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We study the interplay of superfluidity and glassy ordering of hard core bosons with random, frustrating
interactions. This is motivated by bosonic systems such as amorphous supersolid, disordered superconductors with
preformed pairs, and helium in porous media. We analyze the fully connected mean field version of this problem,
which exhibits three low-temperature phases, separated by two continuous phase transitions: an insulating, glassy
phase with an amorphous frozen density pattern, a nonglassy superfluid phase, and an intermediate phase, in
which both types of order coexist. We elucidate the nature of the phase transitions, highlighting in particular
the role of glassy correlations across the superfluid-insulator transition. The latter suppress superfluidity down
to T = 0, due to the depletion of the low-energy density of states, unlike in the standard BCS scenario. Further,
we investigate the properties of the coexistence (superglass) phase. We find anticorrelations between the local
order parameters and a nonmonotonous superfluid order parameter as a function of 7. The latter arises due
to the weakening of the glassy correlation gap with increasing temperature. Implications of the mean field
phenomenology for finite dimensional bosonic glasses with frustrating Coulomb interactions are discussed.
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I. INTRODUCTION

Bosons in random environments occur in a variety of
experimentally relevant systems, ranging from cold atomic
gases, superconductors, and quantum liquids. The superfluid-
ity of helium-4 (*He) in porous media was one of the first
phenomena observed in this type of system,'? featuring an
interesting competition between Bose-Einstein condensation
and localization by random potentials.’

In more recent years, supersolidity in crystalline “H
has been reported. It soon became clear that defects of the
crystalline order and amorphous solids sustain more robust
supersolidity, spurring the idea that disorder, or even glassy
order, may be a crucial element in understanding the superfluid
part of those systems.’!!

A recent experiment'? reported indeed that the supersolidity
in “He is accompanied by the onset of very slow glassy
relaxation. This suggested that an amorphous glass with
a superfluid component is forming, a state of matter that
was dubbed a “superglass.” These experimental results have
motivated several theoretical investigations into the possibility
and nature of such amorphously ordered and yet supersolid
systems.!3-18

Similar questions as to the coexistence and interplay of
glassy density ordering and superfluidity arises in disordered
superconducting films, which feature disorder- or field-driven
superconductor-to-insulator quantum phase transitions.' In
several experimental materials, this transition appears to be
driven by phase fluctuations of the order parameter rather than
by the depairing of electrons, suggesting that the transition
can be described in terms of bosonic degrees of freedom
only.?° This had led to the dirty boson model?! and the notion
of the Bose glass,22 in which disorder and interactions lead
to the localization of the bosons, while the system remains
compressible.>»** In this context, the term “glass” refers
mostly to the amorphous nature of the state rather than to the
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presence of slow relaxation and out-of-equilibrium phenomena
due to frustrated interactions. However, if superconductivity
develops in a highly disordered environment, such frustration
may appear in the form of Coulomb interactions between the
charged carriers, which may become important, as screening
is not very effective. It is well known that in more insulating
regimes, strong disorder and Coulomb interactions may induce
a glassy state of electrons (the Coulomb glass).>>=7 It is
therefore an interesting question whether such glassy effects
can persist within the superconducting state of disordered
films. A memory dip in resistance versus gate voltage (similar
to the conductance dip in insulators, which is considered
a smoking gun of electron glassiness®), was reported as a
possible indication of such a superglassy state in Ref. 29, even
though doubts about its intrinsic nature were raised later on.

The recent developments in ultracold atoms®' open new
ways to studying bosonic atoms in the presence of both
interactions and disorder. Those can exhibit superfluid or
localized, and potentially also glassy phases, especially if the
interactions are sufficiently long ranged and frustrated, as is
possibly the case for dipolar interactions.

Motivated by these experimental systems, we study a
solvable model of bosons subject to disorder and frustrating
interactions, as proposed previously in Ref. 15. This solvable
case provides insight into the possibility of coexistence of
superfluidity and glassy density order, as well as into the nature
of the coexistence phase (the superglass). In particular, for
the considered mean field model we prove the existence of a
superglass phase. This complements the numerical evidence
for such phases provided by quantum Monte Carlo investiga-
tions in finite dimensions'> and on random graphs.'® Those
were, however, limited to finite temperature, and could thus
not elucidate the structure of the phases at 7 = 0. In contrast,
the analytical approach allows us to understand the quantum
phase transition between glassy superfluid and insulator, and
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the nontrivial role played by glassy correlations. Indeed it is
an interesting feature of the considered model that despite
its infinite connectivity, it features an insulating, Anderson
localized phase at sufficiently small but finite hopping strength.
This is in contrast to nonglassy models where the localization
and insulating behavior is lost in the large connectivity limit,
unless the hopping is downscaled logarithmically with the
connectivity.?

The model studied here is an interesting type of a quantum
glass.?® Like other canonical quantum glass models of mean
field type, such as the random exchange Heisenberg model,**
the Ising spin glass in transverse field,?>-*® and frustrated rotor
models,’’* the glass phase of the superglass model breaks
ergodicity, and will exhibit a large number of metastable
states and associated slow relaxation and out-of-equilibrium
dynamics. It has recently been pointed out that such mean field
glasses can faithfully be realized by atoms in laser cavities,
which are coupled at long distances through interactions via
discrete photon modes.**#!

In the above-mentioned canonical models the nonglassy
phase is usually quantum disordered, having no broken
symmetry. However, a new situation arises in the model studied
here: The glassy ordering competes with a different order:
the superfluidity, or the transverse (XY) ferromagnetism in
a magnetic analogon. The microscopic coexistence of these
two types of order, which we demonstrate to exist in our
model, is rather nontrivial, as one might instead expect a
first-order transition between phases with either of the two
orders. At zero temperature, the quantum glass transition
is induced by frustrated interactions, which win over weak
quantum fluctuations. While the quantum phase transition of
such models is understood relatively well,*> the deep glass
phase with its collective gapless modes has not been much
explored.*>*

Let us finally remark that the glassy, amorphous supersolid,
which the superglass phase constitutes, is quite different from
the type of supersolid proposed theoretically in the early
1970s.% In those scenarios the bosons organize spontaneously
on a lattice, which breaks translational symmetry, but is in-
commensurate with the boson density, allowing for vacancies
to move through the solid. Our model considers instead bosons
on a predefined lattice, on which an inhomogeneous density
pattern establishes in the glass phase.

