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Anharmonic Josephson current in junctions with an interface pair breaking
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Planar superconducting junctions with a large effective Josephson coupling constant and a pronounced interface
pair breaking are shown to represent weak links with small critical currents and strongly anharmonic current-phase
relations. The supercurrent near Tc is described taking into account the interface pair breaking as well as the current
depairing and the Josephson coupling-induced pair breaking of arbitrary strengths. An analytical expression for
the anharmonic supercurrent, which is in excellent agreement with the numerical data presented, is obtained.
In junctions with a large effective Josephson coupling constant and a pronounced interface pair breaking, the
current-induced depairing is substantially enhanced in the vicinity of the interface thus having a crucial influence
on the current-phase relation despite a small depairing in the bulk.
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The Josephson current is one of the remarkable manifesta-
tions of quantum coherence on the macroscopic scale in con-
densed matter physics. The supercurrent depends on the phase
difference of the order parameters across the junction interface.
The study of the current-phase relation (CPR) in the junctions
makes it possible to identify physical processes, which form
supercurrents under diverse conditions. It is also beneficial for
junction applications. The problem attracted much attention
while studying both highly transparent junctions with strongly
anharmonic CPRs and tunnel junctions, where the second
harmonic of the supercurrent comes into play due to the
suppression of the first one.1–10 The latter takes place in
the junctions involving unconventional superconductors with
special interface-to-crystal orientations and at 0-π transitions.

One of the earlier theoretical results, clarifying a variety
of aspects of the problem, is the anharmonic CPR for the
superconducting point contacts.11–15 Due to the negligibly
small current-induced pair breaking at any transparency value,
the theory of point contacts is simplified. The depairing plays
an important role in forming anharmonic CPRs in highly
transparent planar junctions, unlike its negligible role in point
contacts. Since the critical current jc of usual planar junctions
becomes, with increasing transparency, comparable with the
depairing current jdp in the bulk, the junctions do not represent
weak links. In other words, in the junctions, the current-
induced depairing brings about a pronounced anharmonicity
only in the crossover from the tunnel Josephson current to the
bulk superflow.1,16–18

There are at least three types of pair breaking processes
taking place in charge transport in the superconducting
junctions: the pair breaking produced by the phase-dependent
Josephson coupling, by the current and by the interface itself.
These are the very same effects which can lead to a noticeably
anharmonic CPR not only at low or intermediate temperatures,
but also near Tc. Here, I show that planar junctions with a
large effective Josephson coupling constant and a pronounced
interface pair breaking can possess strongly anharmonic CPRs
and small critical currents satisfying the condition jc � jdp.
An enhancement of the current-induced depairing near the
interface will be identified. The anharmonic supercurrent near
Tc will be obtained within the Ginzburg-Landau (GL) theory
in the presence of all three types of the pair breaking processes

of arbitrary strengths. Along with the numerical solution based
on GL equations, an analytical CPR will be derived and shown
to be in excellent agreement with the numerical data in a wide
range of parameters. For tunnel junctions, the obtained results
present a description of higher harmonics of the supercurrent
and extend the known expressions for the first and second
harmonics to include the effects of interface pair breaking.

The CPRs obtained earlier near Tc with the microscopic
boundary conditions for standard dirty s-wave junctions,16,19

have been considered in literature solely as the particular prop-
erties of the specific systems.1 The anharmonic CPR obtained
in this paper, and influenced by the interface pair breaking, is
of general form inherent in the GL theory, and is applicable
to a variety of planar junctions including those containing
dx2−y2 -wave superconductors and/or magnetic interlayers.

The free energy functional for Josephson junctions near
Tc results in the GL equations and the boundary conditions
(BC) for them.20–24 Consider symmetric junctions with a
spatially constant width, which is much less than the Josephson
penetration length, and with a plane interlayer at x = 0
of zero length within the GL approach. Assume the usual
form of the GL free energy, which applies, for example, to
s-wave and dx2−y2 -wave junctions. If the Josephson coupling
gJ |�+ − �−|2 is strong, not only this term but all the interface
and bulk contributions to the free energy generally participate
in the formation of CPRs as a consequence of the dependence
of absolute values of the order parameters at the interface on
the phase difference. This concerns, in particular, the gradient
bulk term K|∇�|2 and the interface contribution of the form
g(|�+|2 + |�−|2).

