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Data mining for materials: Computational experiments with AB compounds
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Machine learning is a broad discipline that comprises a variety of techniques for extracting meaningful
information and patterns from data. It draws on knowledge and “know-how” from various scientific areas such
as statistics, graph theory, linear algebra, databases, mathematics, and computer science. Recently, materials
scientists have begun to explore data mining ideas for discovery in materials. In this paper we explore the power
of these methods for studying binary compounds that are well characterized and are often used as a test bed.
By mining properties of the constituent atoms, three materials research relevant tasks, namely, separation of a
number of compounds into subsets in terms of their crystal structure, grouping of an unknown compound into
the most characteristically similar peers (in one instance, 100% accuracy is achieved), and specific property
prediction (the melting point), are explored.
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I. INTRODUCTION

Data mining is a broad discipline that develops methods and
tools to extract meaningful information and patterns from data.
It draws on knowledge and “know-how” from various scientific
areas such as statistics, graph theory, linear algebra, databases,
mathematics, and computer science. With the emergence
of the information era, the importance of these techniques
has increased dramatically in information-related applications
including commerce, finance, and criminology, to cite just a
few. Data mining has also become an essential tool in the
area of genomics, whose primary technique involves routinely
sifting through millions of genes to discover similarities or
patterns among them.

Materials scientists have begun to explore data mining ideas
for the selection of materials in applications that range from
photovoltaics to thermoelectrics to catalysts.1,2 The following
section gives a brief overview of a few basic techniques used in
data mining, in part to define terminology. Whenever possible,
an attempt is made to give examples from materials where the
techniques can be applicable.

II. BASIC DATA MINING TECHNIQUES

Among the many problems that are tackled by data
mining, two are of primary importance. One is “unsupervised
clustering,” which is the task of finding subsets of the data
such that items from the same subset are most similar and
items from distinct subsets are most dissimilar. The second
is classification (predictive modeling, supervised learning),
whereby we are given a few distinct sets that are labeled (e.g.,
samples of handwritten digits labeled from 0 to 9), and when
a new sample is presented to us we must determine to which
of the sets is it most likely to belong. For the example of
handwritten digits this is the problem of recognizing a digit
given a data set of many labeled samples of already deciphered
digits available (called a training set).

In order to perform these tasks, it is common to first process
the given data set (e.g., a database of handwritten digits as

represented by the values of the pixels) in order to reduce its
dimension, i.e., to find a data set of much lower dimension than
the original one but that preserves its main features. What is
sometimes misunderstood is that this dimension reduction step
is not done for the sole purpose of reducing cost but mainly
to reduce the effect of noise and in order to extract the main
features from the data.

A. Dimension reduction and principal-components
analysis (PCA)

Two distinct types of methods have been proposed for
dimension reduction. The first class of methods which can be
termed “projective” includes all linear methods whereby the
data matrix is explicitly transformed into a low-dimensional
approximation. These projective methods find an explicit
linear transformation to perform the reduction, i.e., they find
an m × d matrix V and express the reduced dimension data as
Y = V T X. This class of methods comprises the standard PCA,
the locality preserving projection,3 orthogonal neighborhood
preserving projections (ONPPs),4,5 and variants of these.

The second class of methods that do not rely on explicit
projections and are inherently nonlinear6 find directly the
low-dimensional data matrix Y , by simply imposing that a
certain locality or affinity between nearby points be preserved.
Many of these methods utilize weighted graphs to represent
the local geometry in a high-dimensional space, which they
try to preserve. As an example, the locally linear embedding
technique starts by defining a graph that expresses every point
of the original data as an approximate convex combination
of its immediate neighbors. Then it asks the question: How
can we map these data points into a low-dimensional space (d
coordinates instead of m, with d � m) in such a way that this
graph is preserved as best as possible. This is illustrated on the
right in Fig. 1.

These types of dimension reduction methods can be
extended to supervised analogs, i.e., to situations where each
data point is associated with a class label. The class labels are
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FIG. 1. (Color online) Dimensionality reduction techniques. Left:
General method. Right: Graph-preserving method.

then taken into account when performing the reduction step. In
the case of graph-based methods, this can be simply achieved
by defining the neighbors of an arbitrary vertex i in the graph
to be all the vertices which share the label i. Techniques based
on this approach can be very powerful for face recognition;
see, e.g., Refs. 5, 7, and 8.

Consider the PCA approach for dimension reduction.
The primary assumption that makes PCA useful in this
context is that there is some underlying low dimension
of the high-dimensional data, which represents the most
significant features of the data. If we are able to discover
this space, we can perform whatever analysis we wish with
fewer parameters. In PCA, this space is obtained via the
singular value decomposition.9,10 Specifically, let us denote
by X̄ the matrix of zero recentered data, i.e., each column is
x̄i = xi − μ, where μ = 1

n

∑n
i=1 xi is the mean of X. In PCA,

an orthogonal matrix V is computed which will map the data
so as to maximize the variance of the projected data in the
d-dimensional space. As it turns out, the column vectors in
this matrix V are the left singular vectors of X̄, associated
with the largest d singular values:

[X̄X̄]T vi = λivi, i = 1,2, . . . ,d. (1)

The matrix Y , corresponding to the projected (low-
dimensional) data, is then given by Y = V T X̄.