The remainder of the paper is organized as follows: In
Sec. II we introduce the mean field model of a superglass.
We obtain the effective action for a single spin with both
the replica method and the cavity approach in Sec. III, and
introduce the key concept of the distribution of local fields.
The self-consistency equations of the mean field theory are
solved under static approximation, which is argued to be
exact in parts of the phase diagram. Section IV determines
the instabilities toward forming glassy and superfluid order,
and establishes the phase diagram featuring two quantum
phase transitions at 7 = 0. We also discuss the robustness of
the phase diagram to random potential disorder. In Sec. V,
we study the bulk of the superglass phase in more detail.
We show that the glass and superfluid order parameters are
locally anticorrelated. Moreover, we find the superfluid order
parameter to have an interesting nonmonotonous behavior as
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a function of 7. The implications of this mean field analysis
for realistic finite dimensional models, e.g., with frustrating
long-range Coulomb interactions, will be discussed in Sec. VI.
Some detailed derivations are collected in the Appendix.

II. MODEL

We consider the fully connected model of hard-core bosons
with random pairwise interactions between all bosons,

H ==Y Vimn; + Y ins — 2 3 (blb; +bjb). (1)

i<j i i<j

Here, n; = bj b; is the number operator on site i, and the hard-

core constraint limits »; to assume values 0 or 1. b; (b;[) denote
the annihilation (creation) operators for a hard-core boson at
site i. Vj; is a quenched disorder with Gaussian distribution
of zero mean and variance V?/N, ¢; describes a quenched
disorder potential for the bosons, and #;,/N is the unfrustrated
hopping strength between any pair of sites. The scaling of
the couplings with N is chosen so as to yield a nontrivial
thermodynamic limit for N — oo.

In the absence of hopping, the model becomes classical and
is equivalent to the Sherrington-Kirkpatrick spin-glass (SK)
model*® in a random field. It is well known that except for
lowering the transition temperature, the random fields do not
alter the low-temperature properties of the glass phase. We
thus restrict our attention mostly to a slightly simpler model
proposed in Ref. 15, which corresponds to a special choice of
the ¢;:

H == Vi —1/2)n; — 1/2)

i<j

I f t
-5 > (blb; + blby). )

i<j

Similar fermionic mean field models have been studied in
Refs. 47 and 48. The identification 2n; — 1 =s; € {£1},

bl = s .b; = s, allows us to map this model into a fully
connected spin-glass model with quantum fluctuations arising
from nonrandom spin-flip terms,

H==Y dusisi -5 Y isi+50s). O

i<j i<j
with the simple dictionary

‘Lj = lﬁl, = Eé.
4 2
For ¢t = 0, this Hamiltonian reduces to the SK model, which
possesses a spin-glass phase at low temperature, T < T, = J.
Without the Ising interactions, J;; = 0, the Hamiltonian turns
into the mean field XY model, which has a superfluid (or
XY ferromagnetic) phase at low temperatures (T < T, = 1).
In this paper we establish the phase diagram and study the
properties of the bulk phases resulting from the competition
of random density-density interactions and boson hopping
(bosonic language) or equivalently random Ising interactions
and ferromagnetic transverse coupling (spin language).

“
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III. FREE-ENERGY AND SELF-CONSISTENT EQUATIONS

A. General formalism

The disorder average of the free energy of the model (3)

can be obtained using the replica method,*
ZMy —1
(InZ); = lim %, 5)
n—0 n

where Z is the partition function and (---); indicates an
average over the couplings J;;.

Following a method introduced by Bray and Moore** it is
useful to represent the partition function as an imaginary time
path integral:

1 n
Z" = TrT exp {/3/ dt ZZ [Jiija(T)Sia(f)
A .

a=1 i<j

+ %(s;;(t)s;a(t) + sfgl(r)sfa(r))] } (6)
where 7 orders the operators in decreasing order of
their argument 7 € [0,1]. This “time” argument of s(t)
merely serves us to define the time ordering, while s(t)
denotes always the same Pauli matrix, independently of
time.

Averaging over disorder and decoupling the spins on
different sites using a Hubbard-Stratonovich transforma-
tion with the order-parameter fields Q.,, M) M), we

obtain
@), o [ []dQutrcramsdm
x []dQas(x.7")exp (=N F) (7)
a<b
with
J2,32 1 1
F= / / drdt/|:z 02, (t,T) + Z an(m’)}
4 Jo Jo oy -
+ 1B /1 dr» [M}(1)* + M)(r)] —InZ )
2 0 - a a ?
Z = Tr7T exp (—Seft) » 9
JZﬁZ 1 1
Seff = — 3 / / drdr/|:z Qap(t,7)s%(T)sj(T")
o Jo ath

+y Qa[,(r,r/)s;(r)s;(r’)}

1
_’/32/0 dt (M (T)s;(0) + M} (0)s}()).  (10)

In the limit N — oo, the functional integral (7) is dom-
inated by the saddle point of the replicated free energy F,
which satisfies

SF / z 20’
0= Sgemy = Qulre) = (T,
= {5553} = Cur v
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(Sf "y = 4 (4!
=50y = Q@) = {T5@s )y

= R(z,7), (12)

0

_OF
M)

= Mi(7) =(s; (D)), =M", (13)

_ SF
- SMJ(7)

where (- - -)¢fr denotes the average with respect to the effective
action S. of a single site. We have used that, as usual,
the saddle-point values of Q,., and M, are independent
of imaginary time, while Q,,(tr,t’) depends only on the
imaginary time difference.’® Furthermore, Q,, and M, do
not depend on the replica index a. For Q,, we make the
standard ultrametric ansatz, parametrized by a monotonous
function ¢g(x) on the interval x € [0, 1], which is well known
to describe successfully the SK model and other mean field
glasses.* We are free to choose coordinates in the x,y plane
such that the spontaneous magnetization M points in the x
direction, and thus we set MY = 0.

Note that M~ # 0 signals the presence of transverse (XY)
order of the spins, that is, superfluidity of the hard-core bosons,
which breaks the U(1) symmetry spontaneously. On the other
hand, a nonconstant value of Q,., implies the spontaneous
breaking of the replica symmetry, and thus the presence of
a glass phase with many metastable states and nontrivially
broken ergodicity. As long as we do not consider random-field
disorder, the breaking of replica symmetry coincides with the
breaking of the Ising symmetry and is signalled by a nonzero
value of Q.. We will see below that the U(1) and the replica
symmetries can be broken simultaneously in a what has been
called a “superglass phase” in Refs. 15 and 16.

To find the location of a (continuous) glass transition,
we expand the free energy to second order in Q,,. We
find an instability toward replica symmetry breaking, and
thus the emergence of a glassy density ordering of bosons,
when

= M)(0)=(s) (D), =M. (14

ﬂ]/l /1drdr/(Ts;(r)s;;(r’))eﬂ, = ﬂJ/ldtR(r) =1,
0 0 0 (15)
or
Ixlh=1, (16)

where x| = x..(w = 0) is the zero-frequency limit of the
longitudinal susceptibility. This condition is of course to be
evaluated at Q. = 0.