Moving on to the order parameter f (x)eiχ(x) normalized to
f = 1 in the bulk without superflow, one gets the first integral
of the GL equation in the presence of the supercurrent25 in the
form of

(
df

dx̃

)2

+ f 2 − 1

2
f 4 + 4j̃ 2

27f 2
= 2f 2

∞ − 3

2
f 4

∞. (1)

Here, x̃ = x/ξ , ξ = ξ (T ) is the superconducting coherence
length, j̃ is the spatially constant normalized current density
j̃ = j/jdp = −(3

√
3/2)(dχ/dx̃)f 2, and f∞ is the asymptotic

value of f in the depth of the superconducting leads.

100503-11098-0121/2012/85(10)/100503(5) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.85.100503


RAPID COMMUNICATIONS

YU. S. BARASH PHYSICAL REVIEW B 85, 100503(R) (2012)

The BC introduce in the GL theory at least two char-
acteristic lengths � = K/gJ and δ = K/g. The effective
dimensionless Josephson g� = gJ ξ (T )/K and interface gδ =
gξ (T )/K coupling constants, associated with these lengths,
will be used below. For symmetric junctions with f continuous
through the interface, the BC for f as well as the expression
for the Josephson current via f0 and the phase difference
χ = χ− − χ+ at the interface, are obtained from the BC for
complex order parameters:(

df

dx̃

)
±

= ±
(
gδ + 2g� sin2 χ

2

)
f0,

(2)

j̃ = 3
√

3

2
g�f

2
0 sin χ.

Here, the effective phase-dependent extrapolation length
b(χ ) = [δ−1 + 2�−1 sin2(χ

2 )]−1 controls the pair breaking pro-
duced by the phase difference and by the interface. Let’s denote
gb(χ ) = (gδ + 2g� sin2 χ

2 ).
Since the material parameters in the normal state gJ and

g are not assumed to depend here on T near Tc, one should
have |g�| � 1 and/or |gδ| � 1 quite close to Tc due to large
values of ξ (T ). However, the coupling constants gJ and g

can themselves be very small and the temperature range with
large g� and/or gδ be too narrow, as it occurs in standard
tunnel junctions. Due to a very small surface pair breaking
in conventional s-wave junctions, one parameter g� is usually
assumed to describe the interfaces in Eq. (2) rather than both
g� and gδ as is in the regular case. At χ = 0, such symmetric
junctions contain no pair breaking at all, and the BC (2) is
reduced to df (0)/dx = 0.

If gJ and/or g were very small, one would need to introduce
into Eq. (2) the terms of the next order of smallness, in
particular, in powers of the order parameter. Such terms could
be of importance and bring about additional phase dependence
and material-dependent parameters to the problem. Here, only
the simplest conditions will be assumed, when Eq. (2) applies
to a wide range of values of g� and gδ . This agrees with the
microscopic model results16,19,20,26–29 and, for instance, takes
place within the GL approach for sufficiently large values of
g� and gδ , which is the particular focus of this paper.

There is no need to solve differential equation (1) in order to
find f0, and, consequently, to find j̃ via Eq. (2). One puts x = 0
in Eq. (1) and, using Eq. (2), eliminates the current and the first
derivative of the order parameter. This results in a biquadratic
relation between the self-consistent values of f 2

0 and f 2
∞.

The second relation between them follows from the current
conservation and the asymptotic formulas in the bulk. The
current-induced depairing in the bulk is conveniently described
via the superfluid velocity j̃ = (3

√
3/2)ṽs(1 − ṽ2

s ), f 2
∞ =

1 − ṽ2
s .30,31 Equating the asymptotic expression for the current

to that in Eq. (2) with f 2
0 = (1 − ṽ2

s )α, one obtains ṽs =
αg� sin χ . Considering that both quantities f0 and f∞ as well
as the current itself are now expressed via the only variable α,
the fourth-order polinomial equation for α follows from the
biquadratic relation between f0 and f∞:

2g2
b(χ )α − (1 − α)2[1 − α(α + 2)g2

� sin2 χ
] = 0. (3)

Equation (3) is exact within the conventional GL approach with
BC (2). In the particular case of standard s-wave junctions,

gb(χ ) = 2g� sin2(χ/2). Then Eq. (3) is reduced to Eq. (8) of
Ref. 16, if one corrects a misprint 	B → 	2

B in Eq. (8) and
identifies the parameter of the GL theory g−1

� = �/ξ with the
model parameter 	B entering the microscopic BC for dirty
s-wave superconductors.

