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Application of an axial next-nearest-neighbor Ising model to the description of Mn+1 AXn phases
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We show that some important features characterizing the Mn+1AXn phases, a family of hexagonal-structure
ternary carbides and nitrides (X) including a transition metal (M) and an A-group element (A), can be reproduced
by modifying the spin model known as the axial next-nearest-neighbor Ising model into a form where pseudospin
inversion changes the system energy and requires the inclusion of single- and three-spin products. We describe
the various MAX phases in terms of M-A or M-X bilayer stacking along the c axis. We discuss the dependence of
the cohesive energy and phase stability on coupling parameters which characterize the first- and second-neighbor
interactions between those bilayers. We also address the case of “hybrid” MAX phases.
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I. INTRODUCTION

In this paper we wish to apply the axial next-nearest-
neighbor Ising (ANNNI) model to the case of MAX phases,1,2

which are formed by a stacking of M-A or M-X bilayers.
M is a transition metal, A is an element of the A group,
and X is either C or N.1–4 Such phases form a class
of materials which are expected to play a major role in
applications requiring resistance to oxidation and corrosion,
high-temperature operation, good electrical conduction, and
good mechanical properties, since they combine many of
the positive characteristics of ceramics to that of metals.1,4

These lamellar compounds, about 60 of which have already
been experimentally reported,2 can be synthesized in different
ways, either by bulk synthesis methods such as, e.g., hot
isostatic pressing5 and pulse discharge sintering,4 or by thin-
film methods such as physical vapor deposition (PVD) by
sputtering,6 chemical vapor deposition (CVD),7,8 or solid-
state reactions9 (for an exhaustive review of such methods
one can consult Refs. 1–4). Recently, we have shown that
they could be obtained in a single-crystalline form by using
high-temperature solution growth.10,11 MAX phases are not
an example of polytypism in the strict sense, since changing
n in Mn+1AXn also modifies the stoichiometry. However,
in this paper we wish to show that their formation might
be interpreted by using tools quite similar to those already
developed for studying polytypism. Besides, real polytypism
can also occur and should be discussed, since different MAX
phases, the “conventional” and the “hybrid” ones,2,6,7 may
exhibit the same stoichiometry.

The phenomenon of polytypism is frequently encountered
in close-packed structures,12–14 and silicon carbide (SiC) is
probably the most famous example.15–18 Why some com-
pounds exhibit polytypism and others do not has been the sub-
ject of intensive research. In short, polytypism with long-range
stacking periods has been explained either in terms of crystal
growth assisted by defects (screw dislocations with a very
large Burgers vector16), by energy considerations (which phase
has the lowest energy?),19,20 or by a mixture of arguments
appealing to thermodynamics, kinetics, and defect-assisted
formation.21 Although the longstanding debate between the
proponents of the various models is still far from being closed,
a useful tool for investigating polytypism has been revealed
to be the ANNNI model.22,23 When applied to polytypism, it

describes the energy of the system in terms of pseudospins
and interaction parameters between the various layers which
form a stacking periodic sequence of the investigated lattice.24

The interaction between a given layer and the ones next to it
is accounted for by the use of a Hamiltonian of the form

HANNNI = E0 − J1σnσn−1 − J2σnσn−2 − J3σnσn−3

−Kσnσn−1σn−2σn−3, (1)

where n is the bilayer index, the Ji’s and K are interaction
parameters characterizing the investigated compound, and
the pseudospins σn’s describe a binary property of the
corresponding layer, as further detailed below.

Depending on the structure, the pseudospin can describe
the orientation of a bond which can only point in two possible
directions within a bilayer (the case of SiC),24–26 or the shift
in position of a substructure resulting from the existence of
antiphase boundaries (TiAl3).22 In all cases, two conditions
have to be fulfilled: First of all, any structure must correspond
to only one spin sequence. Second, inversion of all spins of
a given sequence should not change the energy. The latter
point prohibits the existence of spin products with an odd
number of spins in the Hamiltonian. By using the ANNNI
model, various authors have shown that the occurrence of the
most common SiC polytypes could be explained in a plausible
way.24–26 This is due to the fact that, for a given set of coupling
parameters between the bilayers, there is a degeneracy point
in the phase diagram, and for a system located close to this
point, many polytypes exhibit almost the same energy.24 SiC
was presumed to be in such a case, and detailed ab initio and
density functional theory (DFT) calculations have confirmed
this.27 Compounds exhibiting coupling constants far from this
degeneracy point cannot exhibit polytypism, at least from the
point of view of the possible equilibrium phases. Therefore,
calculating these constants from first principles allows one to
assess whether polytypism is possible in principle. It can also
be applied to surface problems such as epitaxial growth of
a given polytype,28–30 or to the estimation of stacking fault
energy.31 Despite its intrinsic tendency to oversimplify, the
ANNNI model has proven to be successful in explaining the
formation of the most common SiC polytypes, even if it is clear
that obtaining one of them clearly relies upon other conditions
(nature of the seed surface, thermodynamic conditions during
growth, etc.).
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FIG. 1. (Color online) Atomic structure of the M3AX2 phase
(drawn with the VESTA software).

