point can be detected with the help of an
appropriate indicator function; cf. Ref. 22. However, both
the bifurcation detection and the branch-switching technique
which are described in that reference are applicable for
simple bifurcations points only. As described in detail in
Ref. 21, both methods can be modified in order to cope with
multiple bifurcation points. This extension relies on the fact
that multiple bifurcations which occur due to symmetries of
the primary solution generically can be reduced to simple
bifurcation points; cf. Ref. 23.
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FIG. 30. (Color online) Numerical simulations: The hysteresis loop. As we increase the field, the concertina pattern coarsens if the period
is smaller than the stable period. As we decrease the field starting from a coarsened concertina the pattern degenerates as we reach the turning
point of the branch. The pattern refines toward the optimal period until it finally disappears. The computational domain is �̂ = [0,4ŵ) × [0,1].
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FIG. 31. Experiment: The hysteresis cycles of a Permalloy sample of 30 nm thickness and 50 μm width. The upper row shows the pattern
as the external field increases (from left to right); the lower row shows the pattern as the external field decreases (from right to left).

V. POLYCRYSTALLINE ANISOTROPY

The experiments usually do not show a clear-cut critical
field with a first-order transition (i.e., subcritical bifurcation).
This can be due to lack of sensitivity (the amplitude of the
transverse component 〈m2

2〉1/2 = d2/3�−1/3t−1/3〈m̂2
2〉1/2 at the

turning point ranges between 0.015 and 0.063 for typical sam-
ple dimensions, namely, widths � between 10 and 50 μm and
thicknesses t between 30 and 100 nm) or the presence of the so-
called ripples that smooth out the transition, as we shall explain
in this section. A ripple is an in-plane small-scale oscillation of
the magnetization—perpendicular to its average direction—in
extended films. In this section, we show how the linear ripple
theory developed in Refs. 24 and 25 can be incorporated into
our theory for the concertina and explains the smoothing out
of the first-order transition encountered in Sec. I I.

The ripple is triggered by an effective field of random
direction on a small scale. Several origins for this effective
field have been proposed in the literature (see, for instance,
Ref. 25, Sec. C); in polycrystalline thin films, the random
orientation of the grains (via crystalline anisotropy) and local
stresses (via magnetostriction) are seen as the main causes. In
our discussion, we focus on the former.

Hoffmann24 and Harte,25 basing their work on the torque
equilibrium, linearized around a spatially constant mag-
netization (solely determined by the external field and
anisotropy). Hereby they identified the linear response to
(for instance) such a small-scale, small-amplitude random
effective field. The main finding is that the stray field—which
penalizes transverse more than longitudinal perturbations of
the magnetization because the former lead to a stronger
charge oscillation—results in a strong anisotropy of the
response.

FIG. 32. Tangent predictor-corrector continuation method.

Clearly, the anisotropic rescaling (12) leading to our
reduced model and the anisotropic response have the same
origin. We will see that both the ripple and the transition
between ripple and concertina can be explained within
the framework of an extension of our reduced model. We note
that our analysis of the ripple is mainly a reformulation of the
classical results. However, the added insight is that the finite
width � of the sample leads to a (continuous) transition from
the ripple to the concertina.

We now explain how to extend our reduced model. We
start from the three-dimensional model (1) with a uniaxial
anisotropy of strength Q and position-dependent easy axis
e(x), i.e., with the term −Q

∫
(me)2dx. In the approximation

of our reduced model, i.e., m3 ≡ 0, m = m(x1,x2), and

the linearization m1 ≈ 1 − m2
2

2 due to m2
2 � 1, this term

is, up to additive constants, to leading order approximated
by −2Qt

∫
m2e1e2dx1dx2, where e1e2(x1,x2) denotes the

vertical average of the product of the first two components
of the easy axis e = (e1,e2,e3). A random anisotropy there-
fore acts to leading order as a random transverse external
field

−2t

∫
�′

hripplem2dx1dx2, (31)

where hripple = Qe1e2. As mentioned, the position dependence
of e arises from the random orientation of the grains of size
�grain. Provided t � �grain � w∗ (where we take w∗ as a typical
length scale of the magnetization pattern), the stationary
statistics of e1e2 are characterized by

〈e1e2(0,0)e1e2(x1,x2)〉 = �2
grainδ(x1)δ(x2)〈e1e2(0,0)2〉, (32)

where 〈·〉 denotes the ensemble average and δ the Dirac
function.

