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Finite-temperature flexoelectricity in ferroelectric thin films from first principles
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A first-principles-based effective Hamiltonian technique is developed to study flexoelectricity in
(Ba0.5Sr0.5)TiO3 thin films of different thicknesses in their paraelectric phase. The magnitude as well as sign of
individual components of the flexoelectric tensor are reported, which provides answers to existing controversies.
The use of this numerical tool also allows us to show that flexoelectric coefficients depend strongly on the
film’s thickness and temperature. Such dependence is explained using the relationship between the flexoelectric
coefficients and the dielectric susceptibility.
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I. INTRODUCTION

The effect of strain gradient on properties of ferroelectric
films is of large scientific and technological importance.
Scientific interest stems from the fact that such a gradient
can give rise to flexoelectricity, which characterizes the
coupling between the polarization and strain gradient. In real
materials, strain gradients are virtually unavoidable due to
strain relaxation and are believed to contribute to deterioration
of dielectric properties.1 Despite a large number of recent
works,1–15 some issues related to flexoelectricity are not
well understood or are even controversial. For instance,
one puzzling issue concerns the order of magnitude of the
flexoelectric coefficients, μpqrs , which are defined as

Pp = μpqrs

∂εqr

∂s
, (1)

where p, q, r , and s represent Cartesian axes, Pp is the p

component of the polarization, and ∂εqr/∂s represents the
strain gradient. It has been proposed16 that, in “normal”
dielectrics, the μpqrs parameters are proportional to e/a, where
e is the electronic charge and a is the lattice parameter, which
provides an estimate of the order of 10−10 C/m. It was then
suggested that, in materials with high values for the dielectric
constant (such as ferroelectrics), the μpqrs parameters are also
proportional to the dielectric permittivity.2,16,17 Such a sugges-
tion implies that flexoelectric coefficients can be larger by 2,
3, or even 4 orders of magnitude with respect to the previous
estimation of 10−10 C/m, which promoted much research on
materials with high permittivity. Intriguingly, the pioneering
series of works by Ma and Cross3–6,8 reported remarkably
large values for the flexoelectric coefficients, namely, up to
100 μC/m (which is 6 orders of magnitude larger than the
aforementioned previous first estimate) in ferroelectric and
relaxor ceramics. However, recent experiments on high-quality
single-crystal SrTiO3

10 yielded only moderate coefficients of
up to 9 nC/m. One has also to realize that, experimentally, only
the so-called effective flexoelectric coefficients are available
and that the individual components of the flexoelectric tensor

can be deduced only within an order of magnitude. In fact,
even the sign of μpqrs is challenging to measure.10 Another
open question is to know if the μpqrs parameters are dependent
on the film’s thickness. Accurate simulations are thus needed
to better understand flexoelectricity. Moreover, being able
to investigate flexoelectricity at finite temperature is highly
desirable since such an effect is most useful above the Curie
point (as a matter of fact and unlike piezoelectricity and
pyroelectricity, flexoelectricity can induce a polarization in the
nominal paraelectric phase, with no resulting hysteresis and
with no need to pole the system). In other words, a numerical
tool offering the accuracy and deep insight of first principles
while overcoming its shortcomings (namely, the possibility of
treating finite temperature and large supercells) may lead to
a deeper knowledge of flexoelectricity. We are not aware that
such a numerical tool currently exists.

In this paper we develop a first-principles-based approach
that allows the study of flexoelectricity in ferroelectric thin
films at finite temperature and for different films’ thicknesses.
Such a scheme yields a positive sign for all investigated
flexoelectric coefficients in the nominal paraelectric phase,
thus providing a definite answer to a previously opened
question. It also predicts values of the order of 2–20 nC/m
for these coefficients, therefore giving an answer to another
controversial issue. Finally, this newly developed numerical
tool reveals a strong dependency of flexoelectric coefficients on
films’ thickness (as well as on temperature). Such dependency
can be understood from the relationship between the flexoelec-
tric coefficients and the dielectric susceptibility of the film.17

This paper is organized as follows. Section II describes
the presently developed scheme to compute finite-temperature
flexoelectricity. In Sec. III, we present and analyze the results
of the simulations. Finally, Sec. IV provides a summary and
conclusion of this study.

