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Nonlinear theoretical formulation of elastic stability criterion of crystal solids
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An elastic stability criterion is generally formulated based on local elasticity, where the second-order elastic
constants of a crystalline system in an arbitrary deformed state are required. While simple in formalism, such a
formulation demands extensive computational effort in either an ab initio calculation or an atomistic simulation
and often lacks clear physical interpretation. Here, we present a nonlinear theoretical formulation employing
higher-order elastic constants beyond the second-order ones; the elastic constants needed in the theory are those
at a zero stress state or in any arbitrary deformed state, many of which are now available. We use the published
second- and higher-order elastic constants of several cubic crystals, including Au, Al, and Cu, as well as
diamond-structure Si, with transcription under different coordinate frames, to test the stability conditions of these
crystals under uniaxial and hydrostatic loading. The stability region, ideal strength, and potential bifurcation
mode of those cubic crystals under loading are obtained using this theory. The results obtained are in good
agreement with the results from the ab initio calculation or embedded atom method. The overall good quality of
the results confirms the desired utility of this new approach to predict elastic stability and related properties of
crystalline materials without involving intense computation.
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I. INTRODUCTION

Born formulated the elastic stability criterion in the context
of thermal melting of a crystal.1,2 It states that to ensure
a crystalline solid in a stable state, the determinant of the
second-order elastic constant tensor C must be positive, |C| >

0, which amounts to saying that given a perturbative strain η,
such as in thermal melting, the variation of the internal energy
of the system must remain positive and convex if the system is
in a stable state. Furth quickly realized that the Born criterion
also sets the limit of the strength of a perfect crystal subject to
external stress that causes deformation strain.3 Thus, |C| → 0
would be the elastic stability condition at a temperature
below melting point when the crystal is under external stress.
The Born criterion is formulated for a crystalline solid in a
stress-free state, so Furth’s generalization is clearly invalid,
because the elastic constants at finite deformation depend on
applied stress.4 The Born criterion for crystals in the deformed
state should be modified using the stress-dependent elastic
constants. The general expression for the elastic constants
under an arbitrary applied stress was derived by Wallace in the
context of formulating equations of elastic wave propagation
in stressed crystals,4 where he called it the elastic stiffness
constant,

Bijkl = Cijkl + (1/2)(δikτjl + δjkτil + δilτjk + δjlτik

− 2δklτij ). (1)

Here, Cijkl = ρ∂2F/∂ηij ∂ηkl is the elastic constant, τ is the
applied stress, ρ is the density of the material in a deformed
state, and F is the free energy of the system. Using the elastic
stiffness constants, the Born stability criterion then becomes

|B| > 0. (2)

Equation (2) reduces to the original Born criterion at zero
applied stress (τ = 0), i.e., B = C.

Recently, we5 showed that the general stability criterion in
Eq. (2) is related to the one proposed much earlier by Polanyi,
Frenkel, and Orowan6–8 that predicts the ideal strength of a
crystal. The connection is through the relation

τij (x) = τij (X) + Bijklηkl + O[(ηkl)
2], (3)

where τij (x) is the stress at a current deformed state x away
from a reference state X and τij (X) is the stress applied to a
system at state X, with η as the Lagrangian strain from state X

to state x. If x is sufficiently close to X, the stability criterion
is set by

∂τ/∂η > 0, (4)

which is the Frenkel-Orowan criterion.
Using the generalized Born criterion [Eq. (2)], a large num-

ber of theoretical and computational work has been performed9

to investigate the elastic stability problems associated with
phase transition, ideal strength, crystal defect formation, etc. A
continuum model with a finite element method,10 an atomistic
simulation with an embedded atom method,11,12 and an ab
initio quantum mechanic simulation13–16 have been employed
extensively in various calculations. However, all of these
approaches require a tremendous amount of computational
resources, among which the largest fraction is on calculation
of the second-order elastic constant Cijkl in each deformed
state. In the ab initio calculation, the total energy needs
to be calculated first and used later to obtain Cijkl ; in
the atomistic simulation, Cijkl can be obtained using either
an analytical expression or a fluctuation formula.11,12 For
the latter case, a large amount of computation resource is
needed to guarantee the convergence of fluctuations so that
reliable results can be reached.17,18 In addition, although the
elastic stability criterion as expressed in Eq. (2) is simple, it
often hides the physical mechanisms underlying the stability
limit. For example, anharmonic effects present in a crystal
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under applied stress play an important role in softening
the material, leading to elastic instability. By focusing only
on the second-order elastic constants Cijkl , this and other
effects manifested in higher-order elastic constants are often
masked.

In this work, we present a general theoretical framework
of the elastic stability criterion using higher-order elastic
constants. In finite deformation theory, both the stress and
the second-order elastic constants in a stressed state can be
expressed in a series expansion in terms of the deformation
strain, with the expansion coefficients expressed as functions
of stress and the second- and higher-order elastic constants at
a reference state. Choosing the reference state as the zero
stress state, we obtain the stability criterion as expressed
in Eq. (2) in terms of the second- and higher-order elastic
constants at zero stress states. Many of these zero stress
elastic constants are now available either from experiments
or theoretical calculations, making it extremely desirable,
and possible, to use the nonlinear formulation analytically to
predict the stability and ideal strength of crystalline materials
without resorting to extensive computation. In addition, the
anharmonic contributions to the elastic stability can be easily
seen through the higher-order terms. Another advantage is that
we may use this formulation to predict stability conditions
at elevated temperatures whenever the elastic constants are
available that cannot be easily dealt with using a density
functional theory (DFT) calculation, which is confined to zero
temperature.

This paper is organized as follows. In Sec. II, we present a
unified transcription theory for stress and second- and higher-
order elastic constants at different coordinate frames that is
needed for our nonlinear theoretical formulation. We express
the elastic stability criterion and the nonlinear formulation us-
ing second- and higher-order elastic constants at the zero stress
state. Instances of the stability criterion for cubic crystals under
hydrostatic and uniaxial stress are given. In Sec. III, we present
the methods used to test the new theoretical formulations of
stability conditions. In Sec. IV, we give the results obtained
from several crystalline systems in which higher-order elastic
constants are available. They include the stability region
expressed by the strain limits, ideal strength or stress, and
the possible bifurcation mode of cubic crystal metals, such as
Au, Al, Cu, and Si. For comparison, we show results from our
ab initio calculation and other theoretical works. In Sec. V,
we discuss the new method and its applications, along with
its limitations, mostly from the view of the quality of the
input data. Finally, in Sec. VI, we draw conclusions from this
work.