For subcritical fields hext < h∗
ext, we neglect the nonlinear

term in the stray-field energy in Eq. (8). The resulting energy
functional is quadratic and linear in m2; hence it is conveniently
expressed in terms of Fm2(k1,k2), which denotes the Fourier
transform of m2 in x1, and the Fourier sine series in x2:

E(m2) ≈
∫ ∞

−∞

∑
k2∈πZ/�

(
d2k2

1 + 1

2
tk2

2k
−1
1 − hext

)|Fm2|2

− 2FhrippleF−1m2dk1.
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STEINER, SCHÄFER, WIECZORECK, MCCORD, AND OTTO PHYSICAL REVIEW B 85, 104407 (2012)

Explicit minimization yields

Fm2(k1,k2) = 1(
d2k2

1 + 1
2 tk2

2k
−1
1 − hext

)Fhripple(k1,k2).

(33)

We interpret this m2 as the ripple. Since (32) on the level of
F e1e2 reads 〈|F e1e2(k1,k2)|2〉 = �2

grain, (33) is best expressed
in terms of the energy spectrum:

〈|Fm2(k1,k2)|2〉 = Q2
�2

grain(
d2k2

1 + 1
2 tk2

2k
−1
1 − hext

)2 . (34)

This formula clearly displays the aforementioned anisotropic
response of m2 to the isotropic field hripple.

From formula (34) one can infer the predominant wave
number of the ripple, that is,

〈|k1|〉 =
∑

k2

∫ ∞
−∞ |k1|〈|Fm2|2〉dk1∑

k2

∫ ∞
−∞〈|Fm2|2〉dk1

. (35)

For moderate stabilizing fields t2d−2 � −hext �
d−2/3�4/3t−2/3, we obtain from (35) that the average
wave number scales as 〈|k1|〉 ∼ (−hext)1/2d−1 � td−2.
This is the scaling of the predominant wave number of
the ripple in an extended film [Ref. 24, p. 34, (7)]. Notice
that the lower bound characterizing regime III is equivalent
to t2d−2 � d−2/3�4/3t−2/3. For large stabilizing fields
−hext � t2d−2 one can show that the average amplitude
of the ripple, given by

∫ ∑
k2

〈|Fm2|2〉dk1, tends to zero.
Moreover, from (35), because of the discreteness of k2, we
can infer

lim
hext↑h∗

ext

〈|k1|〉 = 2π

w∗ ,

which is the wave number of the unstable mode (7). We thus
learn that, as the strength hext of the external field increases
from negative values toward the critical value, the average

wavelength of the ripple continuously increases from the
values characteristic for a film which is infinite in both the
x1 and x2 directions to the wavelength of the unstable mode
that is at the origin of the concertina pattern (which depends on
the sample width). Due to this transition it is thus not surprising
that the ripple and the small-amplitude concertina are difficult
to distinguish.

We now address the numerical simulation of our augmented
model (36). Let us therefore first rewrite the additional term
(31) in the rescaled variables (12). The rescaled reduced model
(15) is augmented by

−2
∫

ĥripplem̂2dx̂1dx̂2, (36)

where ĥripple is a stationary Gaussian field of vanishing mean
and of variance

〈ĥripple(0,0)ĥripple(x̂1,x̂2)〉 = (σ ∗)2δ(x̂1)δ(x̂2), (37)

with σ ∗ = d−10/6�5/6t−1/6Q�grain〈e1e2(0,0)2〉1/2. In the case
of a uniform distribution of the anisotropy axis in the plane,
we have for example that 〈e1e2(0,0)2〉 = 1

8 .

On the level of the discretization, the field ĥripple is modeled
as a Gaussian random variable of mean zero, which is
identically and independently distributed from grid point to
grid point and has variance (σ ∗)2�x̂1

−1�x̂2
−1, where �x̂i

denotes the grid size in direction x̂i . For the numerical
simulations we thus have to determine the value of σ ∗ for
a typical sample. Let us consider a film of 30 nm thickness
and 70 μm width with typical grain size �grain = 15 nm.
For a local strength of anisotropy Q = 5 × 10−3 we obtain
that (σ ∗)2 = 125.87. For the value of (σ ∗)2 = 110.83, our
numerical simulation indeed shows a continuous transition
from the ripple to the concertina pattern instead of a first-order
phase transition due to a subcritical bifurcation; see Fig. 33.