On the other hand, a second-order phase transition from
the high-temperature phase toward a superfluid state is indi-
cated by the instability condition, which follows from 8>F/
aM? =0:

1 1
Bt / / dtdt'(Ts)(1)s5(1)) 4 = 1, (17)
0 0
or

txt =1, (18)
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where x* = x..(w = 0) is the static transverse susceptibility.
These expressions must be calculated in the nonsuperfluid
phase where M = 0. In this regime the effective action Seg
is classical, which entails the further simplification R(t) = 1.
This feature is due to the suppression of quantum fluctuations
in the nonsuperfluid phase by factors of 1/ N, due to the scaling
of the transverse coupling. It allows us to find the superfluid-
insulator transition analytically, even at zero temperature,
without solving a full quantum impurity problem. In particular,
we immediately find that the transition from the disordered
high-temperature phase to a glassy phase is given by

T,=J, 19

exactly as in the classical SK model. However, the glass
transition line will be modified if it is preceded by a superfluid
transition at higher temperature.

B. Solution of the saddle-point equations

A full solution of the saddle-point equations involves the
solution of the problem of interacting replica as well as
the evaluation of dynamical correlation functions with the
effective action Se, if M # 0 and the replica symmetry is
broken as well. Here we describe what steps an exact solution
involves, and then discuss the approximations we will use to
study parts of the phase diagram, especially the bulk of the
superglass phase.

To describe a nonglassy superfluid phase, the replica
structure is trivial, and one needs to solve the self-consistency
equations

M = (s )etr,  R(T) = (Ts5*(1)s°(0))esr (20)

with effective action

272 pl pl
pJ f / dtdt's*(t)R(t — t))s%(r))
2 Jo Jo

Seff:_

1
—ﬂth drs* (7). 1)
0

These can be solved using techniques as used in dynamical
mean field theory.!

In a glassy phase the replica structure has to be taken into
account. Assuming the standard ultrametric structure of the
saddle-point matrix Q,y, the above single-replica scheme has
to be generalized to include a self-consistent distribution of
frozen longitudinal fields P(y) acting on a given replica. This
captures the distribution of random frozen fields y; created
by the exchange of sites i with the frozen magnetization
pattern with a spin-glass state.’? In practice this requires the
simultaneous solution of

m(y) = <SZ)Seff(y)’ my(y) = (Sx>seff(y)’

M= / dyP(y)m(y), (22)

R(x) = / dy POYT s (D)55(0) 5,0
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where the effective single replica action in a frozen field y
reads

Setr(y) = —

272 1 1
FJ / / dtdt's*(0)[R(r — ') — geals*(r))
2 Jo Jo

1 1
—,BIM/ dts*(t) — ,By/ dts*(t). (23)
0 0

The Edwards-Anderson order parameter gga characterizes the
glassy freezing in a pure state of the glass and is given by

gia=q(x =1) = f dy P(y)m*(y). (24)

As first derived by Sommers and Dupont,® the frozen field
distribution P(y) = P(y,x = 1) is obtained from a self-
consistent solution of the differential equations on the interval
x €[0,1],

. q(x) ” ’

m(yvx) = _T[m (yﬂx) + me(yﬂx)m (y,X)], (25)

P(y.x) = %[P’/(y,x) = 2x(m(y,x)P(y,x))1, (26)
with

P(y,x =0) =5(y), 27

where dots and primes denote derivatives with respect to x and
y, respectively. The solutions of these differential equations
solve the saddle-point equations of the replica free energy
(8).%2 The overlap function ¢(x), which parametrizes the
ultrametric matrix Q,, by the distance x between replicas,
must obey the self-consistency relation

m(y,x =1) =m(y),

g(x) = / PO om(y.x). (28)

Notice that Egs. (25) and (26) are the same as in a classical spin
glass. The influence of quantum fluctuations enters through
the boundary condition m(y,x = 1) = m(y), where m(y) was
defined in Eq. (22) These differential equations provide an
elegant way of integrating out all spins except for one.>

Once the above scheme has been solved self-consistently,
site-averaged observables such as the longitudinal magnetiza-
tion are given by

1
M = <N Zs§> = /dyP(y)(Sz>sen-<y>

= / dy P(y)m(y). (29)

The properties of the solution of these differential equations
are well understood in several classical models exhibiting
full replica symmetry breaking with continuous functions
q(x).>7 The full solution of mean field quantum glasses
in the ergodicity broken has not been analyzed in the literature
so far. However, an analysis of the transverse field SK model
shows that most features of the low-temperature solution of
q(x) carry over rather naturally to the quantum case.** A salient
new feature in the quantum case is the fact that full replica
symmetry breaking implies marginal stability of the whole
glass phase, which in turn ensures the presence of gapless
collective excitations. The latter is very similar to what was
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found, e.g., in the threshold states of quantum p-spin models,>®
or in the quantum dynamics of elastic manifolds, approximated
with a replica symmetry-breaking variational approach.>

C. Alternative derivation by a cavity approach

The replica-diagonal part of the above scheme will become
easier to understand, if we derive it in a cavity framework®®
similarly to the derivation of the quantum analog of Thouless-
Anderson-Palmer equations by Biroli and Cugliandolo.®®
From a cumulant expansion in the couplings involving site
o it is easy to obtain the following effective action for the
site o:

Seff
ﬁZ 1 1
= —7 / / d‘rd-,;/sé(t) |:Z ]()zl-(siz(‘[)siz(-,;/)>ii| sﬁ(-,;/)
0 0 i

1
—B / dr (hi(T)si(t) + h(1)s) (1)) (30)
0

Here
W) =Y Julsi @) = Juilsi) Gh

is the site-dependent longitudinal field, which does not depend
on time, however. The index o denotes a “cavity average,” i.e.
an average over the action of the system, in which the site
o has been removed. The subscript ¢ indicates a connected
correlator. The effective transverse field,

P =Y = < )

i i

l l
=5 D (st =M, (32)

does not fluctuate from site to site, and is independent of t if
we neglect subleading terms, which scale as inverse powers of
N. Note that for large N

s s > PIRT — ) —qeal. (33)

independently of the site 0. The distribution of /; over the sites
i is the frozen field distribution,

N
P(y)=N"! Zs(y—hf), (34)
i=1

computed in the replica formalism. Thus we precisely recover
the self-consistency problem for the replica diagonal, while
the solution of the replica off-diagonal part furnishes the
distribution P(y).