An analytical solution of the problem can be obtained
assuming a small depairing in the bulk j̃ 2 � 1 that allows to
use f 2

∞ ≈ 1 − (4/27)j̃ 2 and to disregard the smaller terms on
the right-hand side of Eq. (1). Then, one gets from Eqs. (1) and
(2) a biquadratic equation for f0 that results in the analytical
solution for the CPR:

j̃ (g�,gδ,χ ) = 3
√

3g� sin χ

2
(
1 + 2g2

� sin2 χ
)[

1 + g2
b(χ ) + g2

� sin2 χ

−
√(

g2
b(χ ) + g2

� sin2 χ
)2 + 2g2

b(χ )
]
. (4)

Since only higher-order terms begining with ∝ j̃ 4 have been
neglected in its derivation, the CPR (4) turns out to describe
the current behavior almost perfectly if j̃ < 0.7. For j̃ > 0.7,
it gives a good interpolation of the numerical solution based
on Eq. (3), resulting in the deviations not exceeding 10%.

As seen in Eqs. (3) and (4), the anharmonic Josephson
current j̃ depends, in general, on the two dimensionless
effective coupling constants g� and gδ and the phase dif-
ference χ . According to the simple physical arguments as
well as the microscopic results,26–29 a variation of tunneling
parameters principally modifies g�, while the surface pair
breaking mostly contributes to gδ . This signifies that the
junction transparency D enters the combination of microscopic
parameters representing g�. The last statement agrees with the
microscopic results for s-wave junctions with nonmagnetic
interfaces,16,19,26–28 where the corresponding combination is
sometimes identified as the effective transparency.32,33 The
microscopic estimations of the effective Josephson coupling
constant g� directly follow from those results. In the s-wave
tunnel junctions (D � 1), one gets g� ∼ Dξ (T )(l−1 + ξ−1

0 ),
where l is the mean-free path. In dirty superconductors, the
ratio ξ (T )/l can easily reach 100 even at low temperatures.
Hence, for small and moderate transparencies, the quantity
g� ∼ Dξ (T )/l can vary from vanishingly small values in
the tunneling limit to those well exceeding 100 near Tc. In
highly transparent junctions [(1 − D) � 1], the parameter
g� ∝ (1 − D)−1 can be arbitrary large.34 The quantity g� can
also take on negative values, which correspond to π junctions,
as seen in Eq. (4).

The range of variation of the interface coupling gδ can
likewise be quite wide. For s-wave superconductor-insulator
interfaces, the Josephson coupling vanishes and the extrap-
olation length b is reduced to δ. The microscopic estima-
tions of δ in such cases show it to be very large usually
resulting in a negligibly small contribution to the BC, unlike
the superconductor-normal metal interfaces.20 The length δ

can vary widely for d-wave superconductor-insulator flat
surfaces, where it substantially depends on surface-to-crystal
orientations.35–37 Although in this case δ is strongly influenced
by the surface roughness, in particular, by faceting.8

A regular situation is characterized by a local suppression
of the order parameter at the interface. For this condition
to hold, the effective extrapolation length b(χ ) should be
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FIG. 1. (Color online) (a) j̃c as a function of g�, taken for various
gδ: (1) gδ = 0, (2) gδ = 0.4, (3) gδ = 1, and (4) gδ = 4. (b) j̃c as a
function of gδ , taken for various g�: (1) g� = 0.1, (2) g� = 1, and (3)
g� = 100.

positive at any phase difference and, hence, gδ,(gδ + 2g�) > 0.
A superconducting state occurs locally near the interface
above the bulk Tc under the opposite condition b(χ ) <

0 with χ ensuring the free energy minimum.38 Only the
simplest conditions gδ,� > 0 will be analyzed in detail in
this paper, although the main results obtained here apply to
substantially more general circumstances. Other conditions,
including magnetic field effects and/or negative gδ,�, will be
studied elsewhere.