II. THEORY

A. Finite deformation theory of stress and the elastic constant

Suppose a material point in configuration X under stress
σij (X) is undergoing a small displacement, i.e., with a strain
η, to a new state x with a corresponding stress σij (x). We
assume, without loss of generality, that the displacement could
be arbitrary and infinitesimal as needed. The corresponding
change of the Helmholtz free energy F (x,T ) = F (η,T ) at

state x from F (X,T ) = F (0,T ) at state X is expressed as

F (η,T ) = F (0,T ) + ∂F

∂ηij

∣∣∣∣
X,η′

ηij + 1

2!

∂2F

∂ηij ∂ηkl

∣∣∣∣
X,η′

ηijηkl

+ 1

3!

∂3F

∂ηij ∂ηkl∂ηmn

∣∣∣∣
X,η′

ηijηklηmn

+ 1

4!

∂4F

∂ηij ∂ηkl∂ηmn∂ηpq

∣∣∣∣
X,η′

ηijηklηmnηpq + · · · ,

(5)

correct to the fourth order of η with the understanding that
all derivatives appearing in Eq. (5) are done at state X with
all other strain components η′ held constant. The correspond-
ing (second Piola-Kirchhoff) stress and the second-, third-,
and higher-order isothermal elastic constants at state X are
then

τij (X) = 1

V (X)

∂F

∂ηij

∣∣∣∣
X,η′

, (6a)

Cijkl(X) = 1

V (X)

∂2F

∂ηij ∂ηkl

∣∣∣∣
X,η′

, (6b)

cijklmn(X) = 1

V (X)

∂3F

∂ηij ∂ηkl∂ηmn

∣∣∣∣
X,η′

, (6c)

and

c̃ijklmnpq (X) = 1

V (X)

∂4F

∂ηij ∂ηkl∂ηmn∂ηpq

∣∣∣∣
X,η′

, (6d)

where V (X) is the volume of the system at X. Summation
convention is automatically assumed.

Following the same scheme, we can obtain the correspond-
ing stress and the second- and third-order isothermal elastic
constants at state x as

τij (x) = 1

V (x)

∂F

∂ξij

∣∣∣∣
x,ξ ′

, (7a)

Cijkl(x) = 1

V (x)

∂2F

∂ξij ∂ξkl

∣∣∣∣
x,ξ ′

, (7b)

and

cijklmn(x) = 1

V (x)

∂3F

∂ξij ∂ξkl∂ξmn

∣∣∣∣
x,ξ ′

, (7c)

where V (x) is the volume of the system at state x and ξ is a
Lagrangian strain from state x to state y. From the preceding
expressions, we can simply take a derivative of Eq. (5) with
respect to ξ at state x; thus, we have, after dividing by V (x)
on both sides,

τij (x) = 1

V (x)

∂F

∂ξij

∣∣∣∣
x,η′

= V (X)

V (x)

∂ηkl

∂ξij

[
τkl(X) + Cklmn(X)ηmn

+ 1

2!
cklmnpq (X)ηmnηpq

+ 1

3!
c̃klmnpqrs(X)ηmnηpqηrs + · · ·

]
. (8a)

Following the same scheme, we can systematically obtain the
second- and higher-order elastic constants at state x in relation
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to those at state X:

Cijkl(x) = 1

V (x)

∂2F

∂ξij ∂ξkl

∣∣∣∣
x,η′

= V (X)

V (x)

∂ηmn

∂ξij

∂ηpq

∂ξkl

×
[
Cmnpq(X) + cmnpqrs(X)ηrs

+ 1

2!
c̃mnpqrsuv(X)ηrsηuv + · · ·

]
, (8b)

cijklmn(x) = 1

V (x)

∂3F

∂ξij ∂ξkl∂ξmn

∣∣∣∣
x,η′

= V (X)

V (x)

∂ηpq

∂ξij

∂ηrs

∂ξkl

∂ηuv

∂ξmn

×
[
cpqrsuv(X) + c̃pqrsuvxy(X)ηxy + · · ·

]
. (8c)

As we show later, these transcription relations enable us to
formulate the nonlinear theory of the elastic stability criterion.

B. Elastic stability of crystal solids under external stress

If a material at state X is stable, given a small increment
of strain η (with Voigt notation, a strain tensor is treated
as a vector, η = (η1,η2,η3,η4,η5,η6)), the increment of the
corresponding stress must remain positive in the direction
of the perturbative strain η. Otherwise, the system at state
X is unstable. This criterion is what Polanyi, Frenkel,
and Orowan6–8 originally proposed for estimating the ideal
strength of a material where ∂τ/∂η → 0. This approach to
obtain stability is effective, because in most calculations and
simulations the stress–strain relation can be easily obtained.
However, the deformation strain at the instability often does
not follow the original loading path. For example,15 when a
face-centered cubic (fcc) crystal Au is under uniaxial tension,
the elastic instability is dominated by one of the shear strains
rather than the tensile strain. This particular aspect makes it
more appealing to use the following approach.

