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Phase locking dynamics of dipolarly coupled vortex-based spin transfer oscillators
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Phase locking dynamics of dipolarly coupled vortices excited by spin-polarized current in two identical
nanopillars is studied as a function of the interpillar distance L. Numerical study and an analytical model
have proved the remarkable efficiency of magnetostatic interaction in achieving phase locking. Investigating the
dynamics in the transient regime toward phase locking, we extract the evolution of the locking time t, the coupling
strength p, and the interaction energy W. Finally, we compare this coupling energy with the one obtained by a

simple model.
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Injecting a spin-polarized current through magnetic mul-
tilayers leads to a new interesting physical phenomenon
called the spin transfer effect. These interactions between
the spins of charge carriers and local magnetic moments
create an additional torque exerted on the magnetization.! As
a result, a complex spin-transfer-driven magnetic dynamics
is revealed with characteristic bifurcations of the Poincaré-
Andronov-Hopf type, and limit cycles arise in this highly
nonequilibrium medium. The diversity of these new effects
is especially true for systems of interacting nanomagnets,
penetrated by spin-polarized current. One of the novel effects
is the current-driven magnetization oscillations,> which might
lead to tantalizing possibilities for new nanoscale microwave
devices with frequencies that are tunable over a wide range
using applied currents and fields. While many crucial advances
have been made in the fabrication and understanding of such
spin transfer nano-oscillators (STNOs), there remain several
critical problems yet to be resolved, in particular the low
microwave power and quality factor of a single STNO.

To tackle these issues, particular attention has been focused
recently on vortex STNOs that could present a significant
output power, a very small spectral linewidth,* and/or large
frequency agilities at zero field.> Moreover, several encour-
aging experiments have been reported on the vortices phase-
locking through exchange interaction® and synchronization to
external microwave current.” Beyond these practical interests,
a magnetic vortex and its dynamical modes,® notably the
gyrotropic motion of the vortex core, is a model system for
investigation thoroughly the physics of the spin transfer torque
acting on a highly nonuniform magnetic configuration.’'?
Collective gyrotropic modes are a mean to improve drastically
the spectral coherence of any oscillator system.!! Similarly,
vortex-based systems can be chosen to be a new playground for
investigation of the influence of the magnetostatic interactions
on the collective behavior of vortices.

The collective dynamics of magnetostatically coupled
vortices has been studied both experimentally and theoretically
for the case of low-amplitude oscillations excited by means of
external rf magnetic field'>~' and spin-polarized current.!”-'3
However, none of these models are applicable to the case of
interest, i.e., the large-amplitude steady oscillations. The
fundamental reason is the hypothesis of low-amplitude os-
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cillations near the centers of nanodots used by these models.
A strong consequence of this approximation is that mathemat-
ically it allows us to use the ratio of the vortex orbit to the disk
radii as a small parameter. However, in the case of the phase
locking of the large-amplitude oscillations, such linearization
is due neither to the vortex STNOs nor to the uniform ones.'? In
this paper, we propose a model for the dynamics of the coupled
vortices without using this assumption. This model provides
an expression for the coupling energy with the parameters of
the transient process, which can be directly determined either
through micromagnetic simulations or by experiment.

The studied system consists of two identical nanopillars
with diameters 200 nm, each of them being composed by
a free magnetic layer, a nonmagnetic spacer, and a synthetic
antiferromagnet (SAF) polarizer that generates a perpendicular
spin polarization p, (see Fig. 1). In our simulations, we
consider these layers only by the value of spin polarization,
as in Ref. 17, since SAF polarizers that are widely used in
vortex STNO experiments have a negligible magnetostatic
field, and thus have almost no influence on the dynamics of the
vortices.

A freelayeris 7 = 10 nm thick Nig; Fe 9 and has a magnetic
vortex as a ground state. The magnetic parameters of the free
layer are the magnetization M, = 800 emu/cm?®, the exchange
energy A = 1.3 x 107% erg/cm, and the damping parameter
a = 0.01. In order to be above the critical current, a spin
polarization P of 0.2 and a current density J of 7 x 10% A/cm?
have been chosen. The initial magnetic configuration is two
centered vortices with the same core polarities and chiralities.
The micromagnetic simulations are performed by numerical
integration of the Landau-Lifshitz-Gilbert (LLG) equation
using our micromagnetic code SPINPM based on the fourth-
order Runge-Kutta method with an adaptive time-step control
for the time integration and a mesh size 2.5 x 2.5 nm?.

In this work, the evolution of the phase locking dynamics
as a function of the interpillar distance has been studied. To
that end, a series of micromagnetic simulations with different
distances L (50, 100, 200, and 500 nm) have been performed.
The results of the simulations are then analyzed to extract the
radius of the vortex core trajectory in each free layer as well
as the phase difference ¢ between core radius vectors as a
function of time.
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FIG. 1. (Color online) Schematic representation of two inter-
acting spin transfer oscillators. Each pillar is composed of a free
magnetic layer with a vortex, a nonmagnetic spacer, and a SAF
polarizer. Red arrows indicates the direction of spin polarization
created by the polarizer. The nanopillars have a diameter D = 2R, =
200 nm and are separated by a distance L. The parameters X; and X,
define the core positions.