Figures 1(a) and 1(b) show the critical current j̃c as a
function of coupling constants g� and gδ . Solid curves have
been calculated based on Eq. (3). Dashed curves correspond
to the analytical expression (4). Only for a small interface
pair breaking (gδ � 1) and for g� � 1, the current j̃c becomes
comparable with 1, i.e., with the deparing current in the bulk.
Thus the condition g� � 1 is the hallmark of a strong Josephson
coupling. Comparatively small deviations of dashed curves
from the solid ones are discernible only when the current
exceeds about 0.7. With increasing gδ , the growing interface
pair breaking suppresses the critical current. For gδ � 4, the
critical current remains quite small j̃c � 1 at any g�, which
would normally occur in conventional tunnel junctions with
small effective transparencies. In other words, in the regime of
strong interface pair breaking gδ > 4, the junctions represent
weak links at any g�, including g� � 1.

Though Eq. (4) is a combined result of all depairing effects,
the origin of its characteristic anharmonic features is traced
back unambiguously. The whole of the phase-dependence in
Eq. (4), except for that contained in gb(χ ), is generated by the
current via f∞ on the right hand side or by the last term on
the left hand side in Eq. (1). Such dependence would retain
the CPR (4) unchanged under the transformation χ → π − χ .
The symmetry is destroyed by the phase dependence of g2

b(χ ),
which originates from the BC (2) and can become pronounced,
if |gδ| � 2|g�|.

Whereas the CPR (4) is derived by assuming small
depairing effects in the bulk, the depairing can be of crucial
importance in Eq. (4) within its domain of applicability.
This is the case in the presence of a pronounced interface
pair breaking, where an enhancement of the current-induced
depairing, unlike the bulk, occurs near interfaces of junctions
with g� � 1. In particular, the phase-dependent term in the
denominator in Eq. (4), which is directly induced by the
depairing, plays a key role in the case g� � 1 in restricting

the normalized current value. The bracketed expression in
the denominator originates from the coefficient before f 4

0
in the biquadratic equation for f0. The relative depairing
correction coming from the bulk is (8/27)j̃ 2 = 2g2

�f
4
0 sin2 χ

and its smallness signifies 2g2
� sin2 χf 4

0 � 1. As seen, the
term 2g2

� sin2 χ in the denominator is allowed to exceed the
unit considerably, when the condition 2g2

� sin2 χf 4
0 � 1 holds

at the expense of a strongly suppressed order parameter at
the interface f 4

0 � 1. Numerical results corroborate that, if
gδ � 4, the condition is satisfied at any g� including g� � 1
[see also Figs. 1(a) and 1(b)]. This validates keeping Eq. (4)
without its expanding in powers of g2

� sin2 χ and explains
the quantitative applicability of Eq. (4) to junctions with the
pronounced interface pair breaking at arbitrary g�.

A number of specific CPRs follow from Eq. (4) under
a variety of particular conditions. Consider here two basic
examples. The tunneling limit shows up in Eq. (4) under the
condition |g�| � 1. Developing Eq. (4) as series in g� at any
value of gδ , one obtains numerous harmonics whose weight is
determined by g� and gδ rather than by the transparency itself.
The first- and the second-order terms result in

j̃ ≈ j̃
(1)
c1

⎡
⎣sin χ − 2g�sgn(gδ)√

2 + g2
δ

(
sin χ − 1

2
sin 2χ

)⎤
⎦. (5)

Here, j̃
(1)
c1 = (3

√
3/4)g�(

√
2 + g2

δ − |gδ|)2 is the main contri-
bution to the first harmonic j̃1 = j̃c1 sin χ that is applicable
at any gδ . Under the condition |gδ|,|g�| � 1 it is reduced to
the well-known result for tunnel junctions j̃c0 ≡ (3

√
3/2)g�,

which is only justified when disregarding the interface pair
breaking. In the opposite limit g2

δ � 1, the pair breaking
strongly suppresses the current and j̃

(1)
c1 ≈ j̃c0/(2g2

δ ) � j̃c0, as
is also known.4,20–22,24,35,39 In particular, the original current
j