II. METHODS

Here we simulate thin films made of disordered
(Ba0.5Sr0.5)TiO3 (BST) solid solutions, mostly because

104101-11098-0121/2012/85(10)/104101(5) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.85.104101


I. PONOMAREVA, A. K. TAGANTSEV, AND L. BELLAICHE PHYSICAL REVIEW B 85, 104101 (2012)

experimental data for the effect of strain gradients on properties
of (Ba1−xSrx)TiO3 systems are already available.1,6,10,18 The
studied films are mimicked to be grown along the [001]
pseudocubic direction and to have AO-terminated surfaces
(where A atoms are either Ba or Sr). The z axis is chosen
to be along the growth direction while the x and y axes lie
along the pseudocubic [100] and [010] directions, respectively.
We concentrate on two different films’ thickness: 6.6 nm
(which is representative of ultrathin films) and 12 nm (which
corresponds to thicker films). These two films are modeled by
a 12 × 12 × m supercell, with m = 17 and 31, respectively,
and for which periodic boundary conditions are applied
along the in-plane directions for the long-range dipole-dipole
interactions while no such periodic boundary condition exists
for the growth direction.19 These films are subject to a gradient
along the growth direction of either the εzz out-of-plane strain
component or the εxx in-plane strain component. These two
kinds of strain gradients, denoted as ∂εzz/∂z and ∂εxx/∂z,
respectively, are often found in real films1 due to strain
relaxation and/or have been experimentally realized.9 We
typically apply strain gradients with a magnitude ranging from
0.2 to 1.7 μm−1, which is comparable to the strain gradients
occurring near dislocations.20 In our setup for ∂εzz/∂z,
(1) the bottom (001) TiO2 layer of the film possesses a negative
strain εzz equal to − (m−1)alat

2 ∂εzz/∂z, where alat is around 4Å;
(2) the top (001) TiO2 layer of the film has a positive strain
εzz = + (m−1)alat

2 ∂εzz/∂z; and (3) the εzz strain linearly varies
from the bottom to the top layer, implying that the central layer
is under a zero εzz strain. (Note that items 1–3 also apply for
εxx with respect to ∂εxx/∂z when we mimic a strain gradient
of εxx along the growth direction.) Such setup has several
advantages: It likely reproduces the experimental strain profile,
in the sense that the bending of the sample is believed to yield
a compressive strain at the bottom surface while generating a
tensile strain at the top surface,9 and it provides a zero average
〈εzz〉 (or 〈εxx〉) strain in the system,- therefore minimizing
piezoelectric contribution.

We develop an effective Hamiltonian for such films with a
total energy density being given by

Etot({u(i)},ηH ,{ε(i)},{σ (j )})
= EHeff({u(i)},ηH ,{ε(i)},{σ (j )}) + β

2

∑

i

〈Edep〉 · Z∗u(i)

−1

2

∑

i

fpqrsZ
∗up(i)

∂εqr

∂s
(i), (2)

where p, q, r , and s represent Cartesian axes; ui is the so-called
local mode and is centered at the Ti site i. Its product with
the effective charge Z∗ provides the local dipole moment of
the unit cell i. Here ηH is the homogeneous strain tensor,21

while {σ (j )} represents the atomic configuration of the solid
solution,22 and ε(i) characterizes the inhomogeneous strain
tensor and is centered on Ti sites i. The zero value of both
ηH and ε(i) corresponds to the 0 K cubic lattice constant of
BST (with 50% of Ba and Sr concentrations) bulk.22 Here
ε(i) is frozen during the simulations in order to create the
strain gradients aforementioned. On the other hand, the local
modes and homogeneous strain tensor are allowed to relax
during the computations. The expression and first-principles-

derived parameters of EHeff are those given in Ref. 22 for BST
bulk, except that the dipole-dipole interactions we use here
are those of Ref. 19 for thin films. This effective Hamiltonian
has been shown to correctly reproduce or predict various static
and dynamical properties of BST alloys.22–25 The second term
of Eq. (2) mimics the screening of the maximum depolarizing
field, 〈Edep〉, with the magnitude of this screening being
controlled by the β coefficient. More precisely, β = 1 and
0 correspond to ideal short circuit (full screening of 〈Edep〉)
and open circuit (no screening of 〈Edep〉) electrical boundary
conditions, respectively. A value of β in between describes a
situation for which a residual depolarizing field exists. We
use here β = 0.98 since it provides good agreement with
experimental data in nanostructures.26 Technically 〈Edep〉 is
calculated at an atomistic level.19 The last term of Eq. (2)
is used here for the first time in an effective Hamiltonian
scheme, while it is analogous to an expression that has been
previously introduced16 for phenomenological modeling of
flexoelectricity. The fpqrs parameters appearing in that term
are the so-called flexocoupling coefficients.27 They are com-
puted in a series of ab initio calculations that utilize the density
functional theory with the local density approximation,28,29