First of all, we note that since the A layers of a MAX
phase are always obtained in a locally hexagonal stacking
with respect to the M planes, whereas the X layers are locally
cubic (see Fig. 1), any phase can be uniquely defined just by
specifying the sequence of A and X monolayers successively
intercalated in between M monolayers over a unit cell (A or
X). Knowledge of this sequence thus suffices to reconstruct
the full structure. However, in the case of MAX phases, passing
from a MA to a MX bilayer clearly changes the energy, so that
defining a bilayer pseudospin as up (↑ or σ = +1) for MX

and down (↓ or σ = −1) for MA cannot lead to invariance
under spin inversion. We will justify in Sec. II how this can be
accounted for by introducing a Hamiltonian of the form

HANNNI = E0 + L1σn + L2σnσn−1 + L3σnσn−2

+Kσnσn−1σn−2. (2)

In Eq. (2) we now included a single-spin term, as in the
conventional ANNNI model in the presence of a magnetic
field, where invariance under spin inversion is broken by
application of the field.32 But, as demonstrated in this paper,
the necessary inclusion of the three-spin term causes this
Hamiltonian to differ as well from the ANNNI model with
a field. Using this Hamiltonian, we shall calculate in Sec. III
the energy of Mn+1AXn phases with varying n to establish
a pseudophase diagram as a function of the characteristic
coupling parameters. Depending on the nature and hence on the
location of a given ternary family in the pseudophase diagram,
one can predict the phases which have the lowest energy at T =
0 K. In particular, we will show that there is a degeneracy point
where all phases have the same ground-state energy, and that
the pseudophase diagram is mostly occupied by the 211 and
312 phases.

Our model is not expected to replace ab initio and other
detailed numerical calculations: Just to mention but one
argument, such calculations would be required anyway to
establish the coupling constants we introduce, so as to be
able to put a point corresponding to a particular set of M ,
A, and X atoms on the phase diagram. However, it may
form a useful frame of interpretation, most particularly to
predict, for a particular compound, which MAX phases have
the lowest energy, and thus as a starting point to assess
their stability. More detailed considerations of this kind
are produced in Sec. IV. Of course, we do not claim that
these simple energy considerations are enough to determine

which phase must be formed. This clearly relies not only
upon determining the energy of one phase, but on finding
the relevant competing phases, on determining the energy
difference between the MAX phase and its decomposition
products, and taking into account temperature.33 Obtaining
one MAX phase depends on many additional factors, such as,
e.g., the stoichiometry of a melt, the thermodynamic conditions
during growth and/or solidification, the partial pressures of the
various species for growth from the vapor phase, the presence
of defects, etc. These factors can give rise to the growth of a
particular metastable phase, or even systematically prohibit
the growth of the more stable one. However, we propose
our approach as a useful point of view to investigate those
aspects: More specifically, the model leads to qualitatively
different predictions, depending on whether the structure of the
MAX phase is essentially determined by first-neighbor bilayer
interactions, or also affected by second- and third-neighbor
bilayer interactions. As for other systems, ANNNI-like models
are a tool of choice in the ones available to the solid-state
physicist in order to investigate the stability and complexity
of layered structures with long periodic sequences, as is the
case, e.g., of a 413 phase (eight bilayers per unit cell), or, even
worse, of a hybrid 725 phase (21 bilayers per unit cell).

II. MODEL

Mn+1AXn phases can be described by a hexagonal-close-
packed stacking of atomic layers including only M , A, or X

atoms, each A or X layer being surrounded by M layers (see
Fig. 1). The atoms of a hexagonal-close-packed crystal lie in
three different kinds of sites which we label as a, b, and c (see
Fig. 2), and all atoms lying in a plane perpendicular to the c axis
belong to the same kind of site. In the case of the MAX phases
each X layer is in a “locally cubic environment”: If layer X is
of type b, it is, e.g., in between an M layer of type a and an M

layer of type c. Besides, if several X planes are successively
encountered without any A plane in between, they keep the
same cubic orientation, that is to say, the stacking of X and M

planes can be defined with the same abcabc, etc., succession
of atomic planes (in other words, each X atom lies at the center
of a M6X octahedron). In contrast, each A layer is in a “locally
hexagonal environment,” i.e., the atoms belonging to the planes
below and above a given A plane occupy the same kind of sites
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FIG. 2. Atomic stacking of the 211, 312, and 725 MAX phases
along the c axis and in a (102̄0) plane.
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TABLE I. Definition and numbering of all possible pseudospin
sequences describing the stacking of three successive MA or MX

bilayers in a MAX phase. Spin-down stands for an MA bilayer and
spin-up stands for an MX bilayer.

(n − 2)th (n − 1)th
Configuration bilayer bilayer nth bilayer Energy
No. pseudospin pseudospin pseudospin value

1 ↑ ↑ ↑ E1

2 ↓ ↑ ↑ E2

3 ↑ ↓ ↑ E3

4 ↓ ↓ ↑ E4

5 ↑ ↑ ↓ E5

6 ↓ ↑ ↓ E6

7 ↑ ↓ ↓ E7

8 ↓ ↓ ↓ E8

(e.g., the MAM sequence is of the kind aba). Therefore, plotting
the atomic site as a function of the layer can be represented
by a schematic as in Fig. 2. In this paper, we will take those
rules for granted. It must therefore be clear that our assumption
excludes the possibility to study a polymorphism as described,
e.g., in Ref. 34, or observed in Ref. 35, but which for MAX
phases seems to be closer to an exception than to a rule. To
assume those two hypotheses, rough though this procedure is,
brings forth a comfortable advantage: A mere knowledge of
the succession of A and X planes over a unit cell is enough
to reconstruct the full crystal structure. The latter can thus be
simply described by associating to each A or X layer the M

layer below it so as to group all layers into bilayers, and then
by assigning a pseudospin to the bilayer type: σ = +1 for MX

and σ = −1 for MA. This will allow us to build an ANNNI
model for describing the MAX phases.