Though materials informatics is a relatively new specialty,
the use of databases in materials dates to the 1960s, with the
emergence of extensive data sets. The key to “soft” design
of materials, i.e., design without physical experimentation, is
to keep the number of computational tests with materials to a
minimum. This means that a search must be performed to select
good candidate materials, which can be studied in more detail
by solving the electronic structure problem for the properties
of interest.

A recent example of this type comes from Curtarolo et al.,11

who demonstrate an interesting application of PCA for the
task of predicting structural energies of crystals with the
help of the CRYSMET database. For 55 alloys, they form
an array with 55 columns (for each alloy) and 114 rows (1
for each possible crystal structure). The structural energies,
determined by density functional theory calculations, are
correlated and these correlations are unraveled by PCA. With
an rms error of 50 meV, only 9 dimensions are required of
114. The implication is that it is not necessary to perform 114
experiments for a new alloy, but only 9; the others can then be
deduced from the correlation.

B. Unsupervised learning

In unsupervised learning, one is given a data set (refer to
the example in Sec. III) and is then asked to find characteristics
of the set using only the data at hand. For example, we may
be interested in partitioning the set into distinct subsets. A
number of techniques are used for this purpose and we refer
the reader to standard textbooks, e.g., Refs. 12–14.

C. Supervised learning

Supervised learning tools are at the basis of pattern recog-
nition. A prototypical application is that of “face recognition”
or “digit recognition” (mentioned above). In face recognition,
we are given a database of photographs picturing c known
individuals (say, 20 photos for each of 100 known, i.e., labeled,
persons). We are then presented with a test photo of an
unknown person and would like to know if this person is 1
of the 100 labeled individuals. A simple comparison based on
the array of pixels will generally perform very poorly. PCA is
satisfactory in some cases, but graph-based methods such as
ONPPs5 perform quite well for applications where images are
involved.

In this context, a number of powerful techniques have been
developed in the literature to “classify” data, i.e., to find its
class. Linear classifiers such as linear discriminant analysis
and Fisher methods provide ways to optimally separate data
into classes.

In the context of materials, one may apply this to guess the
“class” of a given material. For example, we can consider a
database of known (i.e., previously studied) compounds, which
can be labeled “photovoltaic,” and we now consider a given
ternary material not studied before. From knowledge of its
constituent atoms, and from known structures, we would like
to know if it is likely to be a member of the photovoltaic class.
When a good candidate material is identified, a full-fledged
electronic structure calculation, e.g., one based on density
functional theory, can be performed and the resulting data
will then be added to the database. The method by which
the material has been correctly or incorrectly classified will be
updated according to the result. This feedback loop to improve
the classification model is called “learning.”

A major part of supervised learning is concerned with
building “classifiers,” which will help determine whether or
not a given new material has a certain property. For example, is
the material in the multiferroic class or not? If the illustration in
Fig. 2 represents a cloud of materials in some high-dimensional
space, the simplest form of classifier is just a hyperplane, which
will tend to best separate the multiferroic materials from the
others. The picture may deceive one into believing that this is
an easy task in this particular situation. However, two classes
may not be easy to separate in a general case, especially
in high dimensions. High dimensionality is one reason why
“kernels” are commonly used in this context.13 The use of
kernels amounts to simply changing inner products so as to
alter the notion of lengths.

D. Property prediction

A rather common question in materials is whether or not
it is possible to predict a value associated with some physical
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FIG. 2. (Color online) Classification of materials.

properties of a compound, e.g., its melting point. Ideally, these
should be predictable from properties of the constituent atoms.
The capability to predict a property value with a certain degree
of accuracy is another important application of data mining
techniques in materials research. Unlike supervised learning or
unsupervised learning, in most cases, data mining techniques
are combined with statistical regression methods to generate
a numerical physical property value of an unknown material.
The ultimate goal is to discover the genuine function that can
precisely describe the correlation between the variable to be
predicted and other already known parameters. The regression
part works by finding the best fit to a set of points. Take linear
regression as an example. The best fit is achieved by finding
the minimum value of the squared residuals, leading to what
is known as the least-squares method. At the same time, data
mining techniques can efficiently extract the main features
from the data and reduce the effect of noise. As a result, the
unique combination of regression and data mining ideas may
provide a powerful mechanism for predicting numerical values
of materials properties.