The elastic response coefficient defined in Eq. (1) is often
used as a default to judge stability, because the ingredients
needed in this criterion can be obtained directly from
calculations. It involves τ , the external stress at state X, or
the Cauchy stress when the system is in equilibrium, and
Cijkl = V −1(∂2U/∂ηij ∂ηkl)η=0, which is the elastic constant
at state X. This stability criterion can be obtained from the
convexity of the free energy f of a system under external
loading, i.e., f = F − W .5,19–23 With a perturbative strain η,
a solid can only be stable when the variation of the internal
energy or free energy F is larger than the external work W

done to the system, or δ(F − W ) = ηT Bη > 0.
Based on its definition, Bijkl is in general asymmetric,

while ij ↔ kl unless the applied stress is hydrostatic τij ∝ δij .
The stability criterion δ(F − W ) = ηT Bη > 0 is valid only
if the symmetrized part of B, B = (BT + B)/2, is positive
definite, or |B| > 0. Specifically, for a cubic crystal subject to
hydrostatic pressure P , τij = −Pδij ; thus, B̄ = B because of
preservation of the lattice symmetry. We follow the convention
that the inward pressure is positive while outward one is
negative (i.e., P < 0 for tension). The stability conditions are

BT (τ ) = (B11 + 2B12)/3 = (C11 + 2C12 + P )/3 > 0, (9)

G′(τ ) = (B11 − B12)/2 = (C11 − C12 − 2P )/2 > 0, (10)

G(τ ) = 4B44 = 4(C44 − P ) > 0. (11)

Here, Voigt notation is applied. We express the bulk stiffness
modulus BT (τ ), tetragonal shear stiffness modulus G′(τ ), and
rhombohedral shear stiffness modulus G(τ ) explicitly.

For a cubic crystal under uniaxial stress along the [100]
axis τij = τδi1δj1, where i,j = 1,2,3, the lattice symmetry
becomes tetragonal after deformation. The criterion |B| > 0
gives four stability conditions, two of which are associated
with applied stress explicitly:24

B11(B22 + B23) − 2B
2
12 > 0

⇔ (C11 + τ )(C22 + C23) − 2

(
C12 − τ

2

)2

> 0, (12)

B22 − B23 > 0 ⇔ C22 − C23 > 0, (13)

B44 > 0 ⇔ C44 > 0, (14)

B55 > 0 ⇔ C55 + τ

2
> 0. (15)

The first condition, in Eq. (12), equals that for the Young’s
modulus, E100 > 0. The Young’s modulus expressed in terms
of the elastic stiffness constants that governs a fully relaxed
stretch in the [100] direction is

E100 = (S11)−1 = B11(B22 + B23) − 2B
2
12

B22 + B23
, (16)

where Sij is the elastic compliance tensor for tetragonal
crystals.

The ideal tensile or compressive strength of the crystal is
the corresponding value of the normal stress τ at which any
one of the preceding conditions [Eqs. (12)–(15)] starts to fail.
This is different from the original Polanyi-Frenkel-Orowan
criterion for theoretical strength mentioned previously, if the
strain corresponding to the violation of the stability condition is
not along the primary loading path, i.e., in the [100] direction.
This phenomenon is called stability bifurcation.15,16,19–23 The
corresponding strain along the primary loading path where
any one of the preceding stability conditions is violated sets
the strain limit for the materials.

C. Nonlinear theoretical formulation of the elastic
stability criterion

As mentioned in the introduction, the necessary ingredient
in acquiring the elastic stability criterion expressed in Eq. (2)
is the second-order elastic constant Cijkl at the current state,
which is usually deformed. To simulate the elastic stability of
a crystal solid deformed along a loading path, for each small
increment of deformation strain, we must calculate Cijkl , either
from the total energy in ab initio calculations or from the strain
fluctuation in atomistic simulation. This procedure demands a
huge computing effort.

Realizing the relations expressed explicitly in Eq. (8)
between the stress and the elastic constants at an arbitrary
deformed state x and those at a reference state X, we can
significantly simplify the procedure to test the elastic stability
criterion [Eqs. (1) and (2)] by using a reference state under zero
stress, which is often called the natural state in mechanics,
where τ (X) = 0. We could express the stress and elastic
constants at an arbitrary stressed state x as a function of the
deformation strain and the stress and elastic constants at the
natural state. We obtain these relations below.
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Considering only symmetric strain from X to x, when
we use relations aij = aji = ∂xi

∂Xj
, ∂ηij

∂ξkl
= akialj , the stress in

Eq. (8) becomes

τij = (V0/V )aikajl

[
τ (0)kl +

∑
mn

C(0)klmnηmn

+ 1

2
C(0)klmnpqηmnηpq

+ 1

6
C(0)klmnpqrsηmnηpqηrs + . . .

]
, (17)

where V0, τ (0)kl , C(0)klmn, C(0)klmnpq , and C(0)klmnpqrs

represent the volume, the stress, and the second-, third-,
and fourth-order elastic constants at the zero stress state,
respectively, and V is the volume at the current state x.
Similarly, following Eq. (8b), we can write the second-order
elastic constants Cijkl at state x as

Cijkl = (V0/V )aimajnakpalq

(
C(0)mnpq + C(0)mnpqrsηrs

+ 1

2
C(0)mnpqrsuvηrsηuv + · · ·

)
. (18)

Explicitly, e.g., after using the relations J = det |a| = V (x)
V (X) ≈

1 + ηii + · · · and aij ≈ δij + ηij − 1
2ηkiηkj + · · ·, Eq. (17)

becomes Eq. (3) correct to the first order of ηij (higher-order
terms in ηij can also be easily obtained from Eq. (8)), and the
second-order elastic constants in Eq. (18) becomes

Cijkl = C(0)ijkl + [−C(0)ijklηmm + C(0)ijkmηlm

+C(0)ijmlηkm + C(0)imklηjm + C(0)mjklηim]

+C(0)ijklmnηmn + · · · . (19)

Now we have a general expression for τij and Cijkl

evaluated at any deformed state x in terms of the second-,
third-, fourth-, and even higher-order elastic constants eval-
uated at the zero stress state. If we know these elastic
constants, from either experiments or theoretical calculations,
we can express the elastic stability conditions analytically, as
expressed in Eqs. (9)–(11) or Eqs. (12)–(15), as functions of
the deformation strain η only. This new formulation based
on the finite deformation theory (Sec. II A) gives significant
relief in computing the elastic stability conditions; at the
same time, it offers valuable insights into how nonlinear
effects such as anharmonicity contribute to crystal stability.
In addition, if the data are known, we can also predict stability
conditions at elevated temperatures where DFT types of
calculations become difficult because they are confined to zero
temperature. In the following, we present detailed formulations
to implement this approach in cubic crystals.