We also believe that our reduced model is the appropriate
framework to analyze the nonlinear corrections to the linear

FIG. 33. Experiment and numerical simulations: The coarsening of the concertina pattern in a Permalloy sample (top row) of 30 nm
thickness and 70 μm width compared to the numerical simulations (bottom row). A ripplelike structure grows into the concertina pattern.
Within the numerical simulations we iteratively increment the external field and minimize the energy. The computational domain is of period
6ŵ∗. The numerical images are scaled according to (12) to compare them to the experiment. The numerical images hence display 1.8 times the
unit cell; the numerical images therefore appear to be more uniform than the experimental concertina.
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ripple theory. Indeed, we have seen in Sec. I I that it captures
the transition from the unstable mode to low-angle symmetric
Néel walls. We thus believe it also captures the transition from
the ripple to the blocked state that is related to hysteresis in
extended thin films.26

VI. UNIAXIAL ANISOTROPY

We now address the effect of uniaxial anisotropy—constant
throughout the sample—on the formation of the concertina
pattern. We focus on the two cases in which the easy axis
coincides with the x2 axis [transverse anisotropy e = (0,1,0)
in Eq. (1)] or in which the easy axis coincides with the x1 axis
[longitudinal anisotropy e = (1,0,0) in Eq. (1)]. Clearly, the
uniform magnetization remains a stationary point of the energy
for this type of anisotropy. On the level of the reduced model
both cases can be represented (up to an additive constant) by
the additional quadratic term

−Q t

∫
m2

2 dx1dx2 (38)

with a signed quality factor Q. Transverse anisotropy cor-
responds to Q > 0; longitudinal anisotropy corresponds to
Q < 0.

As will become clear below, when considering the effects
of anisotropy, it is appropriate to expand the Zeeman term to
quartic order, i.e.,

−hextt

∫ (
m2

2 + m4
2

4

)
dx1dx2.

The following gedanken experiment is helpful in understand-
ing the sequel: In extended thin films, i.e., � = ∞, there is
no incentive for a spatially varying magnetization so that we
may consider a constant magnetization m2 in which case the
relevant energy per volume is given by −Qm2

2 − hext(m2
2 +

m4
2

4 ). In this case the critical field is given by h∗
ext = −Q. For

longitudinal anisotropy, the bifurcation is subcritical, whereas
for transverse anisotropy, the bifurcation is supercritical and
yields

m2 = ±[2(1 + Q−1hext)]
1/2. (39)

Hence, for finite �, there are two competing mechanisms which
lead to a bifurcation and the selection of an amplitude for m2:
uniaxial anisotropy and shape anisotropy in the form of the
stray-field energy.

As we will see below, there are essentially three different
effects of anisotropy: linear, weakly nonlinear, and strongly
nonlinear, which we list and characterize below. Notice that
the order at which these effects arise with increasing anisotropy
does not agree with their ordering with increasing nonlinearity;
see Fig. 34: The linear effect becomes pronounced for |Q| �
d2/3�−4/3t2/3, the strongly nonlinear one for |Q| � �−1t ,
and the weakly nonlinear one only for |Q| � d−2/3�−2/3t4/3.
Note that we have that d2/3�−4/3t2/3 � �−1t � d−2/3�−2/3t4/3

provided d2�−1 � t , which is the lower bound on the film
thickness that characterizes regime III.

We mainly focus on the case of transverse anisotropy Q >

0. In the case of longitudinal anisotropy Q < 0 we give an
explanation for the experimental fact that the concertina cannot
be observed at all.

FIG. 34. (Color online) The order of the different effects of
anisotropy.

(a) Linear effect for weak anisotropy |Q| � d2/3�−4/3t2/3.
An obvious effect of anisotropy is a shift of the critical field h∗

ext
by the amount −Q; we call it the “linear effect” of anisotropy
since it arises on the level of the linearization at m2 ≡ 0. In
view of the scaling of the critical field h∗

ext at Q = 0, i.e., (13),
we infer that the value of the critical field is dominated by the
uniaxial anisotropy, i.e.,

h∗
ext ≈ −Q for |Q| � d2/3�−4/3t2/3. (40)

Notice that transverse anisotropy decreases the distance
between the two critical fields ±h∗

ext corresponding to the
stationary states ±m∗; in particular, for Q ∼ d2/3�−4/3t2/3, the
critical field changes sign and thus the order between the two
critical fields switches. (Likewise, for longitudinal anisotropy
the distance decreases.) Although a clear-cut critical field can-
not be observed in the experiments due to the polycrystalline
structure which triggers a ripple, and since the value of the
effective external field at the investigated sample section is not
available, the linear effect could be qualitatively confirmed:
For Permalloy samples of high (transverse) anisotropy the
oscillatory instability occurs before the external field is
reversed. In accordance with (40), we observe for relatively
wide films that the relative strength of anisotropy increases and
the critical field decreases (theoretically approaching −Q).
On the other hand for low-anisotropic Permalloy the first
oscillation is observed close to zero external field.