as well as the Vanderbilt ultrasoft pseudopotentials with a
25 Ry cutoff30 and the virtual crystal approximation31 to model
a BST bulk having Ba and Sr concentrations of 50% each. In
these calculations the atoms are displaced from their ideal
cubic positions by a vector that corresponds to the sum of
the displacements originating from the strain gradients ∂εqr

∂s
(i)

and of the displacements associated with the local mode
vectors u(i). Typically, we used 10- and 20-atom supercells
that are periodic in all three directions, with both the local
modes and strain gradients changing their signs within these
supercells [in order to provide a nonzero contribution to the last
term of Eq. (2) while still maintaining the three-dimensional
periodicity of the whole supercells]. An example of our setup
to calculate fzxxz is given in Fig. 1. The forces on the atoms
obtained from these calculations are then used to compute
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z

FIG. 1. (Color online) Example of atomic arrangement used in
first-principles computations to extract the fzxxz parameter of Eq. (1).
The thick solid line shows the supercell. The arrow schematically
represents the direction of the local mode uz. The thin solid line
indicates the strain gradient.
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the force acting on a local mode centered on a particular Ti
site, which allows the determination of the fpqrs coefficients
from first principles. As a result of the cubic symmetry of the
reference state for the effective Hamiltonian technique, there
are only three independent fpqrs components: fzzzz, fzxxz, and
fxzxz. Their extracted values are fzzzz = 5.12 V and fzxxz =
3.32 V, while fxzxz is estimated to be around 0.045 ± 0.015V
(fxzxz is thus much smaller than the other two coefficients,
which explains why we neglect it in the following). Note
that the fpqrs parameters are ground-state quantities of bulk
systems since we used supercells that are periodic along any of
the three directions to determine them at T = 0 K. Note also
that we model flexoelectricity through the coupling between
strain gradient and local dipole inside one unit cell (that is, it
does not involve any explicit collaboration between different
unit cells). Such an assumption may result in some inaccuracy
for the reported fpqrs flexocoupling coefficients. The total
energy provided by Eq. (2) is then used in Monte Carlo
simulations based on the Metropolis algorithm, in order to
obtain properties of thin films subject to a strain gradient.

III. RESULTS OF THE SIMULATIONS

Let us now turn to the effective Hamiltonian simulations
to determine the μpqrs coefficients of the flexoelectric tensor
[see Eq.(1)], which is of rank four, in the two chosen BST
films in their nominal paraelectric phase (i.e., in the phase that
does not exhibit any polarization when no strain gradient is
applied).32 We investigate μzzzz and μzxxz in both the studied
thin and thick films, for different temperatures above the
critical temperatures. Note that the Curie temperature TC of the
6.6 nm- and 12 nm-thick film is numerically found to be
equal to 300 and 235 K, respectively. The enhancement of
TC occurring when the film’s thickness decreases arises from
a surface effect associated with the chosen electrical boundary
conditions within the present effective Hamiltonian scheme.33

To practically compute the μpqrs flexoelectric coefficients,
different magnitudes of the relevant strain gradient are applied,
and the relevant component of the polarization is plotted as a
function of such magnitude, as done in Fig. 2 for different
temperatures in the thicker film under ∂εxx/∂z. The slope of
this function provides the desired coefficient.
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FIG. 2. (Color online) Dependence of the out-of-plane polariza-
tion component of the thicker investigated film on the strain gradient
∂εxx/∂z at three temperatures. The error bar for the polarization
values is smaller than the symbol size.
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FIG. 3. (Color online) Temperature dependency of the flexoelec-
tric coefficients in the nominal paraelectric phase of the thin and thick
films. T is the temperature; TC is the Curie temperature of the films
under no strain gradient.