III. THEORETICAL CALCULATION DETAILS

We performed ab initio calculations with DFT to investigate
the elastic stability of a fcc crystal Au under hydrostatic and
uniaxial stresses, respectively.15,16 The calculations consist

of three parts: (1) equilibrate the system and then subject
the system under deformation by applying a homogeneous
deformation strain along a specific loading path; (2) obtain
the elastic constants, stresses, and other relevant properties,
such as volume, at each of the deformed states; and (3) from
the elastic constants, obtain the elastic stiffness constants and
thus the stability criteria [Eq. (2)]. We can obtain the stability
condition using the stress–strain relations [Eq. (3)] too, but
caution must be taken in case of a possible occurrence of
bifurcation.

In the case of hydrostatic loading, because of the preser-
vation of the symmetry, the procedure is simple. We apply
hydrostatic deformation to a crystal supercell via a strain,η11 =
η22 = η33 = ξ , ηij = 0 for i �= j , which is done by changing
the lattice parameter a homogeneously, or a/a0 = √

1 + 2ξ .
We then obtain the pressure–strain relation and the internal
energy U as a function of the applied strain, or U = U (a/a0),
from which we obtain the elastic constants.

For uniaxial loading, the procedure is much more complex.
To simulate deformation along the [100] axis, we first apply
an incremental strain η1 along the [100] axis to a crystal
supercell. We then hold the supercell in the [100] direction
but allow it to relax in the other two perpendicular directions,
[010] and [001]. When the stress components σ2 and σ3

in these two directions reach zero as required by Poisson
contraction, we measure the value of η2 and η3 and obtain
a new supercell, which is now under the nonvanishing stress
only along the [100] axis. Because of the tetragonal crystal
symmetry and relaxation σ2 = σ3 = 0, the total energy of
the system is a function of η1 only. From the total energy
of the deformed supercell at each value of η1, we calcu-
late the elastic constants and test those stability conditions
[Eqs. (12)–(15)]. The process is tedious and time consuming.
In the following subsections, we present the analytical model
using the nonlinear formulation to express the stability
conditions for cubic crystals under hydrostatic and uniaxial
loadings.

A. Cubic crystals under hydrostatic stress

For a cubic crystal under hydrostatic loading, we have
pressure on the system, σ ′

ij = −Pδij , and the deformation
strain η1 = η2 = η3. Using Eqs. (17) and (18), we have the
pressure and elastic constants for the deformed system in terms
of these at zero applied pressure,

P = −1

3
tr(σ ′) = −σ ′

1 = −1√
1 + 2η1

[(C11 + 2C12)η1

+
(

1

2
C111 + 3C112 + C123

)
η2

1 +
(

1

6
C1111 + 4

3
C1112

+C1122 + 2C1123

)
η3

1] + · · · , (20)

correct to the third order of the Lagrangian strain, and

C ′
11 =

√
1 + 2η1

[
C11 + (C111 + 2C112)η1

+ (
1
2C1111 + 2C1112 + C1122 + C1123

)
η2

1

]
, (21a)

104103-4



NONLINEAR THEORETICAL FORMULATION OF ELASTIC . . . PHYSICAL REVIEW B 85, 104103 (2012)

C ′
12 =

√
1 + 2η1

[
C12 + (2C112 + C123)η1

+ (
C1112 + C1122 + 5

2C1123
)
η2

1

]
, (21b)

and

C ′
44 =

√
1 + 2η1

[
C44 + (C144 + 2C155)η1

+ (
1
2C1144 + C1155 + 2C1255 + C1266

)
η2

1

]
, (21c)

correct to the second order of the Lagrangian strain. Using
these relations, we can test the stability conditions expressed
in Eqs. (9)–(11).

B. Cubic crystals under uniaxial stress along the [100] axis

We denote the original state by X, i.e., corresponding to an
initial state of a cubic supercell (not necessarily the natural or
stress-free state); the state with applied strain η1 by X′; and
the state after relaxation by X′′, where the latter two states are

with tetragonal symmetry. Then, from X to X′′, using Eq. (17),
we have the stress

σ ′′
1 = 1

V ′′

(
∂U

∂η′′
1

)
= V0

V ′′

(
1

V0

∂U

∂η1

) (
∂η′′

1

∂η1

)

=
√

1 + 2η1

1 + 2η2

[
σ1 + C11η1 + C12(η2 + η3) + 1

2
C111η

2
1

+C112η1(η2 + η3) + 1

2
C112

(
η2

2 + η2
3

) + C123η2η3

+ 1

6
C1111η

3
1 + 1

2
C1112η

2
1(η2 + η3) + 1

6
C1112

(
η3

2 + η3
3

)

+1

2
C1122η1

(
η2

2 + η2
3

) + C1123(η1η2η3

+ 1

2
η2

2η3 + 1

2
η2η

2
3)

]
, (22)

correct to the third order of Lagrangian strain. We now choose
state X as the natural state, σ1 = 0. Similarly, we may use
Eq. (18) to have the six independent second-order elastic
constants at state X′′,

C ′′
11 = (1 + 2η1)3/2

(1 + 2η2)

[
C11 + C111η1 + C112(η2 + η3) + 1

2
C1111η

2
1 + C1112η1(η2 + η3) + 1

2
C1122

(
η2

2 + η2
3

) + C1123η2η3

]
,

(23a)

C ′′
22 = (1 + 2η2)

(1 + 2η1)1/2

[
C11 + C111η2 + C112(η1 + η3) + 1

2
C1111η

2
2 + C1112η2(η1 + η3) + 1

2
C1122

(
η2

1 + η2
3

) + C1123η1η3

]
,

(23b)

C ′′
12 = (1 + 2η1)1/2

[
C12 + C112(η1 + η2) + C123η3 + 1

2
C1112

(
η2

1 + η2
2

) + C1122η1η2 + C1123(η1η3 + η2η3 + 1

2
η2

3)

]
, (23c)

C ′′
23 = (1 + 2η2)