For the study of the phase transition from the insulating
glass phase into the superfluid, it will prove crucial to use the
full low-temperature solution of the SK model. However, in
order to analyze properties of the mixed superglass phase we
will restrict ourselves to a one-step approximation, which we
discuss in the next section.
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D. Static and one-step approximation

In order to avoid solving numerically a full self-consistent
quantum problem as outlined in Egs. (22) above, we will resort
to the widely used static approximation. The latter consists in
seeking a minimum of the free energy not with respect to the
full function space R(t) but, instead with respect to a constant
value R(t) - R.

A further approximation, which we will use in the study of
the quantum glassy phases, is the one-step approximation for
the structure of replica symmetry breaking. It is equivalent to
assuming a step form of g(x),

q(x) = O —x1)Q1 + O —x)Qo, (35

and optimizing the free energy over x;,Q1,Qo. This is
expected to give qualitatively good results, especially at
intermediate temperatures and close to the glass transition.
Combined with the static approximation for the replica diago-
nal, short-time part one obtains the free-energy functional per
spin:

272
=’34J [(xl—l)Qf—x1Q§+R2]+%M2

1
——/Dyolog/Dyl
X1
X1
x [ / Dyg2 cosh (ﬂ\/m)] . (6)

Bf

where hy, = yo+yi +yr. Dyo, Dy, and Dyp are
2 2
Gaussian  measures: Dy, = %dm Dy, =

expl—y1/2(Q1—Q0)J*] p[—y,zg/2(R—Q1)JZ]d

dyl, and DyR == VR.
A/ 27(Q1—00)J? /2 (R=01)J?

Note that Q; = gga is the Edwards Anderson order
parameter in the one-step approximation, while Qg is the
overlap between different spin-glass states. We point out that
the above free energy differs from the expression given in
Ref. 15, where the static approximation was not carried out
correctly. This error was at the origin of several strange
features of the phase diagram reported there, such as a
T -independent transition between superfluid and superglass
and a J-independent superfluid transition.

E. 1RSB free-energy and self-consistent equations

Here we rewrite the one-step self-consistency equations
with the help of the local-field distribution.
The effective partition function of a single spin is

Zegi(y) = TrT exp[—Setr(y)]

272 1 pl
= TrT exp (ﬁ / / drdt’
2 Jo Jo

x sY(D)[R(t — t') — gpals™(r))

1 1
+ ﬂth drs"(r)—l—ﬂy/ drsZ(r)). (37)
0 0

In the case of one-step replica symmetry breaking (RSB),
the frozen field distribution within one pure state can be
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obtained by stepwise integration of the flow equations (25)
and (26), yielding [cf. Eq. (49)]
PG _/ - [ Dyi8ly — (o + yDI1Zoke(vo + y1)
[ DI Zg(yo + 31)

where Dy; is a Gaussian measure like Dy; with variance

(01 — 00)J>.

Under the static approximation, Eq. (37) becomes

N E L))

Zett(y) = / Dy Zgu(y + Yr), (39
where
Zga(y) = 2cosh(By/ y? + M?t?). (40)

One can interpret yg as a random field, which is generated
by the thermal fluctuations of the nonfrozen part of the
magnetization.

The longitudinal and transverse magnetizations of a spin in
a frozen field y introduced in Eqgs. (22) are easily seen to be
given by

d
Ea_ln[zett(y)] (41)

m(y) = (s%) sy =

my(y) = (8" ) sa) = In[Zes ()] (42)

B o(tM)

The saddle-point equations for the Edwards-Anderson param-
eter Q; and the superfluid order parameter M can now be
expressed as

1

Qv=ﬁ§]#f=f@m@m%w 43)
1

M=N§]m=/wmme. (44)

i

The saddle-point equation for the parameter R reads

ﬂ@—Q»:/P@muw@, (45)

which relates the static approximation of the connected s°
correlator, R — Q1, to the average local susceptibility

0
() = 2 (46)
ay

The saddle-point equation for the Q( can be written in a similar
way:

Qv = [ dyPuxm’ (i), (7)
where
1 Y
P(yo;x1) = exp (— )
V27 Qo J? 200J?
Dy1 Z (o + yom(yo + y1)
meozf - = . (48)
/D3R Z 3 (vo + 51
are discrete versions of the continuous functions

P(y,x),m(y,x) introduced above.
Optimizing the one-step free energy with respectto Q, M,
R, and Q, yields the saddle-point equations Eqs. (43)—(47). To
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capture equilibrium states, we should further extremize with
respect to the Parisi parameter xi, i.e., = 0, which yields
the further condition

132‘]2

(0} - o

=/D)’OIH/Dy1Z§f'f(yo+Y1)

Dy, Z InZ
—xlnyof V1Zoe (Yo +x)li1) eff(y0+y1). 49)
[ Dyi1 Zg(yo + y1)
It is a useful check that upon imposing Q; = Qy, the

saddle-point equations for Qgp and Q; reduce to the same
replica symmetric constraint. When M = 0, the local-field
distribution, the free energy and the saddle-point equations
reduce to those of the classical SK model, as it should be.

IV. PHASE DIAGRAM

Let us now study the phase diagram of our model (3).
The gross features of the phase diagram we find are similar
to the ones found in Refs. 15 and 16: The low-temperature
phase exhibits three phases: a nonglassy superfluid at small
J/t, an insulating (nonsuperfluid) glass phase at large J/t,
and, most interestingly, a phase in between with both glassy
order and superfluidity. However, as mentioned before, we
find a distinctly different behavior of the phase boundaries
than Ref. 15.

Moreover, we are able to analyze the limit 7 — 0, whose
properties were inaccessible in previous works.'>!¢ The latter
is of particular interest in the context of the superfluid-insulator
transition.

The findings of the mean field analysis are in qualitative
agreement with Monte Carlo studies in finite dimensions at
low but finite temperatures. The analytical approach allows
for a detailed analysis of the properties of the mixed phase,
and of the glass-to-superglass transition.

A. High-temperature phase

The high-temperature phase is simple to describe. Since
M = 0, the system behaves identically to the paramagnetic
phase of the classical SK model, and R = 1 holds exactly. In
this regime the static approximation is of course exact.

At large enough J /¢, the leading instability upon lowering
the temperature is the classical glass transition at T, = J,
as mentioned earlier. However, at small values of J/t, the
tendency to form a superfluid wins. The instability condition
toward XY symmetry breaking,

L mG =0

rx
ohy h,=0

=1, (50)
can be evaluated exactly. In this expression h, is a
uniform transverse field. The transverse susceptibility is
easily calculated for the replicated Hamiltonian with a
Hubbard-Stratonovich transformation of the quadratic term
R [ dtdt's*(v)s*(’). This results in the instability criterion

1_ [ dhe 127 sinh(Bh)/Bh

= ~ 51
t [ dhe="*/27* cosh Bh D
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FIG. 1. (Color online) Phase diagram of glassy hard-core bosons.
At high temperature, the straight blue line 7 = J indicates the
classical SK glass transition line. The red solid line shows the
superfluid phase boundary which is given by the instability condition
(51). The two lines cross at the tricritical point (T/t)r = (J/t)r =
0.7248. At low temperature, the blue line shows the phase boundary
of the glass within the superfluid phase, as evaluated within the static
approximation, cf. Eq. (16). The glass transition at 7 = 0 occurs at
(J/t)gsac = 1/2. The red solid line indicates the location of the onset
of superfluidity within the glass phase, as evaluated within the full
breaking of the replica symmetry to the instability condition (63).
The superfluid transition at 7 = 0 takes place at (J /1), = 1.00.