(b) Weakly nonlinear effect for strong anisotropy |Q| �
t(w∗)−1 ∼ d−2/3�−2/3t4/3. For sufficiently strong anisotropy
Q, the quartic term coming from the stray-field energy no
longer dominates the quartic term coming from the Zeeman
energy near the bifurcation. We call this effect the “weakly
nonlinear effect” of anisotropy, since it can be analyzed on the
level of an expansion of the reduced energy near m2 ≡ 0 and
hext = h∗

ext [cf. (17)], where we take into account the quartic
Zeeman term − hext

4 tA4
∫

(m∗
2)4dx1dx2. The shift of the critical

field suggests the following rescaling for the reduced external
field:

ĥext = d−2/3�4/3t−2/3(hext + Q).

In addition we set

Q̂ = − 1
4d2/3�2/3t−4/3hext

so that we obtain with the same rescaling of energy, length,
and magnetization as in Eqs. (12) and (14) the reduced energy
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FIG. 35. (Color online) Numerical simulations: Transition from
sub- to supercritical bifurcation as the strength of the trans-
verse anisotropy increases. For Q = 0.03 ≈ Q∗ the bifurcation
degenerates.

functional augmented by

+Q̂

∫
�̂′

m̂4
2dx̂1dx̂2.

Therefore the energy close to the bifurcation takes the form of

Ê(Am̂∗
2 + A2m̂∗∗

2 )

≈ −
(

π

2

)1/3

(ĥext − ĥ∗
ext) A2 +

(
9

64
Q̂ − π

640

)
A4.

For |Q| � d−2/3�−2/3t4/3 � d2/3�−4/3t2/3 the critical field
asymptotically behaves as h∗

ext ≈ −Q [cf. (40)], so that the
reduced quality factor behaves as Q̂ ≈ 1

4d2/3�2/3t−4/3 Q close
to the critical field. From the latter we read off that in the
regime Q � d−2/3�−2/3t4/3 the quartic coefficient becomes
positive and therefore the bifurcation becomes supercritical;
see Fig. 35. Essentially it is a perturbation of the constant-
magnetization bifurcation in infinitely extended films men-
tioned above; cf. (39). In particular, the selected amplitude
in this case scales as m2 ∼ A ∼ (1 + hextQ

−1)1/2. On the
level of the extended bifurcation analysis one finds that the
period of the unstable mode w∗ lies in the stable region
in the neighborhood of the critical field. In agreement with
this, for increasing external fields the numerical simulations
show that no modulation instability occurs and that there is no
coarsening. We note that domain theory is consistent with the
numerical simulations, too.

On the other hand, for large longitudinal anisotropy, i.e.,
−Q � d−2/3�−2/3t4/3, we expect that there is no turning point
on the bifurcating branch so that it remains unstable, with the
effect that no concertina pattern forms in the first place. The
numerical simulations in Fig. 36 show a second turning point
which coincides with the breakup of the concertina pattern.
For even larger longitudinal anisotropy the first turning point
is destroyed; see Fig. 36.
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FIG. 36. (Color online) Numerical simulations: Loss of the
turning point as the strength of the longitudinal anisotropy increases.

This observation can also be confirmed on the level of
domain theory, where we take into account anisotropy and the
quartic term in the Zeeman energy [cf. (25)]:
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The quartic wall energy cannot compensate the destabiliz-
ing quartic Zeeman contribution provided hexttw � t2 (up
to a logarithm). Therefore because h∗

ext ∼ −Q and w ∼
d2/3�2/3t−1/3 close to the bifurcation there are no (local)
minimizers of the energy.