III. UNSUPERVISED LEARNING EXPERIMENT

We illustrate “unsupervised learning” by considering a
well-known family of crystal structures. These are binary
octet crystals whose composition is ANB8−N , where N refers
to the number of valence electrons. This family of crystals
includes technologically important semiconductors such as
Si, Ge, GaAs, GaN, and ZnO. There are approximately 80
members of this crystal family, which condense primarily in
graphite, diamond (D), zincblende (Z), wurtzite (W), rocksalt
(R), and cesium chloride structures.

The separation of these structures into distinct classes is
difficult and has existed as a problem in the literature for
over 50 years.16–21 Ordinary chemical coordinates such as size
and electronegativity will not result in topologically distinct
regimes.22

Figure 3 illustrates one of the most successful structural
maps for this family. The separation between structural types
is nearly exact. Of special note is the separation between the
Z and the W structures. These two family types often differ
by only ∼0.01 eV/atom, as the Z and W structures are nearly
identical in terms of local order. They differ only in the third

FIG. 3. Structural map for binary octet crystals. The coordination
number (CN) is indicated for each structural grouping. The chemical
coordinates (rσ , rπ ) are combinations of orbital radii as defined in
Ref. 15. This mapping of these compounds in two dimensions with
the particular coordinates used in Ref. 15 reveals a good clustering
of the structures.

nearest neighbor. The chemical coordinates (rσ , rπ ) employed
in Fig. 3 were based on orbital radii determined from model
pseudopotentials fit to spectroscopic data.15,23,24 In particular,
the orbital radii are based on pseudopotential description of the
free ion. For example, the silicon radii are constructed from
considering Si+3 ions, i.e., one electron moving in the field of
the silicon ion core. The model pseudopotential is taken to be

V (r) = −Zv

r
+

Zv∑

l=0

l̂(l̂ + 1) − l(l + 1)

2r2
Pl . (2)

Here, Zv is the number of valence electrons, Pl is a projection
operator, which projects the lth component of the angular
momentum, and l̂ is an l -dependent parameter. Atomic
units (h̄ = e = m) are used. This potential replicates only the
valence states. A key advantage of this potential is that it has
an analytic solution for the energy levels of the ion. The energy
levels can be written as

En,l = −Z2
v

2(n + l̂ − l)2
. (3)

The energy levels can be interpreted as Rydberg levels, with
an l-dependent defect given by l̂. Orbital radii can be defined
by finding the classical turning points, V (rl) = 0, or the radial
maximum of the wave functions arising from this potential15,23

as 2 differ by a factor of 2. The turning points are probably
more physical, but traditionally the radii are defined by the
maximum of the wave function and are given by

rl = l̂(l̂ + 1)/Zv. (4)
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While this pseudopotential is not particularly good for
calculations, e.g., it possesses a divergent potential in the
core region and the wave functions are not similar to those
expected for an all-electron potential, this potential is good for
extracting the orbital deviations from a hydrogenic atom and
thus characterizing the chemical nature of the ion core. The
orbital radii are determined once En,l is known. The energy
levels can be determined experimentally from spectroscopic
data, but the use of spectroscopic data has some obvious
disadvantages. Consider an atom like fluorine. To define the
orbital radii for fluorine, we would need to consider an F+6

ion, which is extraordinarily difficult to create and measure. In
the original work,15,23,24 the radii for such cases were estimated
by extrapolation from known values of the energy levels.

Here we have decided to update the radii by considering
theoretical calculations for the energy levels and avoid the
use of spectroscopic data. We use density functional theory
to determine the total energy to remove an electron from the
ion of interest. For example, we consider a Si+3 ion with a
configuration of 3s13p0 for the s state and 3s03p1 for the
p state. We determine the total energy of the ion with these
configurations and then subtract the energy of the ion core. We
employ the local density approximation, which is known to be
very accurate for ionization energies of neutral and positively
charged atoms.25,26 For heavy atoms such as cadmium and
cesium, we include relativistic effects, which tend to result in
small values of rs . The new set of radii produces a plot very
similar to the one illustrate in Fig. 3.

The two-dimensional (2D) mapping used in this example
of octet compounds is identical to what is usually done in
dimension reduction for visualizing complex data. Figure 3
shows the compound CuF, which was thought to exist in
the form of a Z structure as noted in another publication.15

The mapping revealed that this hypothetical compound is
surrounded by crystals in the R structure. Further research
showed that the CuF compound does not actually exist as
suggested by the 2D mapping.15

The 2D mapping in this example was performed by a
judicious change of coordinates, exploiting physical intuition.
One question that may be asked is whether or not a similar
mapping can be discovered in some systematic way. If we
restrict the mapping to be linear, then the answer depends on
what “features” are included in the data.