(1 + 2η1)1/2

[
C12 + C112(η2 + η3) + C123η1 + 1

2
C1112

(
η2

2 + η2
3

) + C1122η2η3 + 1

2
C1123

(
η2

1 + 2η1η2 + 2η1η3
)]

,

(23d)

C ′′
44 = (1 + 2η2)

(1 + 2η1)1/2

[
C44 + C144η1 + C155(η2 + η3) + 1

2
C1144η

2
1 + 1

2
C1155

(
η2

3 + η2
2

) + C1255(η1η2 + η1η3) + C1266η2η3

]
,

(23e)

and

C ′′
55 = (1 + 2η1)1/2

[
C44 + C144η2 + C155(η1 + η3) + 1

2
C1144η

2
2 + 1

2
C1155

(
η2

3 + η2
1

)
+ C1255(η1η2 + η2η3) + C1266η1η3

]
,

(23f)

correct to the second order of the Lagrangian strain. With
Eqs. (22) and (23), we have the stress and elastic constants
at state X′′ all expressed in terms of η1 and the second-,
third-, and fourth-order elastic constants at state X, given the
condition that η2 = η3 = f (η1) as required from σ ′′

2
= σ ′′

3
= 0

after relaxation from state X′. To identify the value of η2 and
η3 for each specific η1, we use the procedure given in the
appendix. Therefore, using the available elastic constants at
zero stress, we can test the stability conditions expressed in
Eqs. (12)–(15) involving the stress and elastic constants at any
deformed state X′′.

IV. RESULTS

In the following, we present the results on testing the non-
linear formulation of the elastic stability conditions expressed
in two forms, one in terms of the elastic stiffness coefficients
[Eq. (2)] and the other from the stress–strain relation [Eq. (3)].
In the nonlinear formulation, both the stress and the elastic
constants are functions of the deformation strain only. The
inputs are the second-, third-, and fourth-order elastic constants
at a natural state from available experimental measurements
or theoretical calculations. The quality of the input data has
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a big effect on the stability results, especially at large strains.
We discuss this issue in more detail in the next section. For
comparison, we also use the results from ab initio calculations
and atomistic simulations, in particular those from our own
DFT calculation of Au, where all elastic constants up to the
fourth order were available in our previous publication.25

A. Fcc crystal Au under hydrostatic stress

Figure 1 gives the stress–strain curves of both analytical
results and ab initio calculations for the crystal Au under
hydrostatic stress. We have two stress–strain curves from
Eq. (20), resulting from two sets of data of the elastic constants,
one from the experiments26 and the other from our recent
ab initio calculations.25 The analytical results agree well with
those from the DFT calculation in the presented large strain
range, and the one with experimental input deviates from the
other two only in the compressive regime.

Figures 2(a)–2(c) shows the elastic stiffness moduli defined
in Eqs. (9)–(11) with varying hydrostatic strains. As for the
stress–strain relation, three sets of results are obtained for
each stiffness modulus. When we use the second-, third-,
and fourth-order elastic constants of the stress-free crystal
Au from our calculations and the experiments, the results
agree well with the direct ab initio–calculated stiffness moduli.
Our earlier ab initio calculation work15 shows that under
hydrostatic stress, the instability does not occur along the
primary volumetric deformation path; instead, it happens
along a bifurcated path, the rhombohedral shear path at the
expansion strain of 0.06.15 The analytical results using the
elastic constants from our ab initio calculations show that
under compression, all three stability conditions [Eqs. (9)–
(11)] are obeyed within a 10% strain range. In expansion, the
stability conditions associated with the bulk and tetragonal
shear stiffness moduli [Eqs. (9) and (10)] are maintained
[Figs. 2(a) and 2(b)], and the rhombohedral shear stiffness

η

σ

FIG. 1. (Color online) Hydrostatic stress varies with strain η1 for
a fcc crystal Au. Two of the stress–strain curves use Eq. (20), with
two sets of data for the elastic constants in the nonlinear theoretical
formulation, one from experiments and the other from our recent
ab initio calculation. The third curve comes from our ab initio
calculation.

η

η

η

(a)

(b)

(c)

FIG. 2. (Color online) Three elastic moduli of Au under hydro-
static deformation versus volume strain η1: (a) bulk stiffness con-
stants, (b) tetragonal shear stiffness constants, and (c) rhombohedral
shear stiffness constants. Under compression, the crystal is stable.
While under expansion, the rhombohedral shear stiffness modulus
reaches zero first at η1 ∼ 0.05.

condition is violated; i.e., it goes to zero first at the Lagrangian
strain η1 ∼ 0.05, which agrees well with our previous direct
ab initio calculation of the stability condition [Fig. 2(c)].15
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The rhombohedral shear stiffness condition from the analytical
result using the experimental elastic constants does not show
instability, although a minimum at the same strain (η1 ∼ 0.05)
can be seen. Moreover, the rhombohedral shear stiffness
modulus increases at the large strain, mainly because of the
use of the fourth-order elastic constants, while that from the
direct ab initio calculation shows a monotonous decrease with
volume expansion.

As we mentioned previously, the rhombohedral shear
instability showing up as instability bifurcation cannot be
captured directly from the hydrostatic pressure–strain curves,
as shown in Fig. 1. Accordingly, the theoretical strength
cannot be obtained from the pressure–strain curve using
the Frenkel-Orowan criterion. Instead, it can only be ob-
tained from information about the shear instability from the
generalized Born criterion. From the analytical stress–strain
curves (Fig. 1), using the input elastic constants from our
previous ab initio calculations, we obtain the ideal hydrostatic
strength of 17.1 GPa that corresponds to the shear instability
at η1 ∼ 0.05. As a comparison, it is 19.2 GPa from direct
ab initio calculations.15

B. Diamond-structure Si under hydrostatic stress

Karki et al.27 employed ab initio calculations to test the
stability conditions of diamond-structure Si under hydro-
static pressure. Their results show that the tetragonal shear
modulus decreases with pressure and vanishes ∼101 GPa,
while rhombohedral shear modulus decreases to zero at a
higher pressure of 107 GPa. We used the fourth-order elastic
constants obtained by Gerlich et al.28 with Keating model to
test the elastic stability of Si with the preceding nonlinear
theoretical formulation. We found that the tetragonal shear
modulus approaches zero under pressure at 69 GPa, while the
rhombohedral shear modulus decreases to zero at 32 GPa. In
Gerlich’s work, the errors in the fourth-order elastic constants

η

FIG. 3. (Color online) Normal stress varies with strain η1 when
an fcc crystal Au is under uniaxial stress in the [100] direction. Two
of the stress–strain curves come from Eq. (22), with two sets of data
for the elastic constants in the nonlinear theoretical formulation: one
from experiments and the other from our recent ab initio calculations.
The stress–strain curve from our ab initio calculation is also shown.

are more than even 100%, which might be the major reason we
cannot use those elastic constants to obtain satisfactory results.