The glass transition and the superfluid transition line cross at
the tricritical point,

[ dze=/*sinh(z)/z
[dze=#/?coshz

Tr =Jr=tr =0.7248t7. (52)

The result (51) does not have the familiar looking form of an
average local transverse susceptibility. However, it can indeed
be recast in such a way. This furnishes us a better understanding
of the interaction effects in the high-temperature phase, and at
the same time illuminates the nature of the static approximation
in the superfluid phases.

Let us rederive the above result directly from the nonrepli-
cated Hamiltonian:

H = —% Z Jijsisi — # Z (sj‘s; +57s7) — ths;‘,
1 L i
(53)

where /i, is an infinitesimal field. In a given classical Ising
configuration, the spin i sees an “instantaneous” local field
hi =3, Jijs;, while the transverse coupling is negligible
in the paramagnetic phase where N~' > j (s;") =M=0=
N~ (s7). Thus the transverse susceptibility can be calcu-
lated as a site and configuration average of the susceptibility
of a single spin sitting in an instantaneous field &, x*(h) =
[ d(s*(2)s*(0)) = tanh(Bh)/ h.

The thermal distribution of instantaneous local fields of the
SK model has been well studied,®' and takes the rather simple
form

h2 szz
expl—5mz —
Pins() = cosh(Bh) (\/2217 )
4

(54)
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in the paramagnetic phase. Note that the instantaneous field
distribution is not a simple Gaussian, but small fields are
under-represented. This phenomenon is closely related to the
suppression of small fields encountered in the cavity approach
to Ising systems,®® and is a precursor effect of the opening of
the pseudogap in glassy phases at low temperatures.?6-%>7

The total transverse susceptibility is obtained as an average
of the local susceptibility x (k) over Py (h):

Xt = / dh P (X (h)

g2 dh e,h2/212 sinh /3/’1 55
=e T h (55)

which indeed coincides with the replica result (51).

The static approximation for superfluid phases has a
completely analogous effect. The approximation replaces the
dynamically fluctuating exchange fields on the various sites
by a random distribution of quasistatic fields. The latter differs
from the distribution of frozen fields (which is Gaussian at
high T) by arandom Gaussian smearing with variance J>(R —
gEa), and a reweighing factor proportional to cosh(B%), which
accounts for the fact that a small instantaneous field is less
likely to be observed on a given site, as it implies a positive
free-energy fluctuation in the environment.

B. Onset of glassy order within the superfluid

The instability toward forming a glass occurs when J x| =
BJ [drdt’'R(r — t') = 1. Within the superfluid phase it is
difficult to calculate this susceptibility exactly, and we thus
first resort to the static approximation, R(t — ') — R. The
instability of the statically approximated free energy occurs
when JBR = 1, BR being the static approximation for the
longitudinal susceptibility x |. Within the nonglassy superfluid
phase there are no frozen fields, P(y) = (y). Thus, from
Egs. (44) and (45), the two relevant saddle-point equations
read

M =m.(y =0), (56)

BR = Xy = 0), (57)
where m,(y = 0) and Xll(l)c(y = 0) are to be evaluated from
Egs. (39)-(42) and (46).

They have a relatively simple low-temperature limit. One
verifies that it is self-consistent to assume that

BR=x' > M 1-ml (58)
r r’

with finite numbers r,m, as T — 0.

Injecting this into the above self-consistency equations, and
evaluating the Gaussian integral over yg in Eq. (39) around the
stationary point, the equations simplify to

J*r

2

"=y

r=1+ + O(T/1), (59)

+ O(T/1). (60)

This yields the solution for the susceptibility J x! = Jr/t =

LA+ VT =4I,
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The static approximation predicts the quantum glass tran-
sition to occur at the critical point,

(9),..:
t g, stat 2’

where J ! = 1.

It is difficult to predict whether we over- or underestimate
the phase boundary with the static approximation in the
superfluid phase. This is because the approximation has two
competing effects with respect to the onset of glassy order.
On one hand, we approximate the dynamic longitudinal
susceptibility by the static one. Since the latter is bigger,
we tend to overestimate the stability of the glassy ordering
of s*. This effect is well known from the SK model in a
(constant) transverse field I".°%6%%3 On the other hand, the
static approximation underestimates quantum fluctuations of
sy, at least at low T'. Indeed we see above that at T = 0, the
static approximation predicts maximal transverse order, M =
1, independently of the value of J /¢, while it is easy to show
that quantum fluctuations around the transverse ferromagnetic
state decrease the magnetization as M = 1 — O[(J/1)?]. The
overestimate of M leads to an underestimate of the longitudinal
susceptibility, and thus of the tendency to glassy order. In view
of these competing tendencies, it is hard to predict on which
side with respect to Eq. (61) the exact glass instability will be
located.

However, there is a simple way to obtain an upper bound for
the quantum critical point. In the superfluid phase our model
(3)is very similar to the SK model in a constant transverse field
I',%% with the difference that the effective transverse field M¢
is self-generated and has to be determined self-consistently.
However, it is clear that the effective transverse field is always
smaller than 7. From quantum Monte Carlo results for the
transverse field SK model, one knows that a quantum glass
phase is obtained for J/T" > 0.76.° This implies that the
model studied in the present work must certainly be in a glassy
phase if J/t > 0.76. The latter value is thus an upper bound
for (J/t),. Approaching from large values of J/ T we will find
below in Eq. (66) that the nonsuperfluid glass phase becomes
unstable toward superfluidity already at (J/¢); = 1.00. Hence
we conclude that a phase with both superfluid and glassy
order parameters exists for a substantial range of parameters
covering at least the interval 0.76 < J/t < 1.00.