In our experiment, we use only the following information
from each of the two constituent atoms:

(1) the number of valence electrons;
(2) the ionization energies of the s and p states of the ion

core; and
(3) the radii for the s and p states as determined from model

potentials, which are also listed in Table I.
The total number of valence electrons is eight for the

compounds considered, so there is some redundancy in these
data. Since we are considering two atoms, we will normally
have 10 features available for each compound, or 9 actually,
because the number of valence electrons for the B atom
can be obtained from the first. With nine features the data
are still somewhat redundant, in part because some elements
repeatedly appear in different compounds.

The data set we consider is basically the same as before
and consists of 67 compounds. In this study, we did drop the

TABLE I. List of radii used in the present work.
Radii were based on Eq. (4) using Kohn-Sham
energy levels and are given in atomic units.

Element rs rp

Li 0.99 1.93
Be 0.66 0.96
B 0.49 0.64
C 0.40 0.48
N 0.33 0.39
O 0.28 0.33
F 0.25 0.28
Na 1.01 2.35
Mg 0.86 1.42
Al 0.75 1.09
Si 0.66 0.88
P 0.59 0.75
S 0.54 0.66
Cl 0.49 0.59
K 1.34 2.68
Ca 1.22 1.84
Cu 0.37 1.48
Zn 0.62 1.17
Ga 0.65 1.01
Ge 0.64 0.90
As 0.62 0.82
Se 0.59 0.75
Br 0.57 0.70
Rb 1.44 2.86
Sr 1.36 2.05
Ag 0.47 1.58
Cd 0.67 1.26
In 0.78 1.15
Sn 0.78 1.06
Sb 0.76 0.98
Te 0.74 0.92
I 0.71 0.87
Cs 1.66 3.08
Au 0.22 1.32
Ba 1.52 2.29
Tl 0.67 1.13
Hg 0.57 1.21
Pb 0.71 1.06
Bi 0.71 1.00

copper and silver halides, as we wanted to restrict our study to
compounds made with simple metals and avoid complications
associated with d valence states. For example, should we
consider the d states in copper as part of the valence shell or
not? We classify these compounds into six structures—Z, W,
D, R, and “dual structures”—where the ground-state structures
are borderline between two phases: Z and W (ZW) and W
and R (WR). Z and W are particularly difficult cases because
the structures differ only past second nearest neighbors. Such
degenerate structures can occur at ambient temperature and
pressure. As an example, ZnS can occur as a Z structure or
as a W structure. To accommodate such situations we would
label ZnS as belonging to the ZW class.

In addition, the raw use of the number of valence electrons
leads to some difficulties, as these numbers are of a different
scale from the others. As a result, for each atom we simply use
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FIG. 4. (Color online) PCA projection for 67 octet compounds.

the number of valence electrons to scale the data. Specifically,
if Zv is the number of valence electrons for a given atom, we
use the following information:

(1) the energies of the s electron and the p electron scaled
by

√
Zv and

(2) the radii of s-electron and p-electron orbitals.
With this we can produce the data matrix used for the

clustering experiment. The matrix is of size 8 × 67. Each
column corresponds to 1 of the 67 binary octets considered.
The entries (rows) are simply the four features mentioned
above for atom A followed by the same features for atom
B. For elemental crystals, we simply repeat the information,
essentially making the AB compound with B == A. We then
use PCA (and other techniques) to project the data in two
dimensions. This gives a 2 × 67 array, i.e., two coordinates
for each octet. These two coordinates are used to plot the data
in a 2D plane. The result is shown in Fig. 4. The dual-structure
compounds ZW and WR are represented with the color of one
structure and the shape of the other to facilitate interpretation.
As can be seen, the R compounds are nicely separated from
the other structures, as are the D structures.27 For the sake
of lightening the figure, only the labels of a few borderline
crystals are shown.

IV. SUPERVISED LEARNING EXPERIMENT

This section illustrates what is commonly referred to as
“supervised learning” in data mining. The problem at hand is
to try to identify the unknown “class” of a given compound.
This class can be a property such as “photovoltaic” or
“superconductor,” etc. It is a label we assign to an item. In
the experiment described, the class is the structure of the
compound, one of the six labels Z, W, D, R, ZW, and WR.

The problem setting is as follows. We have n compounds
c1, c2, . . . ,cn whose classes s1,s2, . . . sn are known. This set
is commonly referred to as the “training set.” We also have
another compound called t (for “test”), whose label (structure)
is unknown. The problem is to determine the class of t . To
do so we need to use the information we have about these
compounds. In the illustration below we are allowed to use the

FIG. 5. (Color online) Left: KNN classification. Right: Classifi-
cation by PCA projection.

exact same information as in the previous section (nine entries
in all for each compound). We describe three methods which
are known for their simplicity.