Typical values for our Permalloy samples of strong uni-
axial anisotropy range from Q̂ = |Q|

4d−2/3�−2/3t4/3 ≈ 2.1 × 10−4

to 0.023 depending on the sample’s width and thickness
(Q = 5 × 10−4, t = 10–150 nm, � = 10–50 μm). Typical
values for CoFeB range from Q̂ = 7.8 × 10−4 to 0.011 (Q ≈
1.5 × 10−3, t = 30–100 nm, � = 10–50 μm). The uniaxial
anisotropy is thus too small to cause the weakly nonlinear
effect. However, although local minimizers of the energy might
exist in the case of longitudinal anisotropy, still the energy is
not coercive as soon as the external field is reversed.

(c) Strongly nonlinear effects for moderate anisotropy
|Q| � �−1t . In that case one can distinguish two different
scenarios in the formation of the concertina:

Scenario I. If the amplitude (and shape) of the concertina
pattern were unaffected by anisotropy (except for the critical
field at which it bifurcates), as in an infinitely extended film,
its optimal amplitude would scale as

m2a ∼ �t−1(hext − h∗
ext)

(40)≈ �t−1(hext + Q)

= �t−1Q(1 + Q−1hext), (42)

up to a logarithm for hext − h∗
ext � d2/3�−4/3t2/3, as we have

seen in Eq. (27) in Sec. III A.
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FIG. 37. Experiment: Permalloy samples of width 60–150 μm of
high transverse anisotropy and at the end of the coarsening process.
The six samples on the right are of thickness 30 nm, the six on
the right of thickness 50 nm. The period of the pattern appears to
be independent of the width of the samples, in agreement with our
theoretical prediction as an effect of anisotropy.

Scenario II. If the amplitude of the concertina pattern were
dominated by transverse anisotropy, it would behave as

m2a

(39)∼ (1 + Q−1hext)
1/2 (43)

for 0 < (1 + Q−1hext) � 1.
Hence we expect that for Q � �−1t the concertina pattern

is limited by stray-field effects as long as 0 < 1 + Q−1hext �
(Q−1�−1t)2 and by anisotropy effects once (Q−1�−1t)2 � 1 +
Q−1hext � 1. Loosely speaking, the effect of anisotropy kicks
in for a large amplitude and is most prominent close to the
field strength where the concertina pattern vanishes. We call
this the “strongly nonlinear effect” of anisotropy. (Also this
provides a reason to expand the Zeeman term to higher order.)

We note that we have to take into account the lower-order
wall energy in scenario II in order to determine the optimal
period. In that case, a minimization of the energy per length
yields the following scaling behavior of the optimal period (up

to a logarithm):

wa ∼ (�t)1/2Q−1/2(1 + Q−1hext)
1/4.

As we know from Sec. III the experimentally more relevant
quantity is the marginally stable period, i.e., the largest
period (as a function of the external field) for which the
minimal energy is convex. At the crossover we expect that the
marginally stable period is of the order ∼tQ−1, in accordance
with the experimental observations; cf. Fig. 37. In fact, because
(Q−1�−1t)2 ∼ 1 + Q−1hext at the crossover, we have that w ∼
�2t−1Q(1 + Q−1hext) ∼ tQ−1; see (42) together with the fact
that ws ∼ �m2a . For a period of that order the minimal energy
in scenario II turns out to be convex. Hence we expect that
the coarsening stops once (Q−1�−1t)2 � 1 + Q−1hext � 1.
Still the transverse component of the magnetization grows
as m2 ∼ (1 + Q−1hext)1/2 so that the size and height of the
closure domains decrease.

Figure 38 displays the transition of the scaling behavior in
the optimal period and the marginally stable period, and the
amplitude of the transverse magnetization component. At the
crossover we have that m2 ∼ t(�Q)−1 � 1 and w ∼ tQ−1 �
�. This is consistent with the assumptions of the reduced model,
i.e., the low-angle approximation and the scale separation of
the dominant length scales with respect to x1 and x2. For
the same reason and due to the observation that hext + Q �
d2/3�−4/3t2/3 implies ĥext � 1, (low-angle) domain theory is
also applicable up to the crossover to scenario II. (As m2 tends
toward 1 in scenario II only domain theory is applicable and
the low-angle approximation has to be dropped—in particular
for the wall energy.)