Figure 3 shows the dependence of the flexoelectric co-
efficients versus T − TC for both the thick and thin films,
where T is the temperature and TC is the Curie temperature
for the films under no strain gradient. These coefficients
are temperature dependent in both films and increase when
getting closer to TC as consistent with measurements.3–6,8,10

Figure 3 also shows that, in both films, μzzzz and μzxxz

coefficients are both positive above the Curie point, which
confirms the results of some works3–6,8,10 while contradicting
other data.10,13 It further reports that the predicted flexoelectric
coefficients typically range between a few nC/m and up to 20
nC/m, which agree rather well with the ones reported for
single crystals of SrTiO3 (1–10 nC/m) at room temperature10

while being orders of magnitude smaller than the values
reported for BST ceramics.6,18 Such a large difference in
flexoelectric coefficients between single crystals and ceramics
points toward the enhanced role of surface and/or size effects
on flexoelectricity (as also argued in Ref. 10). Figure 3 also
reveals that the thinner film is predicted to have twice as
larger flexoelectric coefficients than the thicker film. However,
these latter results showing a strong thickness dependency
of the flexoelectric coefficients seem at odds with the fact
that the “only” flexoelectric interactions included in Eq. (2)
are bulk-like, since the fpqrs parameters were determined by
first-principles calculations performed on structures that are
periodic in all three Cartesian directions. As we will see below,
such a seemingly contradictory fact can be easily resolved and
understood. For that, let us rewrite Eq. (1) as17

Pp = 1

2
χtpε0htqrs

∂εqr

∂s
, (3)

where p, t , q, r , and s represent Cartesian axes, χtp is
a component of the dielectric susceptibility, and ε0 is the
dielectric permittivity of free space. (Note that the factor 1

2
appearing in Eq. (3) originates from the factor 1

2 occurring
in front of the last energetic term of Eq. (2).) In Eq. (3)
htqrs is defined as being equal to the ratio 2μpqrs/χtpε0.
Interestingly we numerically found that hzzzz and hzxxz are
nearly independent of not only the temperature but also of
the film’s thickness. For instance, we numerically obtain a
value of 2.8 and 3.0 V for the hzxxz coefficient of the thin and
thick film, respectively, for any temperature above TC . This
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reveals that (1) thickness and temperature effects constitute a
rather negligible effect when focusing on hzxxz rather than on
μzxxz; (2) the large difference shown in Fig. 3 between the
μzxxz coefficients of the thick and thin films mostly comes
from their large difference in dielectric susceptibility; and
(3) the temperature dependency of μzxxz fully originates from
the (“usual”) temperature dependence of the χ33 dielectric
susceptibility. Similar conclusions are also reached for the
μzzzz coefficients since hzzzz is numerically found to be
5.0 and 5.2 V for the thin and thick film, respectively, for
any investigated temperature. Moreover, the aforementioned
values of hzxxz and hzzzz are very close to the values of the
bulk flexocoupling coefficients fzxxz (equal to 3.32 V) and
fzzzz (equal to 5.12 V), respectively, that were extracted from
first principles and used in the third term of Eq. (1). In other
words, our present calculations and analysis reveal that the
μpqrs flexolectric coefficients of any thin film and at any
temperature can be better understood and well approximated
by using the relation μpqrs = 1

2ftqrsχtpε0, with ftqrs being
the so-called flexocoupling coefficient (which is independent
of both temperature and thickness, as a result of being a
ground-state bulk property) while the temperature dependency
and thickness dependency of the μpqrs coefficients mostly
originate from the dielectric susceptibility.

IV. CONCLUSIONS

In summary, we developed a first-principles-based ap-
proach to simulate flexoelectricity in ferroelectric thin films.
Specific advantages of such approach are (1) the possibility to
independently calculate the magnitude but also sign of different
components of the flexoelectric coefficients tensor; (2) that
no empirical input is required; (3) the possibility to study
the dependency of flexoelectric coefficients on several im-
portant parameters, such as temperature and film’s thickness;

(4) the determination of the “pure” flexoelectric effect, that
is, without the contribution from ferroelastic domains that
are usually present in any grown sample; and (5) a deep
insight provided by such method and the analysis of its results.
Our simulations provide values ranging between a few nC/m
and up to 20 nC/m, and positive sign of the flexoelectric
coefficients. They also reveal and explain their strong depen-
dency on the film’s thickness and temperature, because of
the indirect effect involving the dielectric susceptibility.(Note
that investigating the role of surface effects other than those
included here (such as surface-induced change of hybridization
or surface relaxation) on flexoelectricity can be, in principle,
incorporated by our scheme via the addition of novel energetic
terms in Eq. (2). This incorporation is beyond the scope of
the present work but may constitute the basis of a future
study.)
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