The first method (KNN) uses a majority rule among k

nearest neighbors. In this approach, illustrated in Fig. 5
(left), some distance between the test sample and all other
compounds is evaluated and the classes of the k nearest
neighbors (eight in the figure) are considered. We attribute
to t the label of the predominant class among these k items.
For the example in the figure the test sample will get the class
“asterisk.” The issues with this method are what is a good
choice for k and what distance to use. In the experiment we
only use k = 5 and the Euclidean norm distance.

The second approach is based on the observation made in
the earlier section that PCA does an excellent job at reducing
dimensionality. PCA can then be used for classification. We
project everything in a low-dimensional space and determine
the closest item to t in this low-dimensional space. The class
assigned to t will be the class of this item. This is a common
technique used in the area of pattern recognition, as, for
example, when we try to recognize an individual in a photo
(face recognition) by comparing a “test image” with pictures
of a number of known individuals.

We describe a third method, which we refer to as ONPPs.4

This method seeks an orthogonal mapping of a given data
set so as to best preserve a certain affinity graph. The graph
we use here is the one associated with the classes: any two
compounds in the same class will be linked by an edge. This
means that a class forms a “clique.” We then associate a weight
matrix W with this graph in which an entry wij has the value
0 if i and j are not in the same class and 1/|C| if they both
belong to class C. (Note that |C| is the cardinality of this
class C.) The projection matrix V in ONPP is determined so
that V is orthogonal (V T V = I ) and so that the projected data
Y = V T X minimize the sum of wij‖yi − yj‖ over all pairs i,j .
This encourages yi and yj to be close. After some algebraic
manipulations, the optimization problem becomes

min
V ∈Rm×d

V T V =I

Tr [V T X(I − WT )(I − W )XT V ]. (5)

Its solution is the basis of the eigenvectors associated with the
d smallest eigenvalues of the eigenvalue problem:

X(I − WT )(I − W )XT ui = λui. (6)

Then the projector V is [u1,u2, . . . ,ud ] and results in the
projected data Y = V T X.
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TABLE II. Recognition rate for three methods using the data in
different ways.

KNN ONPP PCA

Case 1 0.909 0.945 0.945
Case 2 0.945 0.945 1.000
Case 3 0.964 0.945 0.982
Case 4 0.909 0.964 0.964
Case 5 0.945 0.964 0.945
Case 6 0.964 0.964 0.945

The data set we consider consists of the same set as before
except that we have removed the elemental crystals for the
moment because they are isostructural with the Z structure;
i.e., if one ignores the difference in atomic species, the Z and
D structures are identical. We have also removed all the Cu
and Ag crystal structures as mentioned before, as well as BN,
since it alone occurs in a graphite structure once C is removed.

This leaves us with a set of 55 compounds. We perform a
“leave-one-out” experiment in which we take each of the 55
compounds in turn and pretend we do not know its structure.
We then try to guess its structure by correlating it with the other
54 compounds. The average precision, i.e., recognition rate of
the process, is then computed for all 55 cases. This is the mean
number of times (out of 55) that the procedure guessed the
correct structure and it is computed for each method separately.
For the situations where a compound has a dual structure, we
decided to rate as correct any outcome where at least one label
of the two matches. For example, if the system returns a WR
for an R, we rate the outcome as correct. Similarly, the outcome
is rated correct in the case when a WR is returned for a W.

Table II presents the results for the following cases.
Case 1. For each atom, use features 1:5 for atom A and 2:5

for atom B. No scaling is applied.
Case 2. For each atom, use features 2:5 for atom A and

atom B. Scale features 2 to 4 (s and p energies and s radius)
by

√
z.

Case 3. For each atom, use features 1:5 for atom A and 2:5
for atom B. Scale features 2 and 3 (s and p energies) by

√
z.

Since ONPP and PCA are projection-type methods, we can
use two distances when trying to determine a class. We can
elect to compare V V T t with xi by measuring ‖V V T t − xi‖
or we can work in the V space by comparing V T t with V T xi ,
i.e., by measuring ‖V T t − V T xi‖. Cases 1–3 use the former
measure. Cases 4–6 are identical to cases 1–3 but use the
second measures, i.e., those based on ‖V T t − V T xi‖. These
are different distances when the projector does not project xi

exactly, i.e., when V V T xi �= xi . Table III details the structure
recognition, in case 6, for all 55 compounds.

Looking at Table II we note that even KNN, the simplest
method, achieves a recognition of at least 94.5% in four of the
six tests. The other two methods easily achieve recognition
rates of 96.4% and higher (2 errors of 55). In one instance
of PCA (test 2), 100% accuracy is achieved, although this is
a rather contrived situation shown here only to illustrate the
possibility of getting 100% accuracy. One compound that is
not easily recognized by any of the procedures is MgTe. This
is a W, identified incorrectly by KNN and by ONPP as a Z
in all six tests. It was labeled WR by PCA in cases 2, 3, and

TABLE III. Recognition details for case 6.