If we are interested in interactions up to second-nearest-
neighbor bilayers (that is to say, up to fourth-nearest-neighbor
atomic interactions), we can restrict ourselves to the study of
the different combinations which can be formed by stacking
three bilayers. As is clear from Table I, there are only eight
possible spin configurations. However, in great contrast to
the usual ANNNI models, inverting the spins is equivalent
to turning all A layers into X layers, and vice versa. This
operation clearly leads to a change in energy, so that a
configuration as, e.g., ↑↓↓, is certainly not equivalent to the
inverted configuration ↓↑↑. This means that if one is interested
in enumerating all possible configurations of a MAX phase
surface, limiting its description to three bilayers, we have 23 =
8 different possible values of energy (the system is the
MAX phase substrate + one newly attached bilayer). Let us
define those energies as E1, E2, etc., up to E8 (see Table I).
Then, building an ANNNI-like model is nothing but finding a
convenient analytical expression of the spins to obtain again
those eight energies as a function of spin configuration, and
to apply this expression to an infinite stacking sequence so as
to calculate the energy of the bulk materials (as a side note,
and although not frequently mentioned, previous ANNNI-like
models are implicitly built in the same way, and this is, for
instance, the reason why four-spin terms are required in the
case of SiC, whose description in terms of four adjacent

bilayers leads to eight different possible configurations, now
taking invariance under spin inversion into account26).

To derive a correct formula, to be used either in surface or
bulk problems, we thus require a mathematical expression
depending only on the Ei’s and on spin configuration, so
that for configuration number i the formula is equal to Ei .
Such an expression is quite easily derived by weighting each
energy value Ei by a function of the spins equal to 1 if
the spin configuration is i, to zero otherwise, and then by
summing all the different energy terms so obtained (i.e., we
write HNNN = f1(σn,σn−1,σn−2)E1 + f2(σn,σn−1,σn−2)E2 +
· · · + f8(σn,σn−1,σn−2)E8 with fj (σn,σn−1,σn−2) = 1 if j =
i and 0 if j �=i). A possible function f1 corresponding to
E1 is given by (1 + σn)(1 + σnσn−1)(1 + σnσn−2)E1/8 (see
configuration 1 in Table I). It can be straightforwardly
expanded into a simpler expression, taking into account that
terms of the form σ 2

i are equal to 1:

H1 = E1

8
(1 + σn + σn−1 + σn−2 + σnσn−1 + σnσn−2

+ σn−1σn−2 + σnσn−1σn−2). (3)

The next term, corresponding to E2, is calculated in the same
way from configuration 2 and is equal to

H2 = E2

8
(1 + σn + σn−1 − σn−2 + σnσn−1 − σnσn−2

− σn−1σn−2 − σnσn−1σn−2). (4)

Repeating this calculation for all Ei’s and summing all terms
gives an energy

H = E0 + I1σn + I2σn−1 + I3σn−2 + J1σnσn−1

+ J2σnσn−2 + J3σn−1σn−2 + Kσnσn−1σn−2 (5)

where

E0 = 1
8 (E1 + E2 + E3 + E4 + E5 + E6 + E7 + E8),

I1 = 1
8 (E1 + E2 + E3 + E4 − E5 − E6 − E7 − E8),

I2 = 1
8 (E1 + E2 − E3 − E4 + E5 + E6 − E7 − E8),

I3 = 1
8 (E1 − E2 + E3 − E4 + E5 − E6 + E7 − E8),

(6)
J1 = 1

8 (E1 + E2 − E3 − E4 − E5 − E6 + E7 + E8),

J2 = 1
8 (E1 − E2 + E3 − E4 − E5 + E6 − E7 + E8),

J3 = 1
8 (E1 − E2 − E3 + E4 + E5 − E6 − E7 + E8),

K = 1
8 (E1 − E2 − E3 + E4 − E5 + E6 + E7 − E8).

We obtain simple-spin, double-spin, and triple-spin terms.
Equation (5) is the formula which should be used in surface
problems (for instance, to study epitaxial growth), so that if one
wants to calculate the energy corresponding to a given surface
configuration, knowledge of all eight energies is a prerequisite.
To obtain the bulk formula, we need to sum energies of the
kind given in Eq. (5) over an infinity of unit cells, since we
build the bulk phase by stacking bilayers up to infinity. It is
straightforward to factorize all terms in front of the spin of
a given bilayer of index n, limiting the collected terms to all
three-layer blocks with an upper bilayer index larger than n.
We therefore obtain the energy per M-X and A-X pair after
summing over the N bilayers forming a unit cell and dividing
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by N :

HANNNI = E0 + 1

N

∑
n

[(I1 + I2 + I3)σn + (J1 + J3)σnσn−1

+ J2σnσn−2 + Kσnσn−1σn−2]. (7)

Taking into account the dependence of the Ii’s and Ji’s over
the Ei’s, we can then express the energy as a function of the
Ei’s under the form

EMAX = E0 + 1

N

∑
n

(L1σn + L2σnσn−1 + L3σnσn−2

+Kσnσn−1σn−2), (8)

with

L1 = 1
8 (3E1 + E2 + E3 − E4 + E5 − E6 − E7 − 3E8),

L2 = 1
4 (E1 − E3 − E6 + E8), (9)

L3 = J2 = 1
8 (E1 − E2 + E3 − E4 − E5 + E6 − E7 + E8).