C. Fcc crystal Au under uniaxial stress along the [100] axis

As compared with the hydrostatic case, uniaxial loading
is more complicated because of symmetry breaking. Figure 3
gives uniaxial stress as a function of strain η1 in the [100]
direction for a fcc crystal Au under uniaxial stress (tension
and compression). Three sets of results are presented: one is
from the direct ab initio calculation, and the other two are from
Eq. (22) using the elastic constants from experiments26 and our
DFT calculations.25 The three lines agree well with one another
in the range of small strains of less than 0.02. Beyond this
range, some differences occur. In general, the analytical result
using the elastic constants calculated from the ab initio results
agrees well with the stress–strain relation obtained directly
from ab initio calculation, but the analytical result using the
experimental data differs substantially from the ab initio ones,
which is understandable considering that the experimental data
were not obtained at zero temperature. Instead, they came
from different measurements with approximations, noticeably
using the Cauchy relation.26 Another obvious deviation among
the stress–strain relations occurs at larger strains in the
compression region. The analytical result using the elastic
constants from the DFT calculations shows a larger deviation
from the direct ab initio calculation result. Those deviations
occur partly because only a finite number of terms are kept
in the deformation energy up to the fourth order in strain
η1. Nevertheless, as shown later, the deviation in stress–
strain relations does not affect the prediction of the stability
conditions.

Using the relations in Eq. (23), we obtained the elastic
constants at a deformed state, from which we can obtain the
stiffness constants [Eq. (1)] and thus test the stability criteria
for Au under uniaxial loading [Eqs. (12)–(15)]. Figures 4(a)–
4(d) gives these elastic stiffness moduli as functions of η1.
In general, the trend in each of the four moduli as functions
of uniaxial strain is captured well by the analytical results
as compared with the direct ab initio calculations, although
increasing deviation occurs at larger strains because of the use
of only finite terms in the theory. The most salient feature is
that nonlinear theory can predict instability and bifurcation
relatively well (within the range of the strains before large
deviation from these of ab initio calculation occurs). As
shown in Fig. 4(a), under tensile stress, the stability condition
involving the tetragonal shear modulus [Eq. (13)] is violated
first. The corresponding Lagrangian strain is at η1 ∼ 0.048,
where the shear stiffness modulus calculated using the elastic
constants from the ab initio calculations vanishes, and at
η1 ∼ 0.10, where the shear stiffness modulus calculated using
the experimental input data for elastic constants vanishes.
Again, the instability occurs not along the primary loading
strain path but along a shear path, via instability bifurcation,
which is well captured by the theory. Figs. 4(b) and 4(c) shows
that there is no instability triggered by two other shear stiffness
coefficients; both B̄44 and B̄55 remain finite within the range
of strains before the tetragonal shear instability occurs.

As shown in Fig. 4(d), under compression, the stability
condition governed by the Young’s stiffness modulus [Eq. (12)
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(a)

(c)
(d)

(b)

η η

η η

τ

FIG. 4. (Color online) Four elastic stiffness moduli of Au under uniaxial stress varying with uniaxial strain η1. Under compression, the
Young’s modulus reaches zero first at η1 ∼ −0.045; under tensile stress, the tetragonal shear stiffness modulus reaches zero first at η1 ∼ 0.048.

or (16)] is violated first at the Lagrangian strains η1 ∼ −0.045
and η1 ∼ −0.085 using the input elastic constants from the
ab initio calculations and experiments, respectively. As a
comparison, the corresponding strain limits at these tension
and compression instability points from our previous ab initio
calculation are 0.07 and −0.07, respectively.16

Given the stress–strain curve (Fig. 3), from nonlinear
theory with inputs from the ab initio calculation, we can
locate the ideal tensile strength of Au, which is 2.7 GPa
at the shear instability point η1 ∼ 0.048, and the ideal
compressive strength, which is 0.7 GPa at the compressive
strain of η1 ∼ −0.045. The strengths predicted from the
shear–strain bifurcation are much smaller than the ideal
strengths at the instability points at η1 ∼ −0.085 and η1 ∼
0.10 predicted using experimental measurements of elastic
constants.

D. Other fcc crystals

The cases of Au presented previously are unique: the
required input elastic constants up to the fourth order are

available from both theoretical calculations and experiments,
and the direct ab initio simulations of both hydrostatic and
uniaxial deformation modes are available for comparison.15,16

In a recent work, we calculated the elastic constants of several
fcc metals up to the fourth order.25 This effort makes it possible
to extend the nonlinear formulation of elastic stability to those
materials, including Al and Cu. Because detailed approaches
have been given in the last two sections, we only summarize the
results for these fcc crystals subject to hydrostatic and uniaxial
loading (Table I). Our emphasis is on the elastic stability from
the nonlinear formulation, the ideal strength and strain, and the
stability mode under which the stability condition is violated.

The ideal strength and stable region of strain are obtained
using the new formulation for Au, Al, and Cu under uniaxial
tension and compression in the [100] direction. Table I lists the
results from our nonlinear analytical theory, previous ab initio
calculation work,13,14,16 and embedded atom method.11,12 As
in Au, the maximum tensile strength for Al and Cu is
determined by shear bifurcation via tetragonal shear instability,
where B̄22 − B̄23 = 0, and the maximum compressive strength
is determined by tensile instability at a vanishing Young’s
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TABLE I. The ideal strength and stable region of fcc crystals Au,
Al, and Cu under uniaxial stress along the [100] axis. The results
are from our analytical scheme, our ab initio calculation, and the
embedded atom method.