Compound Structure KNN ONPP PCA

BeO W W W W
LiF R R R R
BP Z Z Z Z
SiC ZW Z Z Z
BeS Z ZW ZW Z
AlN W W W W
LiCl R R R R
MgO R R R W
NaF R R R R
BAs Z Z Z Z
AlP Z Z Z Z
MgS WR WR WR WR
BeSe Z ZW ZW Z
GaN W W W W
ZnO W W W W
LiBr R R R R
NaCl R R R R
CaO R R R R
KF R R R R
BeTe Z Z Z Z
AlAs Z Z Z Z
GaP Z Z Z Z
ZnS ZW Z Z Z
MgSe WR WR WR WR
LiI R R R R
CdO R W W W
InN W W W W
CaS R R R R
NaBr R R R R
KCl R R R R
SrO R R R R
RbF R R R R
AlSb Z Z Z Z
GaAs Z Z Z Z
InP Z Z Z Z
MgTe W Z Z WR
ZnSe ZW Z Z Z
CdS ZW ZW ZW Z
NaI R R R R
CaSe R R R R
SrS R R R R
KBr R R R R
RbCl R R R R
GaSb Z Z Z Z
InAs Z Z Z Z
ZnTe Z Z Z Z
CdSe W ZW ZW Z
CaTe R R R R
KI R R R R
SrSe R R R R
RbBr R R R R
InSb Z Z Z Z
CdTe Z Z Z Z
SrTe R R R R
RbI R R R R

6 and Z in all other tests. CdO (an R) also gave difficulties.
It was incorrectly labeled as W by KNN in all six cases, by
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ONPP in three of the six cases, and by PCA in two of the six
tests.

V. PROPERTY PREDICTION EXPERIMENT

In this section we explore the melting point of 44 AB
suboctet compounds—following an experiment performed
in the paper15 mentioned earlier. AB suboctet compounds
are composed of simple metals and metalloids as cations
and do not contain any transition metals; the number of
valence electrons for the two components is less than eight,
e.g., MgAu, NaIn, and LiAl. As discussed for the previous
supervised learning experiment, we perform a “leave-one-out”
experiment. Experimental melting points for this set of 44
compounds are available. By removing 1 of them, we are left
with 43 and can use these data to perform a (linear) regression.
The melting point is expressed as a linear combination of a
number of selected features, such as the s radius and p radius
of each of A and B, the number of valence electrons of atom
A, the number of valence electrons of atom B, and so on.

A common method used for regression is simply the least-
squares approach. However, in the presence of experimental
data and ill conditioning, it is often the case that regularization
must be used. Tikhonov regularization28,29 has been applied
for this test. In a standard regression analysis, we solve a least-
squares problem, min ‖Xa − b‖2, where b are the measured
values for each of the m samples, ‖.‖2 is the Euclidean norm,
the columns in X represent variables evaluated for each of
the m samples, and a is the sought coefficient vector, which
determines how the variables are (optimally) combined to yield
the result b. The solution to the problem is a = X†b, where
X† represents the pseudoinverse of X. In Tikhonov regulation
an approximate optimal solution is found in the form a =
(XT X + τI )−1XT b, where τ is a regularization parameter. In
our study we first normalize the data matrix X by scaling its
rows by their 2-norms. The regularization parameter used is
τ = 0.135.

A combination of 16 features for each suboctet binary
compound, namely, 8 features for each constituent atom, A and
B, have been selected for the melting point prediction. These
eight features for each atom are (1) the number of valence
electrons, (2) the radius for the s states as determined from
model potentials, (3) the radius for the p states as determined
from model potentials, (4) the electron negativity, (5) the
boiling point, (6) the first ionization potential, (7) the heat
of vaporization, and (8) the atomic number. The radii for
both the s states and the p states are listed in Table I. The
electronegativity is the Pauling electronegativity.30 The atomic
number and the number of valence electrons are adopted
from the periodic table published by the National Institute of
Standards and Technology. Values of the other three features,
namely, the boiling point, the first ionization potential, and the
heat of vaporization, are listed in Table IV.

The results are reported in Table V and they are also shown
in Fig. 6. The relative error in Table V is defined as the absolute
difference between the experimental and the predicted melting
point divided by the experimental melting point. The median
relative error of our predictions is 0.128, which means that half
of the predictions have a relative error that is less than 12.8%.
The boundaries for predictions with a relative error of 15%

TABLE IV. List of the boiling points, first ionization potentials,
and heats of vaporization used in the present work.