In Fig. 2, the simulation results for L =50 nm are
presented. The transient dynamics of the vortices can be
divided into two regimes. At ¢ = 0, the spin torque is switched
on and thus the radii of both core trajectories increase toward
their equilibrium orbits for about 300 ns [see Fig. 2(a)]. The
phase difference between the two radius vectors shown in
Fig. 2(b) remains constant and equal to —m because of the
repulsive core-core interaction. The second regime begins
when the two cores have reached orbits close to their steady
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FIG. 2. (Color online) Micromagnetic simulations for L = 50 nm
of the phase locking dynamics. Evolution as a function of time ¢ of the
vortex core orbital positions X; and X, (a) and the phase difference
¥ (b). In (c), a zoom of the phase difference ¢ is presented for the
time window in which the fitting with Eq. (1) has been done.
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TABLE 1. Values of the phase difference frequency €2, the phase
locking time 7, and the steady-state radius of the core motion X, at
different interpillar distances L using the expression of Eq. (1).

L (nm) 2 (MHz) T (ns) X (nm)
50 40.134 82.59 63.59
100 28.305 85.28 62.46
200 17.183 89.57 61.82
500 7.018 90.13 61.53

ones. From this stage, both the intercore distance and the phase
difference [see Figs. 2(a) and 2(b)] exhibit large oscillations,
indicating the beginning of the phase locking.

The second regime is one of fundamental interest for this
work since the coupling energy can be extracted using the
analysis of the core motion in this transient regime [indicated
by the square in Fig. 2(b)]. During this time range, the
phase difference ¥ can be identified as being a low-frequency
damped oscillation described by the following expression:

v = e 0 gin(Qr + Cy). 1)

As shown in Fig. 2(c) and Fig. 3, the fitting is done for the
time window between 500 and 800 ns in which the mean orbit
radii have reached the common equilibrium value X(. From
the fitting, one can extract for L = 50 nm a frequency 2 equal
to 40.134 MHz and a phase locking time of 82.59 ns.

The parameters extracted from the fitting procedure for all
the interdot distances are summarized in Table I. One should
note that the phase locked equilibrium orbit radius X does not
vary much with L (see Fig. 3).

To derive the coupling energy between the oscillators from
the simulations, we have developed an analytical model based
on Thiele equations®® coupled through the dipolar interaction
energy Win.”'™2* Due to the system symmetry, the inter-
action energy can be expressed as Wiy = ajxi1x2 + b1y y»,
which can be reformulated using the core positions X; and
X, as*

Wine(X1,X0) = w1 Xy - Xo + pa(x1x2 — y1y2), ()

where (;, are the interaction parameters and x;,,y;» are
core coordinates. The second term of Eq. (2) is neglected
in our study since it corresponds only to fast oscillations at
double frequency of the gyrotropic modes and thus is averaged
over the low-frequency dynamics, which is responsible for
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FIG. 3. (Color online) Phase difference 4 as a function of time ¢
for different interpillar distances L = 100 (a) and L = 500 nm (b).
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the phase locking. As a consequence, the expression for the
interaction energy can be written as Wiy (X1,Xo) = uX; - Xo.

The two Thiele equations of the core dynamics considering
both the spin-transfer torque and the interaction between the
two oscillators are

G(e, x X12) — k1 2(X)X — DX — Fspr — Fip = 0. (3)

The first three terms are the conventional forces: the
gyrotropic force with Ge, = 2anhe,, the confining

force with k(X) = woG(1 + a ) 252

frequency is wy = @yM h/ R, and the dyadic damping

=anG,n =1 ln(zn) + ,where [y = /#}Vlf' The
fourth term Fgrr is the spin transfer force. For the
case of a uniform perpendicularly magnetized polarizer,
Fsrr = mya; Mgh(e, x X) = (e, x X),° where the spin
torque amplitude is a; = PJ/M;h with P the spin
polarization and J the current density. The last term describes
the interaction forces and is expressed by Fi,(X;2) =
—0Win(X1,X5)/0X 2 = —puX5, ;. These Thiele equations
can be reformulated in polar coordinates as (using an < 1)

X1 _ (ouﬂq(X—l)—i—%) + ﬁé(sinl// —ancosy), (4)
X G 1

where the gyrotropic

GX

&Z_(M) _ﬁ_(mnw_’_ancosw) (5)

X5 G G X,
. X%—X% Xl Xz
w—awo( B ) "X T x,
1 X2 X
_® 2221 6
GCOSI//(Xl Xz) ©

These two equations of the core motion and the equation of the
phase difference provide a complete dynamical description
of the phase locking. By linearizing Eqs. (4)—(6) with the

assumptions that <« 1 and ¢ = §‘ +§2 < 1, we obtain
&= 20(17(;1 — a)oaro)s + Ay, 7
V¥ = 4(f — woarg)e — 2aniy, ®)

where we used i = u/G and ro = Xo/Rp. Equations (7)
and (8) are linear and their eigenvalues are