Tension C11 − C12 = 0 Compression E[100] = 0

σ1 (GPa) η1 σ1 (GPa) η1

Au 2.7a 0.048a −0.7a −0.045a

4.2b 0.07b −1.6b −0.07b

6.31c 0.079c −2.21c −0.098c

10.0f 0.11f – –
Al 6.7a 0.11a −5.8a −0.09a

12.1d 0.27d −5.62d −0.10d

11.1f 0.25f – –
Cu 8.2a 0.09a −2.6a −0.08a

9.4e 0.10e −3.5e −0.09e

9.8f 0.14f – –

aThis work.
bReference 16.
cReference 12.
dReference 13.
eReference 14.
fReference 11.

stiffness coefficient, i.e., E100. Depending on the method used,
the numerical values of the maximum strengths and the strains
corresponding to the maximum strength under tension and
compression vary widely for the same system. For example,
for Au, the tensile maximum strength is 2.7, 4.2, 6.31, and 10.0
GPa and the corresponding strain limit is 0.048, 0.07, 0.079,
and 0.11, respectively. In general, the molecular dynamics
simulation gives the highest strength and largest limiting strain,
whereas the nonlinear elastic theory has the smallest strength
and smallest strain. The agreement between these methods
is the remarkably consistent prediction of the mode under
which the instability occurs. For example, all fcc metals have
tensile strength determined by tetragonal shear bifurcation,
and compression strength is determined by instability in the
Young’s stiffness coefficient.

V. DISCUSSION

The results shown previously indicate that our analytical
model gives similar results with the ones from our ab initio
calculations in terms of the deformation mode at instability
and even the values of theoretical strength and strain. This
is not surprising, because the elastic constants used in the
nonlinear theory are from the same ab initio calculations.
Larger deviation occurs between these results and those using
experimental elastic constants. The difference may come from
a few sources. First, the elastic constants are calculated at zero
temperature using the ab initio method, while the experimental
ones are usually at room temperature. A 20%–30% change in
the elastic stiffness constants at different temperatures, such as
in the case of tetragonal shear instability B̄22 − B̄23, can lead to
the difference in the limiting strains and the maximum strength.
Second, when we calculate those second-, third-, and fourth-
order elastic constants,25 we apply small perturbative strains
to the supercell to get the energy–strain curve. The elastic
constants are obtained by fitting the energy–strain curves.

η

σ

FIG. 5. Equation of state calculated for Au using various trun-
cated terms in Eq. (20) to the second-, third-, and fourth-order elastic
constants. As a comparison, the stress–strain curve from our ab initio
calculation is also shown.

Therefore, system errors occur and propagate during these
procedures when we apply the stress and elastic constants in
Eqs. (20)–(23). Third, our ab initio work16 employs the stress–
strain relation to obtain elastic moduli, which is different from
the energy–strain method we use to obtain the elastic constants.
Therefore, we may find in Fig. 4 that, at the original size of
the supercell, the modulius values obtained from these two
methods are not exactly the same. For these reasons, we do
not expect the curves from the analytical method and those
from the ab initio calculations to overlap completely in Fig. 4.

In Figs. 1–4, we also give analytical results using exper-
imental values of second-, third-, and fourth-order elastic
constants of Au. The second- and third-order elastic constants
were measured at room temperature using high-purity single
crystals.26 Based on those values, Hiki et al.29 estimated the
fourth-order elastic constants with the generalized Cauchy
relationship:

C1111 = 2C1112 = 2C1122 = 2C1155 = 2C1266 = 2C4444,

C1123 = C1144 = C1255 = C1456 = C4455 = 0.

This is a quite rough approximation. However, the fourth-order
elastic constants that Hiki et al. got are the only set of data we
can find, because no experimental data of fourth-order elastic
constants are available to date. When we use Hiki et al.’s
fourth-order elastic constants of Au, the analytical scheme
gives somewhat different results from those obtained using
our own ab initio–calculated elastic constants.

Different from the uncertainties in our approaches pre-
sented previously, there are various sources of uncertainties in
other theoretical and simulation approaches. These different
sources of uncertainties contribute to the differences in the
results shown in Table I. For example, Milstein et al.11 used
an embedded atom method to perform simulation. Their
potentials are quite sophisticated, because they are fitted
to the second- and third-order elastic constants. However,
according our experience, at such a large finite strain range,
which is beyond 0.10, the fourth-order elastic constants would
make contributions and must be taken into account in the
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fitting procedures of the potentials.25 Perhaps because of
that, their values of ideal tensile strength are higher, and
the stable range in tension is wider than ours. Zhang et al.12

employed a modified analytical embedded atom method model
to investigate the same problem. Their results are closer to ours.
Li and Wang13 studied the ideal strength of Al, but they did
not use symmetrized elastic stiffness constants. In addition,
how they calculate each elastic constant at a given stressed
state to test the stability conditions is not clear. Cerny et al.14

worked on the ideal strength of Cu, but the Young’s modulus
formulation they used is valid only in a small deformation.16

Recently, Cerny and Pokluda30 presented another way to
estimate uniaxial tensile strength on the basis of theoretical
shear strength calculations. They claimed that the analysis
of elastic stability of crystals under tensile loading would be
avoided using this method. Their work shows that the ideal
tensile strength is 5.8 GPa from the rigid-planes approach and
3.6 GPa from the relaxed-planes approach.

Krenn et al.31 applied the transcription theory of stress
and elastic constants to the nonlinear elastic behavior of the
fcc crystals Al and Cu. They used experimentally measured
second- and third-order elastic constants to explain the
different structural relaxation modes of the crystals Al and
Cu under shear deformation. Partly because of the inaccuracy
of the experimental data but more importantly because of
the limitation of the third-order elastic constants, their work
gives only correct signs of relaxations along the x, y, and z

axes, not the magnitudes. At a finite strain range of ∼10%,
the fourth-order elastic constants play an essential role in the
transcription theory scheme.