Boiling point First ionization Heat of vaporization
Element (K) potential (eV) (kJ/mol)

Ca 1757 6.11 154
Ag 2436 7.58 251
Ba 2171 5.21 142
Pb 2013 7.42 178
Ge 3103 7.90 331
Si 2628 8.15 384
Sn 2543 7.34 296
Sr 1657 5.70 144
Tl 1746 6.11 164
I 459 10.45 21
Cd 1038 8.99 100
Li 1615 5.39 146
Mg 1363 7.65 127
In 2346 5.79 232
Au 3080 9.23 334
Rb 961 4.18 72
Be 3243 9.32 292
Cu 2840 7.73 300
Hg 630 10.44 59
Al 2740 5.99 293
Ga 2676 6.00 259
Na 1156 5.14 97
Bi 1837 7.29 105
K 1032 4.34 80

are also plotted in Fig. 6. There are six compounds whose
prediction relative error is above 25%, namely, 86% of the
predictions have a relative error that is less than 25%. Only one
compound’s melting point is predicted with a relative error that
is slightly above 30%. This compound is CaAg. Considering
the fact that the experimental melting points range from 578
to 1573 K, the theoretical difficulty of a clear description and
understanding of the melting point, and the relatively simple
linear regression method used in the study, this performance
is understandable. All it says is that it may be possible to use
data mining to predict, within a moderate error (say, less than
15%), a value associated with some physical properties of a
material from properties of the constituent atoms.

It is remarkable that the anomalous behavior of MgAu
disappears in the current study while it consistently appears
in both the Bloch-Simons and the Mooser-Pearson analytical
studies; this has been discussed extensively in Ref. 15. Such
anomalous behavior for rather simple suboctet compounds
hinders the practical application, as well as the further
development, of both the Bloch-Simons and the Mooser-
Pearson analytical models for melting point prediction. It
may be attributed to the failure to incorporate correctly the
p-d hybridization into the Bloch-Simons and Mooser-Pearson
models. In some ways, the effects of the p-d hybridization
are reduced via data mining. This may be partly due to the
fact that more physical properties of the constituent atoms are
incorporated in the prediction through data mining, and some
of these properties may include p-d hybridization implicitly.
Twenty-three properties of the constituent atoms, though less
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TABLE V. Comparison of predicted and experimental melting
points for suboctet compounds.

Melting point (K)

Compound Experimental Predicted Relative error

CaAg 938 1266 0.349
BaPb 1123 1158 0.031
BaGe 1418 1450 0.023
CaGe 1573 1385 0.120
CaSi 1518 1378 0.092
CaSn 1260 1438 0.142
SrSi 1423 1551 0.090
SrGe 1438 1546 0.075
TlI 723 742 0.026
CdAg 1003 865 0.138
LiAg 1159 829 0.285
MgAg 1093 1090 0.003
ZnAg 963 1101 0.143
CdAu 900 1038 0.153
LiAu 918 1096 0.194
MgAu 1423 1114 0.217
RbAu 773 999 0.292
ZnAu 998 860 0.138
BeCu 1203 1413 0.174
CaCd 958 1089 0.137
CaTl 1243 930 0.252
CaHg 1234 979 0.206
SrCd 973 1046 0.075
ZnCu 1153 1040 0.098
LiHg 868 747 0.140
MgHg 900 982 0.091
LiPb 755 895 0.186
LiTl 783 743 0.051
MgTl 628 808 0.286
LiAl 991 1066 0.076
LiCd 822 811 0.013
LiGa 999 976 0.023
LiIn 910 896 0.016
NaIn 713 780 0.094
LiZn 753 917 0.217
NaTl 578 632 0.094
LiBi 878 895 0.020
NaBi 793 682 0.140
NaPb 641 714 0.114
KPb 843 830 0.016
KSn 1103 900 0.184
BaCd 854 1086 0.271
BaHg 1095 919 0.161
HgSn 1133 1016 0.103

than complete, have been studied and have led to the optimal
feature set listed above. These features include the covalent
radius, atomic mass, melting point, and ionic radius, to cite just
a few. More importantly, the construction of the feature matrix
via similar compounds of the target compound, as described
below, provides a sound basis for the predictive inference.

Our melting point prediction algorithm works as follows:
(1) Select one compound as a prediction target from the
compound data set; (2) search the remaining compounds in
the data set for similar compounds in terms of the angular

FIG. 6. (Color online) Experimental and predicted melting points
for 44 suboctet binary compounds in degrees kelvin. The dashed
(blue) line represents the boundaries for predictions with a relative
error of 15%.

momentum of the outermost orbital of the constituent atoms;
(3) form the feature matrix using all compounds that are
similar to the target compound; (4) use the feature matrix
to perform a regression via Tikhonov regularization; (5)
calculate the relative error and store the predicted melting
point; (6) return to step 1 for the next unpredicted compound
until all compounds have been predicted. Additional feature
matrix formation mechanisms, such as atomic number and
combination of compounds with only one constituent atom
similar to the target compound, are also incorporated in our
prediction process, forming a hierarchy of the feature matrix.