Equation (8) is our bulk ANNNI formula. Due to the presence
of products with an odd number of pseudospins, it is formally
different from that obtained in the frame of the “conventional”
ANNNI model. The energy of any MnAXn+1 phase can be
deduced from knowledge of only five different parameters (one
more than, e.g., in the case of SiC with third-neighbor bilayer
interactions). Besides, if one assumes that configurations 4, 7,
and 8 are highly improbable (succession of two A bilayers),
one can get rid of all the energy values with the same indices
in Eq. (9).

III. APPLICATION OF THE MODEL TO THE MAX PHASES

Let us first give a short description of the existing MAX
phases, as well as of the nomenclature which we will apply
in this paper, and how we connect this nomenclature to the
already published ones: One can subdivide the MAX phases
into “conventional” ones, of the form Mn+1AXn, and into
“hybrid” ones.2 Hybrid phases are more an exception than
the rule. The conventional phases are usually noted 211 for
M2AX, 312 for M3AX2, 413 for M4AX3, etc. As an example,
the crystal structure of the conventional 312 phase is shown
in Fig. 1. As illustrated by Fig. 2, the atom lines in a (112̄0)
plane exhibit a zigzag structure along the c axis, with an equal
number of X bilayers in both zigzag sides. In this paper we
label them as (n,n), where n is the number of X planes in
one “zig.” The corresponding energy is En,n. Hybrid phases,
less frequently observed, have a rhombohedral structure and
are characterized by a different number of X planes for the
“zig” (let us say m) and for the “zag” (let us say n), with three
repetitions of the same zigzag over one unit cell, as depicted
in Fig. 2 (this is formally quite similar to the case of the
SiC rhomboedral polytypes). We will label them (m,n), with
energy Em,n. This notation, although less complete than that
proposed by Fisher and Selke to define a spin sequence,23 is
sufficient for describing the MAX phase structure. It permits to
define both the usual and hybrid phases in a unified way, and
offers the advantage of suppressing the ambiguity which may
exist when describing a hybrid phase by giving the number of
X and A atoms over one zigzag. For instance, a hybrid phase
usually defined as 725 can indeed correspond to two different

structures, either 413 for the “zig” and 312 for the “zag,” or
514 for the “zig” and 211 for the “zag.” With our notation
these two structures are clearly differentiated and defined as
the (3,2) and (4,1) phases, respectively.

The expressions of energy given below are all derived by
applying Eq. (8) to a given MAX phase, and obtained after
some tedious but in no way heroic bout of algebra. They allow
one to describe any usual or hybrid phase as defined above.
The different formulas correspond to the MX and MA phases
(which are not MAX phases in the strict sense), the conventional
(2,2) phase (211 with the usual notation), the (m,n) and (n,n)
phases with m,n � 2, and the hybrid phases (n,1) with n � 2,
respectively:

EMX = E0 + L1 + L2 + L3 + K, (10a)

EMA = E0 − L1 + L2 + L3 − K, (10b)

E1,1 = E0 − L2 + L3 = EMX − L1 − 2L2 − K, (10c)

Em,n = EMX − 4

m + n + 2
(L1 + 2L2 + 2L3 + 3K)

if m,n � 2, (10d)

En,n = EMX − 2

n + 1
(L1 + 2L2 + 2L3 + 3K) if n � 2,

(10e)

En,1 = EMX − 2

n + 3
(2L1 + 4L2 + 3L3 + 4K) if n � 2.

(10f)

Equations (10) represent the central result of this paper.
Equation (10c) corresponds to the conventional 211 phase,
and Eq. (10e) to all other conventional MAX phases. As
a verification, it is easily seen that the expression of Em,n

converges toward that of EMX as m or n tend to infinity, i.e., as
the fraction of A atoms is reduced down to zero. In Eq. (10),
it is worth noticing that all energies can be normalized by
dividing them by L1. Besides, MA compounds are usually
known for being unstable in front of compounds exhibiting
another stoichiometry (e.g., TiSi and TiSi2). This indicates that
L1, which is roughly twice the difference in energy between the
MA and MX compounds and thus probably the largest term,
is negative. A pseudophase diagram can therefore be plotted
on the basis of the three reduced parameters l2 = L2/L1, l3 =
L3/L1, and k = K/L1, and by determining for each set of
interaction parameters which phase exhibits the lowest energy.
Such a plot is given in Fig. 3 as a function of l2 and l3, with k as
a parameter, and taking into account all MAX phases described
by Eq. (10).

Figure 3 can be interpreted easily by noting that the inter-
action parameters L1, L2, L3, and K have a straightforward
physical meaning: (1) L1 + K is twice the difference in energy
between the hypothetical MA and MX compounds, with K

being smaller than L1. (2) A large L2 value indicates that the
difference of interaction energy between identical (MX and
MX) and different (MA and MX) neighbor bilayers is high.
L2 > 0 means that the binding between the nearest bilayers
is enhanced if they are of a different type, and this lowers
the overall energy. (3) A large L3 value means that there is a
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FIG. 3. Pseudophase diagram indicating the MAX phases with the
lowest energy per atom as a function of the reduced bilayer interaction
parameters l2 and l3.

large difference in the second-neighbor interactions between
bilayers of the same and of a different kind. L3 > 0 means
that the interaction between next-nearest bilayers lowers the
overall energy if they are of a different type (i.e., L3 > 0 means
that second-neighbor interactions favor cohesion).