(T =0, (61)

C. Superfluid instability within the insulating glass phase
1. Instability criterion

Our discussion of the phase boundaries will be complete,
once we have addressed the superfluid instability with in the
glass phase at large J/¢. The instability condition reads

Im(y)
ohy

t/dyP(y) =1, (62)

he=0

where P(y) is the nontrivial distribution of frozen local fields
in the classical glass phase of the SK model. The properties of
P(y) are well studied, and turn out to be crucial to understand
the low-temperature behavior of the phase boundary and the
physics of the glassy superfluid-to-insulator quantum phase
transition.
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We recall that in the nonsuperfluid glass phase the static
approximation is exact with R = 1, so that the instability
criterion can be expressed in the form

t/d P J Dyg sinh(B(y + yr) 5357
ey [ Dyg cosh[B(y + yr)]

1
V27 (1=gea)J?
can be expressed in terms of the instantaneous field distribution

as

=1, (63)

where Dyp = exp(—z(l_ﬁi/\)ﬁ). This condition

tanh(B8h
, f thmst(h)% ~1, (64)
where
—_v)2
cosh g exp (— 252 — £32)

Pingi(h) = / P(y)dy (65)

cosh By J2mho/B

is the instantaneous field distribution, which was first derived in
Ref. 61. The term hp = BJ*(1 — gga) is known as Onsager’s
back reaction. Equation (64) can be recognized as a BCS
equation, where the instantaneous field distribution Py (h)
takes the role of the density of states.

The temperature-dependent local-field distribution can be
obtained from a numerical solution of the self-consistent
set of full RSB equations (25)—(28), from which the phase
boundary of the insulator-to-superfluid transition is deduced.
This yields the solid (red) line in Fig. 1. For comparison we also
evaluate the phase boundary within a one-step approximation,
which works well at moderate temperatures. However, it
fails badly at low T where a nonphysical reentrance of the
superfluid instability would be predicted, and the quantum
phase transition at 7 — 0 is completely missed.

We note in passing that the thermodynamics of the
insulating phase is essentially classical because of the scaling
of the transverse coupling as # /N . If instead # were random and
scaled as 1/4/N, the glass phase would also exhibit quantum
fluctuations and would not reduce to the purely classical
SK model. In that case, the analysis of the transition would
become much more complicated. However, even though the
thermodynamics can be obtained by a purely classical saddle-
point computation, one should not conclude that excitations
do not have any quantum dynamics.

2. Low temperatures and quantum phase transition

At low temperatures, the most prominent feature of the
local-field distribution P(y) is a linear pseudogap which
opens at small fields. The latter is required to assure the
stability of the glass phase,®*% in a very similar manner as the
Efros-Shklovskii Coulomb gap arises in electron glasses with
unscreened, long-range 1/r interactions.”’>” More precisely,
it is known that P(y) = a|y| + O(T) with o = 0.301 for
fields in the range T « |y| « J, while the distribution
decays like a Gaussian for |y| > J. At zero temperature
the pseudogap extends down to y =0 (i.e., the chemical
potential in the terminology of hard-core bosons), while at
finite but low temperatures 7 < J, P(y) assumes a scaling
form P(y) = Tp(y/T) with P(0) = const and p(x > 1) =
o|x| + const.3%>7
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This scaling form asserts that only a fraction of (7/J)? is
thermally active. Therefore the Edwards-Anderson parameter
tends to 1 as 1 —gga ~ (T/J)*. Accordingly, as T — 0
there is no difference between the distribution of frozen and
instantaneous fields, Pi, (%), since no thermal fluctuations are
left. In this limit the instability condition (63) for onset of
superfluidity then takes the form

tS/dy%fo) =1 (66)

Using the above-mentioned features of P(y) at low T one
can easily obtain a rough estimate for the superfluid-insulator
transition point as (J/t); >~ 1.05 £ 0.1. However, since the
precise value is also sensitive to the part of P(y) at high fields,
y > J, a full numerical evaluation of the condition (66) is
necessary to obtain the exact location of the quantum critical
point. Using high precision data for P(y;T) at low T from
Ref. 66, we find (J /), ~ 1.00 £ 0.01.

We emphasize an important difference between the quan-
tum phase transition we have found here and a standard
BCS transition. The latter, in the presence of a constant
low-energy density of states always yields a finite 7, even
though it becomes exponentially small in 1/¢ for small ¢.
In our glassy system the situation is fundamentally different
in that the frustrated interactions suppress the density of
states around the chemical potential with P(y — 0) — 0.
This quenches the tendency for superfluidity and allows for
a superfluid-to-insulator transition at a finite value of ¢, even
in the mean field limit of N — oo, which we consider here.

This has important consequences for the nature of excita-
tions and transport properties across the superfluid-insulator
transition. In particular, the transition to the Bose insulator
is accompanied by the Anderson localization of lowest
energy excitations, whereas higher energy excitations remain
delocalized relatively far into the insulator.®” We believe that
the physics revealed by this mean field model is relevant
for Coulomb frustrated bosonic systems which undergo a
transition from a superfluid to a Bose glass state in finite
dimensions. This will be discussed in detail elsewhere.®®

It is interesting to compare our mean field predictions for
the phase diagram with the three-dimensional (3D) quantum
Monte Carlo (QMC) simulation results reported in Ref. 15. The
mean field predictions for the quantum critical points actually
match the numerical results surprisingly well. The latter were
done for the Hamiltonian

H==Y Vi —1/2)n;—1/2)
(i, J)

—1" (blb; +H.e), (67)
({i,J)

with binary disorder, V;; ==V’ with equal probability.
Contact with the mean field model (2) is made by replacing
the coordination number with N — z = 6 for the 3D cubic
lattice, and taking a Gaussian disorder with the same variance,
V2/z = V", as well as a hopping t,,/z = 1'.
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Recalling the dictionary (4), the mean field estimate of the
superglass-to-glassy insulator quantum phase transition is

vAM vz (4T
<l_/>s _< e ) _( 2t/z ) ©®

J v\ e
=2z (;) ~49~ (7) ~5,

s

which comes close to the extrapolation of QMC results to
T = 0. The transition point between superglass and nonglassy
superfluid is estimated from the static approximation as

vAM J
(_,> =2z (-) ~2.45
4 8 t g,stat

7\ QMC
~ (%) ~ 3.2. (69)
8

This indicates that the static approximation overestimates the
stability of the superglass phase, similarly as what is known
from the mean field version of the transverse field Ising spin
glass.