The worst predicted compound CaAg, with a relative
error of 35%, is a compound with constituent atoms from
s-block and d-block elements, respectively. Four of the six
compounds, with a relative error greater than 25%, are
compounds combined by atoms from both s-block and d-block
elements too. In addition, 78% of the compounds, with a
relative error greater than 20%, show the same characteristics,
namely, one constituent atom is from the s-block elements
while the other is from the d-block elements. Such a consistent
pattern reveals that the lack of an accurate description for the
d states may have a negative impact on predictions, regardless
of the techniques applied. In Ref. 15, the d orbitals have been
employed to explain the experimentally observed large melting
point difference between MgAu and ZnAu. Our data mining
experiments suggest that the complexity of the d orbitals is
beyond the description of a single-parameter d-state radius.
This is one reason why we omitted the coinage metals (Cu,
Ag, and Au) when we considered the crystal structures.

In order to understand quantitatively the impact of each
feature on the prediction accuracy, the sensitivity of features
is also measured as follows. First, for the feature matrix X ∈
Rm×n, in which features are represented by columns while
rows stand for compounds, the feature k for both atom A
and atom B, namely, X(: ,k) and X(: ,k + 8) is increased
by the product of a uniformly distributed random number
and the norm of the feature vector of the order of 10−8,
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TABLE VI. Comparison of the sensitivities of different features.

Feature Sensitivity

Number of valence electrons 809
Radius for s states 1650
Radius for p states 1057
Electron negativity 2384
Boiling point 2
First ionization potential 627
Heat of vaporization 17
Atomic number 92

represented as ε here. Consequently, the new feature values
are X(: ,k) = X(: ,k) + ε and X(: ,k + 8) = X(: ,k + 8) + ε

for both constituent elements of all compounds. Second, the
new coefficient vector aε is then calculated according to aε =
(XT X + τI )−1XT b, where τ is a regularization parameter.
Finally, the vector norm of the difference between the new
coefficient vector aε and the original coefficient vector a is
divided by ε. Such a dimensionless ratio is calculated for
all compounds, and its mean is assigned as the sensitivity
of feature k, i.e., 〈‖aε − a‖/ε〉 where 〈. . .〉 represents the
sampling average. The above details the calculation of the
sensitivity of feature k. Such a calculation is repeated for all
features of the optimal feature set, as described previously, in
order to obtain the sensitivity of all features. The results are
listed in Table VI. Our results show that the electron negativity
has the highest sensitivity value among the eight-feature
set, which means that the change in the electron negativity
will have the highest impact on the prediction accuracy.
Furthermore, the similarity among compounds can be retrieved
more via the electron negativity of the constituent elements
than via any other single feature in the eight-feature set. In this
similarity extraction mode, the eight features in the optimal set
can be ranked, in descending order, as follows: (1) the electron
negativity, (2) the radius for the s states, (3) the radius for
the p states, (4) the number of valence electrons, (5) the first
ionization potential, (6) the atomic numbers, (7) the heat of
vaporization, and (8) the boiling point. It is interesting that the
experimentally determined heat of vaporization and the boiling
points are the lowest ranked. These features implicitly contain
all possible attributes. Also, unless the structure of the melt
is very different, the boiling points should contain essentially
the same information as the heats of vaporization. As such, it
is not surprising that the two features show similar behavior.

The melting point prediction study presented here suggests
the possibility of promising applications of data mining tech-

niques in materials property exploration. On the other hand,
advancements in the physics, as well as insight into the nature,
of materials, in particular, the electronic structure of materials,
will greatly promote such data mining applications in materials
research. In essence, the spirit of data mining applications
in any field is the search for similarities that are relevant
to the application goal. Unfortunately, the measurement of
similarities among materials for a targeted material property
is still at a nascent stage.

VI. CONCLUSIONS

The primary aim of this paper was to show how a few
simple data mining techniques can be applied to answer a
few specific questions on materials. In the first experiment,
an “unsupervised learning” technique enabled us to separate
67 octet compounds into distinct classes according to their
crystal structure through a PCA projection of the two con-
stituent atoms’ properties. In the second experiment, using
a “supervised learning” technique, we were able to find the
correct crystal structure of 55 compounds with an average
success rate of 95%. In one instance of PCA, 100% accuracy
was achieved, albeit with an ad hoc scheme. Finally, a simple
form of regularized regression enabled us to predict the melting
point of 44 suboctet compounds with a median relative error
of 12.8%. This was achieved by mining a combination of 16
properties of the constituent atoms of each binary compound.

These preliminary results indicate that there is great
potential for applying data mining techniques in materials
science. This said, it is clear that more complex issues of
materials science will lead to big challenges for data mining.
On the bright side, there is much more to data mining than the
basic techniques explored here. Once researchers gain a better
understanding of the intrinsic nature of materials-related data,
we will likely be in a much better position to deploy these
methods for large data sets and extract much more meaningful
information than was demonstrated in this article.
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