To give an example, let us have a look at Fig. 3 (note
that L1 < 0 implies that if l2 = L2/L1 is negative, then L2

is positive). The domain where M2AX has a lower energy is
located to the left of the domain where MX has the lower
energy (i.e., for positive and larger values of L2). This can be
easily explained in terms of a first-neighbor bilayer interaction:
Although a MA bilayer has an energy that is higher than a
MX bilayer, increasingly good bonding between MA and MX

bilayers (i.e., for positive and large values of L2) makes the
insertion of MA bilayers favorable. The domain with M2AX

could not appear to the right of the MX domain. And M2AX

does not appear at the bottom of Fig. 3, even for L2 > 0,
because then second-neighbor interactions with L3 < 0 act in
a way opposite to that of the first-neighbor ones, and partially
compensate them, so that a MAX phase with a lower amount
of MA layers (M3AX2) now has the lowest energy.

It is remarkable that whatever is the value of k, none of the
phases with n � 3 exhibit the smallest energy over nonzero
areas, as compared to phases with a lower order. However,
from Eq. (10), it is obvious that all conventional MAX phases
with n � 2 possess the same energy if the condition 2l3 +
2l2 + 3k + 1 = 0 is verified. This represents a plane in (l1,l2,k)
space, and for a given k value, a line. It is also obvious that
all hybrid phases (m,n) with m,n � 2 belong to the same
pseudocoexistence line. The equation of the boundary line
between the 211 and 312 phases is 2l2 − 4l3 − 3k + 1 = 0,
and the equation of the boundary line between the MX and 211
phases is 2l2 + k + 1 = 0. All those lines are defined in Fig. 3.

Besides, whatever is the value of k, there is a single degeneracy
point KD for which all phases have the same energy, equal to
(L1 − K)/2. The reduced coordinates of this point are

l2 = − 1+k
2

l3 = −k

}
at the degeneracy point. (11)

Concerning hybrid phases such as (n,1), none of them occupy
a nonzero area in the phase diagram. The simplest one
[(2,1) with our notation] possesses the lowest energy on the
pseudocoexistence line between the 211 and 312 phases (i.e.,
all three phases have the same minimum energy along this
line), whereas all others can only be found to be minimum at
the degeneracy point KD .

It follows from these calculations that, depending on the
nature of the M and A atoms, which fix the value of
the coupling constants, several features can be obtained: If
the corresponding point lies far from the degeneracy point
and from the two-phase boundary between the 211 and 312
phases, only one phase has an energy lower than that of
all others. However, for a set of coupling constants making
the point to lie at or close to the two-phase boundary, three
phases (211, 312, and 523) should be close to a minimum
energy. This implies that all three phases might be obtained,
provided that the energy difference between these compounds
and their assumed decomposition products remains negative
(we discuss that point in Sec. IV). For a point lying at or
very close to the highly degenerated point, all conceivable
phases are close to a minimum value. As discussed in Sec.
III, where we take into account some competing phases and
discuss stability, the model can predict that some MAX systems
should exhibit only the (211) phase, some others only the (312)
and higher-order phases, and still others all possible MAX
phases. Here we note that we did not try to incorporate the
influence of temperature, which could substantially modify
our pseudophase diagram (and sometimes in a very complex
manner, as exemplified by previous work on the conventional
ANNNI model22). However, as simple as our model is, our
almost back-to-the-envelope calculations depict a frame which
is in agreement with what is actually known from the already
observed MAX phases. Although first-order interactions should
favor the addition of MX rather than MA bilayers (for
instance, TiC planes are more tightly bounded than TiSi
planes), the introduction of first- and second-order interactions
and the absence of more stable competing phases make the
apparition of more complex structures energetically favorable,
and gives rise to the apparition of the various MAX phases.
A comparison with observed phases and previous ab initio
calculations is conducted in the next section.

IV. DISCUSSION AND COMPARISON WITH OBSERVED
MAX PHASES

A. Energy variation with the amount of A layers per M layer

To identify the interaction parameters of a given family, it is
necessary to compute the energy of several phases belonging
to a given M-A-X system, and to withdraw from it the energy
of the MX phase. We note that due to the form of Eq. (10),
(m,n) phases with m,n � 2 are not independent and only one
of them can be used. The same is true for the (n,1) phases.
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Besides, computing one Em,n value with m,n � 2, one En,1

value with n � 2, and E1,1 gives only three equations for four
unknowns. It is thus necessary to add the computed value of
an additional hypothetical phase such as, e.g., MA to solve the
resulting system. We did not find such a set in the literature,
but hope that our paper will stimulate future work by research
groups involved both in the realm of MAX phases and ab
initio calculations. Nonetheless, and as detailed below, it is
still possible to make some comparison between our model
and existing theory or experimental data, either to justify some
of the model assumptions or to assess the validity of some of
its predictions.