Ao = otnwoarg ++/aZn?w ( ) + 42 —4uwoar0 ©)]

First we consider the case of periodic solutions
1 2 2 ~ oo 1 2
when 3(woary — woargy/1 — a?n?) < fi < 5(woary +

woarg+/1 — a?n?). The eigenvalues can thus be written as

1/t = anwpar?, (10)
Q* = —a’ i (ard)’ — 4% + djiwary. (1)

The important result of this study is that Egs. (10) and
(11) allow us to connect the coupling parameter o with the
phase locking parameters, i.e., 2 and 7, obtained through
micromagnetic simulations. Consequently, an expression
of the time-averaged interaction energy Wiy, takes the form
Win(L) = nX3 = $[1/(ran) — /1/(xan? — QL)*1X3. In
Fig. 4, the evolution of this interaction energy Wi, with the in-
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FIG. 4. (Color online) Absolute values of interaction energy
Wine as a function of interpillar separation distance Dy, = 2Rp + L
obtained from the micromagnetic simulations (blue square dots) and
from the macrodipole model (red solid line). Inset: Evolution of the
phase locking rate 1/t vs Dy, (purple solid line).

terpillar separation distance Dj, derived from micromagnetic
modeling is displayed by blue square dots. We obtain the best
fit for an energy decay law as D1_23'6. In comparison, in the case
of small core amplitudes'>!? this decay law has been found
as D7, however this was not confirmed experimentally.'”

To get more insight into the origin of this large coupling
interaction, the values of the interaction energy Wi, obtained
by simulations are compared with those derived from a simple
model of two interacting macrodipoles, concentrated at the
dot centers and rotating at a frequency wy. In such a case, the

magnetic dipole interaction energy Wd is defined as
_ 3M; - D;p)(M; - Dir)

D},

Vi, (12)

where D, = 2Rp + L. The in-plane magnetization M , is
perpendicular to the radius vector of the core position, thus one
can write M » = (X2 X e;), where ¢ is a constant that has
been numerically calculated: { &~ 5.6 G/nm. The interaction
energy can be rewritten in the following form:

Wil= AXiXy  +BXXjcos(gi +¢2) (13)
——
low-frequency oscillations high-frequency dynamics
with A = —% DV;’,B Z{DVD As far as the phase locking

dynamics is concerned the second term in Eq. (13) corre-
sponding to high-frequency oscillations is averaged to zero
and thus one can express the mean interaction energy W9 in
the macrodipole approximation:

d ;-2 VZ
Vth - 3
2D7,

DXiXo = u™XXo. (14)
In Fig. 4, we observe that for small interpillar distances,
Wiy differs significantly from the macrodipole energy Wmd.
This difference demonstrates the importance of the magnetic
quadrupole and higher multipoles for the phase locking
dynamics.

Coming back to Egs. (7) and (8), a second regime has

a)oarm/l —a?n?) or

to be considered when i < 2(w0ar0
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il > Ywoard + woardy/1 — a?n?). In this case, the solutions
are aperiodic oscillations and they strongly impact the main
features of the phase locking, notably the phase locking
rate 1/7. Indeed, in the regime of periodic oscillations, this
phase locking parameter is almost independent of the coupling
strength w (see Fig. 3) for interpillar separation distance Dj,
values as large as 1600 nm (see the inset of Fig. 4). We
emphasize that the weak variation of the phase locking rate
obtained in the micromagnetic simulations (see the values in
Table I) is in fact solely due to the small variations of the
steady orbit radii X with the interpillar distance L as expected
from (10). On the contrary, in the aperiodic regime, the phase
locking rate 1/t depends strongly on the coupling strength p
with the following expression:

1/t = anwoari — aznzwé(arg)z + 4% — dfiwoard. (15)

Using the value of the coupling parameter p that can be
extracted for very large interpillar distance L through the
macrodipole approximation, we obtain a very rapid decrease of
1/t with interpillar distance L and eventually a phase locking
time that tends to T —> oo for large distances. It is important
to note that interaction energy Wi, becomes of the same order
of magnitude as the room-temperature thermal energy k7T at
the interpillar distances L of about a single STNO diameter,
thus the role of thermal effects in the phase locking of vortex
STNOs has to be properly investigated.
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In conclusion, we have demonstrated an efficient phase
locking between two STNOs through a dipolar mechanism.
We have succeeded in providing an accurate expression of
the interaction energy between two vortice-based STNOs
by comparing micromagnetic simulations to predictions of
an analytical model based on coupled Thiele equations with
dipole-dipole interacting forces. A major result is that the phase
locking time t is almost independent of the separation dis-
tances for values up to 1.6 um before it increases very rapidly
at larger distances. We emphasize also the critical importance
of higher-order multipole terms for a correct description of the
interaction energy, especially at shorter separation distances.
Finally, our investigation will make it possible to design some
optimized STNO ensembles for synchronization, which is a
crucial step toward the development of a new generation of rf
devices for telecommunication applications.
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