Let us mention another observation supporting the conjec-
ture that anisotropy effects are most prominent close to the
field strength where the concertina vanishes: For Q � �−1t ,
the ground state for vanishing external field hext = 0 is no
longer given by the uniform magnetization m = (±1,0,0); a
Landau or concertina-type pattern (see Fig. 39), has lower

FIG. 38. (Color online) Scaling behavior of the optimal and marginally stable periods and the amplitude of the transverse component in the
regime t�−1 � Q � d−2/3�−2/3t4/3.
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FIG. 39. (Color online) Continuous transition from the concertina
pattern via the Landau state to the reversed concertina. Note that the
total length of the walls and the Zeeman energy do not change while
the anisotropy energy is smaller in the case of the Landau state.

energy. The optimal periods w of the two latter patterns are
determined by a balance of the wall energy and the anisotropy
energy in the closure domains, and scale as w ∼ Q−1/2(�t)1/2

up to a logarithm. Hence we expect that in this regime, the
concertina does not switch to m = (−1,0,0), but evolves to
the pattern in Fig. 39.

In fact, that type of transition of the concertina pattern
can be observed in CoFeB samples – that possess a stronger
(transverse) uniaxial anisotropy; see Fig. 40.

VII. CONCLUSION

In this work, we addressed the concertina pattern in very
elongated thin-film elements. We provided an explanation of
the formation and the coarsening of this pattern as the external
field is reduced from saturation.

We identified a parameter regime in which the uniform
magnetization becomes unstable to an oscillatory buckling
mode. In this parameter regime, we derived a two-dimensional
and thus numerically tractable reduced energy functional from
three-dimensional micromagnetics. On the basis of the reduced
model, we performed numerical bifurcation analysis: The
bifurcation is slightly subcritical, but has a turning point, after
which the buckling mode grows into the concertina pattern
with its low-angle Néel walls. This is an alternative explanation
for the formation of the concertina to the one proposed by
van den Berg and Vatvani: an outgrowth of an unstable mode
instead of an ingrowth of closure domains. Over a wide range
of sample sizes, there is a good agreement between the explicit
period of the unstable mode and the measured average period
of the concertina pattern. In particular, the predicted depen-
dence on film thickness and width is confirmed. However, the
measured period exceeds the theoretically predicted one by a
factor of up to approximately 2.

We gave an argument for this initial deviation that at the
same time explains the coarsening: Domain theory based
on the reduced model—where low-angle Néel walls are
replaced by sharp discontinuity lines—shows that coarsened
configurations are energetically favorable. More importantly,
uncoarsened configurations eventually become unstable be-
cause the energy per period becomes concave. Based on
the reduced model, we argued by a Bloch-wave ansatz that
this concavity indeed translates into a secondary instability
of the concertina pattern with respect to long-wavelength
modulations. These secondary instabilities are confirmed by
numerical bifurcation analysis. The long-wavelength insta-
bilities are further confirmed by an extended bifurcation
analysis that capitalizes on the near degeneracy of the primary
bifurcation. This extended bifurcation analysis also showed

FIG. 40. (Color online) Experiment: Hysteresis of a CoFeB sample of 60 nm thickness and 30 μm width. Following the coarsening we
observe a transition to a Landau state at zero external field, which turns into a concertina that degenerates and refines and finally disappears.
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that the long-wavelength instability of the primary branch
extends all the way down to the turning point. Hence,
at the moment of its appearance, the concertina pattern
already has a resulting period larger than that of the unstable
mode. This qualitatively explains the deviation between the
period of the unstable mode and the measured period of the
concertina. Incidentally, these secondary instabilities are an
asymmetric (with respect to the wave number) version of the
Eckhaus instability introduced in the context of convective
problems.

We gave yet another argument for the deviation of the
period of the unstable mode from the measured period of
the concertina at its formation. Based on the reduced model,
we established a continuous transition from a magnetization
ripple, which is triggered by the polycrystalline structure of the
material, and the concertina pattern. On the level of the reduced
model, the effect of an easy axis that varies from grain to grain
translates into a random transverse external field that smears
out the subcritical bifurcation. Hence for a sufficiently strong
ripple effect, as the concertina pattern becomes discernible
from the ripple, it has already coarsened.

Finally, we investigated the effects of weak uniaxial
material anisotropy on the concertina pattern. We distinguished

three effects: (1) a shift of the critical field that changes its sign
already for weak anisotropies, (2) a change in the coarsened
concertina pattern from “limited by shape anisotropy” to
“limited by material anisotropy” that kicks in for somewhat
larger anisotropies, and (3) a change from a subcritical to
a supercritical bifurcation for a sufficiently large transverse
anisotropy. The various analyses render a fairly complete
picture of the energy landscape that in particular explains the
hysteresis of the concertina pattern.
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