From Eq. (10) we can infer that the energy difference
between the MX phase and a (m,n) phase is proportional to
2/(m + n + 2). It is worth noticing that this factor is nothing
more but the amount of A layers per M layer. We thus find that
the energy of a (m,n) MAX phase with m,n � 2 is proportional
to this amount, with an intercept equal to the energy of the
MX phase. Cancellation of the slope would give the same
energy for all phases, and this corresponds to the degeneracy
condition already found in Sec. II. The smaller is the slope, the
closer is the considered family from the degeneracy condition,
and the easier it should be to obtain a larger number of phases.
From Eq. (10e), we expect that by plotting the energy of the
MX and of the conventional 312 and 413 phases as a function
of the number of A layers per M layers, the three values should
be aligned. However, depending on the interaction parameters,
the ANNNI model states that the energy of the conventional
211 phase, as given by Eq. (10c), does not necessarily fall on
the same line. This is thus a way to compare the predictions
of the ANNNI model with first-principles calculations, and
to assess to which extent the second-neighbor interactions
contribute to the cohesive energy. An interesting reference is
the paper by Dahlqvist et al.,36 who computed the energy per
atom for the first three MAX phases and for a wide number
of elements. It is indeed the best reference we found for
comparing ab initio calculations to our speculative ANNNI
model. In Fig. 4 are incorporated the numerical values they
obtained for the energy of the MX, 211, 312, and 413 phases
of the Ti-Al-N, V-Al-N, Ti-Al-C, and Sc-Al-N families. These
values are plotted as a function of the number of A layers per M

layer. For the four considered families, linear regression over
the first three points (MX, M4AX3, and M3AX2 compounds)
gives regression coefficients of 1, 0.987, 0.996, and 0.998,
respectively, and the corresponding points are effectively
aligned (see Fig. 4). The slight departures probably come from
the overall accuracy of the numerical calculation. In contrast,
one can also see that the points corresponding to the 211
phase are not necessarily aligned with the others, even if for
one of them (TiAlN) the last three points might be fitted as
well by a single line with a regression coefficient close to
one (to a lesser extent, the same can be said of the Sc-Al-N
system). These data seem therefore to be in agreement with the
predictions of the ANNNI model, and support our assumption
that second-neighbor bilayer interactions are essential for
determining the cohesive energy. However, it must also be
noted that, in the same paper, this property does not hold for
the Mn-Al-C, Mn-Al-N, Cr-Al-C, and Cr-Al-N systems, which
include magnetic atoms, and the Sc-Al-C and V-Al-C systems.
For these ternary systems, the energy of the MX compound
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FIG. 4. Energy per atom of the MX, M2AX, M3AX2, and
M4AX3 phases as a function of the number of A layers per M layer;
data points are reproduced from the article by Dahlqvist et al. and were
computed using DFT calculations (Ref. 36). Energy is referenced to
that of the MX phase and normalized; each curve is for a different
ternary system. Numerical values were communicated by the authors
of Ref. 36.

does not align with that of the M3AX2 and M4AX3 compounds
(numerical values were provided to us by the authors of this
reference). Therefore the ANNNI model seems not to be
relevant for MAX phases including magnetic elements (at least
for predicting the energy of the MX phase, even if it might still
be relevant to study the energy of the MAX phases themselves).
We do not know whether this is due to a modification of the
magnetic contribution to the energy when one adds the A

atoms, or if for such elements the structure of the MX phase
is different after relaxation of the atomic positions.

The predicted linear relationship between Em,n-EMX and
the amount of A layers per M layers with m,n � 2 is also in
agreement with the numerical findings of Palmquist et al.33

They performed local density approximation–density func-
tional theory (LDA-DFT) calculations for six MAX phases of
the Ti-Si-C family, and found that the cohesive energy of all six
MAX phases was proportional to this ratio, the curve intercept
of Em,n-ETiC being equal to zero. However, among those six
phases are included the 211 and 523 phases. According to our
model this means that for the Ti-Si-C system both L3 and K

are small. We should therefore conclude that for this family
the structure is dominated by nearest-neighbor interactions
between bilayers, whereas second-neighbor interactions are
negligible. In our opinion, this is hard to admit as a general
property, independent of the ternary system, and it would be
important to repeat the same calculations with other ternary
systems for two reasons: First, if this property is general (a
point which we are not inclined to believe), this would lead
to a considerable simplification in modeling (in our case,
reducing the MAX phase description to the knowledge of
two parameters, L1 and L2). Second, and as detailed below,
such calculations might allow one to answer to the apparent
contradiction between this property and the fact that (3,1)
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phases were, to the best of our knowledge, never reported in
the literature, and most particularly in the case of the Ti-Si-C
system. Keast et al. have also computed the energy of MAX
phases for a large number of systems.37 In their paper, the
energy of all systems is almost perfectly linear with the amount
of A layers per X layer. However, the relative numerical
departure of the energy of a particular MAX phase from a
linear relationship is exactly the same, whatever is the ternary
system, so that all sets can be deduced from one another by
a simple multiplication, which sounds rather strange. Besides,
their data seem not to be in agreement with that of Ref. 36.