Perhaps the most obvious discrepancy comes from the
truncation of the higher-order terms involving fourth- and
higher-order elastic constants. We demonstrate the case
through Eq. (20) for the hydrostatic stress that is expressed
at the second-, third-, and fourth-order elastic constants. The
stress–strain curve in Fig. 5 shows the increasing accuracy
of the stress–strain relation as compared with our ab initio–
calculated curve. We also checked the relation in Eq. (21) at
various truncations. Figure 6 shows the bulk stiffness modulus
with different orders of accuracy varying with strain η1.
Figures 5 and 6 give us a general idea that when the analytical
scheme is correct to the fourth-order elastic constants, the
results usually come to fairly good agreement with the results
from ab initio calculations, at least within the strain range
where elastic instability occurs.

The calculations performed in this work are based on the
concept of elastic stability, which corresponds to the long-wave
phonon limit. Some soft phonon modes, most likely those
along the rhombohedral or tetragonal shear, may appear in the
hydrostatically deformed crystal. Recent studies on elastic13

and phonon32 instabilities of aluminum suggest that this
scenario may likely occur in fcc metals, especially at elevated
temperatures.

VI. CONCLUSION

The current methods of accessing the elastic instability and
the related theoretical strength and strain are either through the
Frenkel-Orowan model [Eq. (3)] using direct computation of
the stress–strain relation or via the generalized Born criterion

η

FIG. 6. The bulk stiffnessmodulus obtained with Eq. (9) by using
Eqs. (20) and (21) with the second-, third-, and fourth-order elastic
constants. For comparison, the modulus–strain relation from our ab
initio calculation is also shown.

using the stiffness coefficient B. The drawback of the former
is its inability to predict elastic instability bifurcation that
happens before the maximum strength and strain are reached
along the original loading path, and that of the latter is the re-
quirement of extensive computation to obtain the second-order
elastic constants at each deformed state to furnish B [Eq. (1)].
In addition, some critical physical effects such as anharmonic-
ity are masked in this formulation. In this work, we developed
a general nonlinear theoretical formulation to overcome these
limitations. The theory utilizes the high-order elastic constants
at the zero stress state, or those at any deformed state that are
available either in experiment or through ab initio calculation
or atomistic simulation. We tested the theory in several cubic
crystals, including Au, Al, Cu, and Si, using available data. The
stable region, ideal strength, and limiting strains were obtained
and found to be in good agreement with ab initio calculations
in locating the mode of instability. The analytical scheme gives
us a new and computationally efficient way to investigate
ideal strength, bifurcation, and elastic stability problems in
solids. Another advantage is that we may be able to use the
theory for solids at elevated temperatures where DFT types of
calculations may not be usable.
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APPENDIX

From state X′ to state X′′, the internal energy as a function
of strain η′, expanded to O(η′3), may be written as

δU ′ =
∑

i

σ ′
i η

′
i + 1

2
C ′

11η
′2
1 + 1

2
C ′

22

(
η′2

2 + η′2
3

)

+C ′
12(η′

1η
′
2 + η′

3η
′
1) + C ′

23η
′
2η

′
3 + 1

6
C ′

111η
′3
1
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+ 1

6
C ′

222

(
η′3

2 + η′3
3

) + 1

2

[
C ′

112η
′2
1 (η′

2 + η′
3)

+C ′
122η

′
1

(
η′2

2 + η′2
3

) + C ′
223η

′
2η

′
3(η′

2 + η′
3)

]

+C ′
123η

′
1η

′
2η

′
3, (A1)

where σ ′
i , C

′
ij , and C ′

ijk represent the stress and elastic constants
at state X′ and η′

i represents the Lagrangian strain from state
X′ to state X′′. We know that η′

2 = η′
3, η′

1 = 0, and σ ′
2 = σ ′

3.

Let σ ′′
i represent the stress at state X′′, σ ′′

2 = σ ′′
3 = 0. With

Eq. (8a), we have

σ ′′
2 =σ ′

2 + C ′
22η

′
2 + C ′

23η
′
3 + 1

2C ′
222η

′2
2 + 1

2C ′
223

(
2η′

2η
′
3 + η′2

3

)
.

(A2)

Using σ ′′
2 = 0, η′

2 = η′
3,

0 = σ ′
2 + (C ′

22 + C ′
23)η′

2 + (
1
2C ′

222 + 3
2C ′

223

)
η′2

2 . (A3)

To solve this equation, we need to know the values of σ ′
2, C ′

22,
C ′

23, C ′
222, and C ′

223.
From state X to state X′, ηi = 0 (i �= 1), V

V ′ = 1√
1+2η1

.
Again, we use Eqs. (8a)–(8c) and have

σ ′
2 = 1√

1 + 2η1

(
C12η1 + 1

2
C112η

2
1 + 1

6
C1112η

3
1

)
, (A4)

C ′
22 = 1

V ′
∂2U

∂η′2
2

=
(

V

V ′

) (
1

V

∂2U

∂η2
2

)
a4

22

= 1√
1 + 2η1

[
C11 + C112η1 + 1

2
C1122η

2
1

]
, (A5)

C ′
23 = 1

V ′
∂2U

∂η′
2∂η′

3

=
(

V

V ′

)(
1

V

∂2U

∂η2∂η3

)
a2

22a
2
33

= 1√
1 + 2η1

[
C12 + C123η1 + 1

2
C1123η

2
1

]
, (A6)

C ′
222 = 1

V ′
∂3U

∂η′3
2

=
(

V

V ′

) (
1

V

∂2U

∂η3
2

)
a6

22

= 1√
1 + 2η1

[C111 + C1112η1], (A7)

C ′
223 = 1

V ′
∂3U

∂η′2
2 ∂η′

3

=
(

V

V ′

) (
1

V

∂3U

∂η2
2∂η3

)
a4

22a
2
33

= 1√
1 + 2η1

[C112 + C1123η1]. (A8)

Here, all coefficients in Eq. (A3) are expressed in terms of
η1,Cij , Cijk , and Cijkl . We get a solution of η2 from Eq. (A3)
for an arbitrary value of η1.
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