The mean field prediction (with static approximation) for
the interaction-to-hopping ratio (V'/t")r at the tricritical point
is rather good, too,

V/ MF J
(7> =2z <?) ~3.55
T T,stat

v/ QMC
~ (—/) ~ 3.8. (70)
v )r

While the tricritical ordering temperature is overestimated by
a factor of 2 (similarly as in the classical Ising spin glass),®

MF
(Z> =5<Z> ~22, 71
)y 2\t /),
7\ QMC
<_> ~1.1. 72)

D. Robustness of the phase diagram to random-field disorder

In the previous sections we have seen that the model (3)
possesses an intermediate phase which is simultaneously su-
perfluid and glassy. We have determined the phase boundaries
as instability lines, assuming second-order phase transitions.
Indeed it seems unlikely that any of the instabilities could
be preempted by a first-order transition. Since the superfluid-
to-insulator transition at (J/t); is of particular interest, we
provide further arguments in this section that the parts of
the phase diagram related to the phase boundary of the
nonsuperfluid glass remain robust when disorder potentials,
i.e., random fields ¢; of variance W2, are restituted to the
model. In particular we will show that glass and superfluid
transition lines meet at a tricritical point at finite temperature
Tr/J and (J/t)r. Further, we determine the superfluid
instability of the glass phase at T =0 and show that it
always occurs at a larger ratio (J/¢) than the tricritical point,
(J/t)s > (J/t)r. This suggests that for any W the transition
line between nonsuperfluid and superfluid glass is not reentrant
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as a function of temperature. The absence of reentrance in turn
suggests that the quantum phase transition out of the insulating
glass remains second order, independent of the strength of the
disorder potential.

The Hamiltonian with a disorder potentials reads

_Zjijsfs§—%2ss +ss Zes (73)

i<j i<j
The disorder potential breaks the Z, symmetry, therefore
Quzp 7 0 already in the high-temperature phase, where it
assumes a constant replica symmetric value Qg. The glass
phase occurs at the Almeida-Thouless instability, which is

given by”’
P
,BZJZ/dy u;(y) _ (74)
cosh™(By)
where
2
exp (— 5ty
Py = ST (75)
V2 (W2 4+ J2Q0)
and Q) satisfies the self-consistent equation
00 = [ Py ant(y)dy. (76)

The instability toward the superfluid phase is instead
determined by

1t = / ah P ) ) an
where

h—y? B
cosh Bh exp (— ﬁ(2h;) - ﬂ%)

Pingi(h) = / D) Shpy ™ arholp
(78)

with the Onsager field hp = BJ*(1 — Qy).>"0!

The glass and superfluid transition lines meet at a tricritical
point at (T'/J)r and (J/t)r, which are to be evaluated from
Egs. (74)—(78). In the limit W/ J>1, one finds the tricritical
temperature (T/J)r = 3fW + O(WZ) and Brho — 3/2,
as W/J — oo.

The superfluid transition at 7 = 0 is given by the condition

(1/t)y = /dhw. (79)
Al
In the limit W/J > 1, Puy(h; T = 0) is known to have a
simple structure:

alhl/J?, bl L N,
Pingt(h; T = 0) = exp (20zz 2w (80)
%7 |h| >> h*a

with a smooth crossover between the two limiting forms

«/IEW + O(WZ) The value of the constant

y = 0(1) can be estimated by the normalization condition
f dh Py (h; T = 0) = 1, but will be irrelevant below.

around h =

For W/J > 1, (J/t); and (J/t);r both behave as
«/4* 1“%//) to leading order. Their difference scales like cJ / W.
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FIG. 2. (Color online) Cross correlation between the local order
parameters for superfluidity and glassy order, respectively. The
correlations are evaluated from Eq. (85) in the temperature range
0.05 < T/t < 0.75 at fixed disorder J/¢ = 0.724, close to the ratio
corresponding to the tricritical point. The local order parameters are
anticorrelated, the maximal anticorrelation occurs at intermediate
temperatures.

The coefficient ¢ can be evaluated easily by rescaling the
variables Brh = h and Bry = 7,

W
- [(J/t)s —(J/Dr]

c= lim
W/J—

f/—[p(h T =0)— f(h)l. @81

p(h;T =0) = lim \E W Pug(h/Br: T = 0) (82)

W/J—>00
and
d$ sinh(h) exp (5= (h =iy %)
/27 cosh(P) v 27r '

and we have used Brho — 3/2. We approximate Eq. (80) by
extending the formula all the way to 2* and neglecting the shift
of field & and we get

fh) =

(83)

. T 1< g
p(, T =0)~ ; . , (34)
e =4

Evaluating Eq. (81) numerically, using the estimate Eq. (84),
one obtains ¢ = 0.231 > 0, establishing that (J/t); > (J/t)r
even in the presence of strong disorder. We point out that
Eq. (84) overestimates Eq. (82), but this overestimation should
be much smaller than ¢ = 0.231.

V. PROPERTIES OF THE SUPERGLASS PHASE

Having established the phase diagram of the model, we
now focus on the properties of the bulk of the superglass
phase. There the interplay between temperature, glassy order,
and superfluid order induce several interesting phenomena,
which potentially survive also in finite dimensional models
of frustrated bosons. In the following, we investigate how the
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glassy and superfluid orders evolve with temperature, and how
they are locally correlated.

A. Competition between glassy and superfluid order

While the effective transverse field A7 = Mt is uniform
for every site, the frozen longitudinal field 4 depends on
the site (and on the pure state in which the system is frozen).
Therefore the magnetization of the local spin s; due to the local
field Z = (h7,h3) fluctuates from site to site. It is interesting
to study the correlation of the local magnetization, whose
components are the local order parameters of the glassy and the
superfluid order, respectively. More precisely, we investigate
the following correlation function:

S 2 31 ) i :3 D11 [6: ML
’ (3 st (3 i fs5))
[ dyP(y)m (y)m*(y) — Mgga
B Mgea ’

(85)

We have evaluated the correlation function (85) within the
static one-step RSB approximation in the center of the super-
glass phase (J/t =0.724) as a function of temperature
(0.05 < T/t < 0.75); see Fig. 2. Not surprisingly, the corre-
lation is negative, since glassy and superfluid orders compete
with each other. Indeed, one easily checks that for every pair
of sites (i,j) it holds that if (sf)2 < (s?)2 then (sf) > (s7).
The maximal amplitude of the normalized correlation Cyy g4,
is only of order ~ 0.1, suggesting that in the superfluid
phase the nonuniformity of the two local order-parameter
fields is actually not very strong. It may be that the one-step
approximation underestimates these correlations a bit. The
relative weakness of the anticorrelations might be the reason
they have not been noticed in the quantum Monte Carlo studies
of Refs. 15 and 16.

B. Nonmonotonicity of the superfluid order

In the superglass phase, the glass order parameter gga =
0, monotonously decreases with increasing temperature,
as one should expect. However, surprisingly, the superfluid
order parameter M exhibits nonmonotonic behavior with a
maximum at an intermediate crossover temperature 7,,, as
shown in Fig. 3. Below T,,, the superfluid order parameter
M decreases, anomalously, when lowering the temperature.
Above T,,, M decreases with increasing temperature as usual
in a standard superfluid.