B. Polytypism

A simple calculation of its energy is obviously not enough
to predict if a MAX phase is more stable than another: The
possible competing phases and their energy must also be
known.33,36 However, the situation changes if one is interested
in real polytypism, i.e., if we compare MAX phases with
the same stoichiometry, so that they exhibit the same (m +
n) value. Then our model predicts which polytype is ther-
modynamically stable (at T = 0 K), and this allows us to
directly compare hybrid and conventional phases. For m,n �
2 and from Eq. (10), conventional and hybrid phases with the
same stoichiometry are equally stable. If one is experimentally
obtained, thermodynamics does not prohibit the existence
of the other and, more importantly, this holds true even if
second-neighbor bilayer interactions are substantial. To find a
difference between conventional and hybrid phases with m,n�
2 would require to take into account third-neighbor bilayer
interactions. But we note that these additional interactions
cannot make a difference between polytypes with m,n � 3,
and since the (3,2) MAX phase can present polytypism only
with the (4,1) phase (which is treated below), it is rather useless
to add these interactions. Comparing the energies of a hybrid
(p,1) phase to a (n,n) conventional phase with p = 2n − 1 (i.e.,
the same stoichiometry) leads to an energy difference given by

En,n − E2n−1,1 = − 1

n + 1
(L3 + 2K) . (12)

It is worth noting that in some sense, K also includes the
way by which second-neighbor interactions are modified by
the bilayer inserted in between two next-nearest bilayers. This
is the reason why, in Eq. (12), the difference in energy between
two polytypic forms, where first-neighbor interactions do not
change with polytype, depends only on L3 and K . It is thus
only in the absence of second-neighbor bilayer interactions
(negligible L3 and K), or if by chance L3 = −2K , that
both phases should be equally stable. If the sum L3 + 2K

is appreciable, one phase should prevail if its formation is
driven by thermodynamics. Most interesting is the case of
the 312 phase, which in theory is polytypic, and includes
the conventional (2,2) phase and the hypothetical hybrid (3,1)
phase (see Fig. 2). The energy difference between these two
polytypes exhibits the largest attainable value for a given
family, equal to (L3 + 2K)/3. As far as we know, the
(3,1) phase has not yet been observed. This would tend to
indicate that second-neighbor bilayer interactions do exist and
make it unstable with respect to its alternative polytype (the
conventional 312 phase). In the case of the Ti-Si-C system,

from the linear relationship between the cohesive energy and
the ratio of Si on Ti atoms calculated by Palmquist et al.,33

we deduce vanishing second-neighbor interactions, and thus
a negligible energy difference between the (3,1) and (2,2)
phases. Therefore, it comes as a surprise that the (3,1) polytype
of Ti3SiC2, to the best of our knowledge, has never been
observed,2 a fact which is at variance with the prediction that it
should be equally stable with the usual form, as deduced from
the calculations by Palmquist et al.33 and the ANNNI model.
One might infer from these authors’ results that Ti3SiC2 should
be full of stacking faults, or consist of a mixture of (2,2)
and (3,1) phases. Since, to the best of our knowledge, (3,1)
phases have not been reported for any ternary family, whereas
(2,2) phases are quite common, we suspect that second-order
neighbor interactions between the bilayers do exist, even for
the Ti-Si-C system. It seems highly dubious that among two
polytypes with exactly the same energy and not too long a
periodic sequence, only one has been observed. We thus hope
that our remarks will stimulate both further theoretical and
practical work, because these considerations are in partial
contradiction with the calculations by Palmqvist et al.33

The rule used for the model (no zigzag between the MX

planes and mandatory zigzag for the A planes) prohibits its
use for estimating stacking fault energies resulting from the
glide of a single bilayer in the basal plane. However, it is
worth noticing that previous reports about stacking faults in
MAX phases conclude that these planar defects consist in the
addition of a few MX bilayers in a given sequence, so that
the zigzag rule is not violated.38–40 This is a good empirical
argument in favor of its use. Ab initio calculations should
confirm that the stacking fault energy of such defects must be
high in order to fully justify our ANNNI model. Besides, even
if it is rather difficult to define a stacking fault energy when
the defect modifies the stoichiometry of the compound, energy
considerations can still be conducted by estimating, e.g., the
energy required to add a plane differing from the one expected
at the top surface during 2D growth.

C. Stability trends

Figure 3 is a pseudophase diagram, because we did not
consider the possible competing phases. Therefore it cannot
be used to predict stability trends. It is also clear that each
different ternary MAX system possesses different stable binary
compounds in the ternary phase diagram, which make the
determination of those competing phases a nontrivial task,
and requires proper use of both experimental and theoretical
data (for instance, the Ti-Si-C system involves the TiSi2,
TiSi, Ti5Si4, Ti3Si, SiC, TiC binary, and Ti5Si3Cx ternary
compounds41). Such considerations are detailed, e.g., in the
paper by Dalhqvist et al.36 Besides, our model cannot say
anything about the energy of binary compounds but MA

and MX, which are the only ones being located on the
same line as all possible MAX phases in the ternary phase
diagram (see Fig. 5), corresponding to an M fraction xM =
0.5. So is it still possible to write something about the MAX
phase stability using this simple model? As detailed below,
the answer is positive, provided that we restrict the analysis
to the MA and MX competing phases. In other words,
the model cannot predict if the investigated MAX phases
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FIG. 5. M-A-X ternary diagram showing the line xM = 0.5 which
includes all MAX phases.

are really thermodynamically stable, since this obviously
requires an investigation of all possible binary and ternary
compounds with a structure different from that of the MAX
phases. However, it can predict which phases are necessarily
unstable, because their decomposition in the form of MA

and MX compounds is energetically favorable. It must be
noted that this approach does not require the MA phase to
exist in reality, and in general this compound is not stable.
But if for some set of interaction parameters a MAX phase
is shown to be more unstable than its decomposition into
products which are themselves unstable, then it is rigorous
to state that this MAX phase must also be unstable. As crude
though it is (still reinforced by the fact that we make the
temperature T = 0 K), this restriction nevertheless allows one
to explain why the M2AX and MAX phases with a higher n

index are not equally stable, depending on the value of the
coefficients corresponding to the first- and second-neighbor
bilayer interactions.