(1)
c1 = j̃

(1)
c1 jdp ∝ (Tc − T ) for |gδ| � 1 and j

(1)
c1 ∝ (Tc − T )2

for g2
δ � 1 near Tc. The second-order terms in g� bring about

the main contribution to the second harmonic j̃2 = j̃c2 sin 2χ

as well as corrections to the first one. The relative weight of
the second harmonic in Eq. (5) diminishes with increasing
g2

δ . The sign of j̃c1 coincides with the sign of g�, while the
sign of jc2 is determined by the sign of gδ . For small pair
breaking 0 < gδ � 1, the second-order term ∝ g2

� is simplified
to the following correction to the current −√

2jc0g�[sin χ −
(1/2) sin 2χ ], in agreement with the corresponding micro-
scopic results16,40 for dirty and pure s-wave junctions. Note
that the phase dependence generated by the current depairing
shows up in Eq. (4) beginning with the third order terms
in g�.

The second example reveals the strongly anharmonic
features contained in Eq. (4). Consider junctions with the
strong interface pair breaking g2

δ � 1. Then a comparatively
simple approximate expression follows from Eq. (4):

j̃ ≈ 3
√

3g� sin χ

4
[
g2

δ + 4(gδ + g�)g� sin2 χ

2

] . (6)

The corresponding critical current j̃c = 3
√

3g�/4|gδ(gδ +
2g�)| � 1 is always small. The associated phase difference
is determined by the relation sin χc = |gδ(gδ + 2g�)|/[(gδ +
g�)2 + g2

� ]. It varies widely; χc is small ≈ (gδ/g�), if g� � gδ ,
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FIG. 2. (Color online) (a) CPRs j̃ (χ ) for g� =5 and various gδ:
(1) gδ = 4, (2) gδ = 2, (3) gδ = 1, (4) gδ = 0.5, and (5) gδ = 0.
(b) CPRs for gδ = 4 taken for various g�: (1) g� = 0.1, (2) g� = 1,
(3) g� = 5, (4)g� = 10, and (5)g� = 50.

and approaches π/2 in the opposite limit gδ � g�. Strongly
anharmonic CPRs show up in Eq. (6) under the conditions
g2

� � g2
δ � 1. Also one has jc ∝ (Tc − T )2. Thus, at finite g,

the temperature dependence jc(T ) is quadratic quite close to
Tc, where gδ � 1. With increasing Tc − T , a crossover to the
linear dependence on the temperature takes place in the region
Tc − T � Tc, for sufficiently small g.

Some of the CPRs j̃ (χ ) are shown in Figs. 2(a) and 2(b).
Except for the first curve in Fig. 2(b), the strongly anharmonic
CPRs in junctions with large Josephson couplings are dis-
played. As seen in Fig. 2(a), the heights of the anharmonic
peaks diminish considerably and the peak positions change

weakly, when the interface pair breaking goes up. Although
the anharmonicity can be well pronounced even in the presence
of quite a large pair breaking. This concerns, in particular, the
curve 1 in Fig. 2(a), which is identical to the curve 3 in Fig. 2(b)
shown there in a different scale. Equation (4) describes the
CPRs almost perfectly and the corresponding dashed curves
can be distinguished from the exact solid ones only near the
high peak of curve 5 in Fig. 2(a). All curves in Fig. 2(b) are also
well approximated by a simple formula (6) with deviations
(not shown) approaching only several percent. However, in
contrast to Eq. (4), Eq. (6) does not apply to describing upper
three curves in Fig. 2(a). The CPR similar to Eq. (6) was
found earlier within the microscopic description of the dirty
s-wave junctions with metallic interlayers.19 The strong pair
breaking can take place in those junctions, if the interlayer
conductivity considerably exceeds the normal conductivity of
the superconducting metal.

In conclusion, the paper reveals the qualitative features
and develops the quantitative description of the anharmonic
Josephson current near Tc. The interface pair breaking as well
as the current depairing and the Josephson coupling-induced
pair breaking have been taken into account and shown to
play an important part in forming the CPR. The results
obtained, in particular, concern the junctions involving d-wave
superconductors and/or magnetic interlayers.
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