This phenomenon is related to the anticorrelation between
glassy and superfluid order discussed in the previous section.
While on one hand, thermal fluctuations tend to diminish
both glassy and superfluid order, there appears to be a low-
temperature regime T < T,,, where quantum fluctuations of
the superfluid order are dominant. Due to the competition
between the glassy and the superfluid order, the thermally
induced decrease of the glassy order enhances the superfluid
order. This effect dominates over the direct thermal effects on
the superfluidity.

It seems natural that it is the superfluid order, which
undergoes such nonmonotonic behavior, rather than the glassy
order. Indeed, we expect the latter to react less sensitively
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FIG. 3. (Color online) The order parameters in the superglass
phase as a function of temperature 0.05 < 7'/t < 0.79 at the fixed
disorder J/t = 0.724. The blue dashed line indicates the Edwards-
Anderson order parameter Q; (in one-step approximation), which
monotonously decreases with increasing temperature. The superfluid
order parameter M (red solid line) exhibits nonmonotonic behavior.
The long-time (static) on-site charge correlation R (green dotted line)
becomes 1 in the disordered high-T" phase.

to the diminution of quantum fluctuations due to decreasing
transverse fields.

We note that also the local order-parameter correlations
Cwm, g, €xhibit a nonmonotonous behavior within our static
one-step approximation, as shown in Fig. 2. The absolute value
of Cp 4, increases with temperature at very low temperatures,
and decreases at higher temperatures. This can be seen again
as a consequence of the nonmonotonicity of the superfluid
order. At fixed T, the larger #* the stronger the normalized
anticorrelation Cyy g4, . Since h* = t M initially increases with
T, it is natural to expect an increasing Cy 4., until eventually
thermal fluctuations become dominant and diminish Cyy 4, .

VI. DISCUSSION

In this paper we have analyzed a fully connected mean
field model. The full connectivity is not a real limitation,
however. Indeed, one can generalize the model to a highly
connected Cayley tree. While this does not affect the ther-
modynamics of the model, this generalization allows for
the study of localization and delocalization of excitations,
since this model is endowed with a notion of distance. The
analysis of localization properties is of particular interest in the
vicinity of the superglass-to-insulating-glass quantum phase
transition, where the boson system collectively delocalizes
into a superfluid at low energies. The nature of higher energy
excitations in the insulator are crucially affected by the
suppression of low-energy states in the glass, leading to a
nontrivial excitation spectrum at the glassy SI transition. The
details of this analysis will be reported elsewhere.®

What features of the mean field model should be expected
to carry over to finite dimensions? In the present model we
find a genuine insulating phase at T = 0, which suppresses
the superfluidity, due to the strong self-generated on-site
disorder within the glassy phase. A crucial ingredient for the
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suppression of superfluidity is the linear pseudogap within the
glass phase. A very similar pseudogap is known to occur in
disordered Coulomb interacting systems, where it is due to
unscreened 1/r interactions between charged particles. This
Coulomb gap may well be of importance in strongly disordered
superconductors and play a significant role in the competition
between glassy insulating behavior and superconductivity. In
particular, in materials with strong negative U centers, one
may think of preformed electron pairs constituting hard core
bosons which interact with Coulomb repulsions.”® The power
law suppression of the low-energy density of states makes it
likely that the superfluid condensate is entirely destroyed once
the hopping becomes too small. For short-range interactions
the density of states is merely reduced at low energy, but does
not tend to zero. On a Cayley tree of very large connectivity
this will always lead to delocalization, unless the hopping ¢
is scaled down logarithmically with the connectivity. In finite
dimensions, however, sufficiently strong disorder is known
to suppress superfluidity,”® and thus one may expect that
at sufficiently large ratios J/¢, the disordered boson model
will localize due to spontaneously created, frozen-in local
fields. Such a conclusion may be suggestive from a straight
extrapolation of the quantum Monte Carlo results of Ref. 15
to T = 0, but it seems difficult to exclude a scenario in which
T, becomes merely exponentially small with J/f. A more
careful analysis will be necessary to settle this question in
finite dimensional, short-range interacting glasses.

As for the coexistence phase, the superglass, the numerical
data'>!% provide evidence that it exists also in finite dimen-
sions. It would be interesting to confirm and quantify the local
anticorrelation of order parameters in such simulations. From
our mean field analysis one expects that the anticorrelation
is in fact relatively weak. A further nontrivial prediction
with measurable consequences is the nonmonotonicity of the
superfluid order parameter, which should translate into an
equivalent nonmonotonicity of the superfluid stiffness as a
function of temperature. This nonmonotonicity has its origin
in the softening of the glassy order at low 7', a feature which
may potentially survive in finite dimensions, especially when
the lattice connectivity is large, or the interactions are not
too short ranged. We should caution though that we obtained
this effect by employing a static approximation and a replica
symmetry breaking at the one-step level only. However, we
believe that it is a real feature of the model.

As discussed earlier, a number of experiments have already
shown promising indications of possible coexistence of glassy
order with superfluidity. We hope that our analysis will
help to unambiguously identify such phases in experiments.
Note that finding an experimental system exhibiting a glassy
superfluid-insulator transition might also be of great interest to
study the intricate interplay of interactions and disorder with
respect to glassy ergodicity breaking, and quantum ergodicity
breaking, i.e., Anderson localization.
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APPENDIX: DERIVATION OF RS FREE ENERGY

With standard replica trick® we can get the RS free energy:
J2B2 J2g2 1 o[l
P + p / / dtdt' R*(z,7)
4 Jo Jo

2 1 2
0 (Z / d:s;(r)>

/dr/ drR(tr)s (r)s (t)

J2,32 . 2
- Q;(/o dtsa(r)>
1
dtM's* .
—HIBZa:/o T asa(r)]

Under static approximation: R(t,t’) = R, we have

202 2
J,BQ_'_A3 +TﬂR2

o 2B v 2
_il—% ;lnTrT exp |: > 0 (2{1:/0 dts(;(r))
J2,32 1 . 2
+ (R - Q)?( /0 dtw))
1
+ dtM*s?* .
tﬂXa:fO t asa(r):|

According to Hubbard-Stratonovich transformations, we lin-

earize the quadratic terms ()_, fol dtsZ(t))* and ( fol dtsi(1))*
by introducing extra fields yy and yg:

J2‘32 J2,32 %

Bf = -

t

n—0n

J2
— lim —lnTrT exp

J22
S

(AD)
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(A2)

= R? M?
Bf 0%+ ) +3
- / Dygln / DyrTrexp[B(yos® + yrs® + tMs*)]
12 2 2 2 t
_ ﬂ CAL Ay ﬂ JB g P B Mz

- / Dyoln/ Dyg cosh(ﬂ\/(yo + yr)* + 12M?).
(A3)

One can get Eq. (36) following the similar steps above.
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