Assuming that the MA and MX phases are intrinsically
stable, the possible decomposition schemes of a given (n,n)
MAX phase are depicted in Fig. 6. Since the MA phase is in

FIG. 6. Possible decomposition reactions of a MAX phase when
the reaction products lie on the line xM = 0.5. Note that those reactions
are not the ones occurring in practice, because the MA compound is
most often unstable (see the comments in Sec. IV C).
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FIG. 7. Potentially stable areas of the MAX phases in the (L2,L3)
plane, with K as a parameter, as determined from consideration of the
hypothetical decomposition into the MA and MX competing phases.
When taking into account all competing phases, part of the stable
domains would become unstable and the areas defining the unstable
domains of a given phase would increase.

general not stable, let us stress once again that these reactions
do not happen in practice, because they would be replaced by
reactions involving phases not only lying on the line xM =
0.5 and resulting in a still larger variation of energy. For each
of those pseudoreactions, we can easily calculate an energy
variation from the ANNNI model. As a matter of fact, we must
distinguish four different cases. The first is the decomposition
of an (n,n) phase (Mn+1AXn) with n � p + 2, p being an
integer, giving as a reaction product another MAX phase with
index (n−p,n−p). The energy variation is easily found to be
equal to zero. The second possibility is the decomposition of
an (n,n) phase with n � 2 into the (1,1) (i.e., M2AX) phase
and MX compound, with the corresponding energy variation
being

�E = 2

n + 1
(L3 + K). (13)

The third corresponds to the decomposition of an (n,n) phase
with n � 2 into MA and MX compounds, resulting in an
energy variation equal to

�E = 4

n + 1
(L2 + L3 + K) . (14)

The last case corresponds to the decomposition of the M2AX

phase into the MA and MX binary compounds, which leads
to

�E = 2L2. (15)

Stability of the considered MAX phase requires �E > 0. From
Eqs. (13)–(15) and the relation �E = 0 of the first case,
it is straightforward to plot the phase diagram of the MAX
phases as a function of L2, L3, and K , as illustrated by Fig. 7.
It is remarkable that none of Eqs. (13)–(15) involve the L1

parameter, but only interaction energies (L2, L3, and K). This
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diagram shows that, depending on the particular strength of
those interaction energies, one can find ternary systems for
which all MAX phases are potentially stable, others for which
only the (n,n) phases with n � 2 are potentially stable, still
others for which only the (1,1) phase is potentially stable,
and, finally, systems for which all MAX phases are necessarily
unstable. It is also interesting to note that even when Eqs. (13)
and (14) give positive values, �E decreases with n, and thus
stability decreases as n increases, making the existence of
MAX phases with a high index improbable not only because
of the difficulty inherent in the reproduction of a complex and
long stacking periodic sequence, but also for thermodynamic
reasons. We speculate that the Ti-Si-C system, for which
both Ti3SiC2 and Ti4SiC3, but no Ti2SiC phase have been
observed,2 belongs to domain No. 1 in the phase diagram, that
many systems for which only the 211 phase has been observed
belong to the third domain (see, e.g., Table 1 in Ref. 2), and
that a system such as V-Al-C, for which V2AlC, V3AlC2,
and V4AlC3 MAX phases have all been observed,2 belongs to
domain No. 2 in Fig. 7.

V. CONCLUSION

We have shown that the energy of any MAX phase can be
estimated by using a particular ANNNI-like model, so that the
description of any phase belonging to a given ternary family
is reduced to the knowledge of four energy parameters, which
characterize the interaction between first- and second-neighbor
bilayers. Knowing a particular set, it is possible to assess
which phases exhibit the lowest energy. Besides, since their
physical meaning is straightforward, their determination from
first-principles calculations could be used as a measure of the

extent to which first-neighbor and second-neighbor bilayer
interaction contribute to material cohesion. We found that
the possibility of real polytypism, which can theoretically
happen between conventional and hybrid phases possessing
the same stoichiometry, is determined by the strength of
second-neighbor interactions between bilayers. The fact that
the (3,1) phase, to the best of our knowledge, has never
been reported seems to be in favor of the existence of such
interactions, and the ANNNI model should therefore help
in explaining why hybrid phases remain an exception. This
preliminary report is restricted to a temperature T = 0 K, and
further studies should include the influence of temperature.
However, even at this stage, calculation of the interaction
parameters corresponding to various MAX phases might give a
unified view of their behavior and explain possible variations
between different ternary systems. Phase stability can be
partially discussed: Studying the pseudodecomposition of a
MAX phase into the MA and MX compounds suffices to
explain why for some M-A-X ternary systems the M2AX

phase cannot be stable, why for others it is the only possible
stable compound (if there is any), and why for a third class of
ternary systems, all Mn+1AXn phases are potentially stable,
stability progressively reducing as n increases. The belonging
of a given MAX system to any of those three families is
determined by a set of only three interaction energies between
bilayers, which can be numerically computed using, e.g., ab
initio DFT techniques.
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