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Spin-orbit effects in heavy-atom organic radical ferromagnets
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We discuss the effects of the spin-orbit interaction on heavy-atom organic magnets with specific reference to
a series of isostructural sulfur- and selenium-based radical ferromagnets of tetragonal space group P 4̄21m. By
using a perturbative approach, we show the spin-orbit effects lead to a pairwise anisotropic exchange interaction
between neighboring radicals that provides an easy magnetic axis running parallel to the c-axis. Estimates of
the magnitude of this magnetic anisotropy explain the significant increase in the coercive fields by virtue of
selenium incorporation. Complementing this theoretical discussion are the results of ferromagnetic resonance
studies, which provide an experimental verification of both the magnitude and symmetry of the spin-orbit terms.
Taken as a whole, the results underscore the importance of heavy atoms and crystal symmetry in the design of
molecular ferromagnets with large magnetic anisotropy and high ordering temperatures.
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I. INTRODUCTION

The design of ferromagnetic materials has traditionally
relied on the use of d- and f -block elements. The discovery
20 years ago of ferromagnetic ordering in light atom p-block
(N, O) radicals appeared to provide a major conceptual
advance, suggesting a new era in nonmetal molecular
magnetism.1–4 However, the weak through-space magnetic
exchange interactions present in these materials afforded very
low Curie temperatures TC (<2 K), and the localization of
spin density on light atoms (low Z) ensured a low magnetic
anisotropy. As a result, the coercive fields Hc observed
never exceeded a few Oersted.5 Although novel, the weak
response of these light-atom ferromagnets confirmed rather
than challenged the “metals only” approach to magnetic
materials. In this context, the recent report of ferromagnetic
ordering in the heavy-atom (high-Z) bisdiselenazolyl radical
1, which displays a TC of 17 K and a coercive field Hc (at
2 K) of 1370 Oe, has reopened the debate on the possibility of
nonmetal-based ferromagnetism.6 The key question to address
is the role of the heavy atom in the increase in TC and Hc

values of Se-based radicals relative to those seen in light-atom
ferromagnets.

Radical 1 is the heaviest of a family of four sulfur-
and selenium-based variants 1–4, all of which crystallize in
the noncentric tetragonal space group P 4̄21m. The crystal
structures (Fig. 1) consist of pinwheel-like clusters of radicals
arranged about 4̄ centers, with each radical providing the basis
for a slipped π -stack array running parallel to the c-axis. The
fact that all four materials are isostructural offers a unique
opportunity to study the effect of S/Se incorporation. For
example, the presence of the heavier chalcogen is crucial
for achieving a high magnetic ordering temperature. There
is no evidence for magnetic ordering, to date, in the purely
sulfur-based material 4.7 The mixed S/Se variant 2 orders
ferromagnetically, although its TC (13 K) and Hc (250 Oe
at 2 K) are less than that observed for the all-selenium radical
1.8,9 The other mixed S/Se system 3 also orders, although
as a spin-canted antiferromagnet, with TN = 14 K.7 The
increase in ordering temperature with Se incorporation can be

FIG. 1. (Color online) Crystal packing of 1 viewed (a) parallel
and (b) perpendicular to the π -stacking direction, the crystallographic
c-axis. Radicals 1–4 are isostructural. The positions of the crystallo-
graphic mirror planes are indicated in blue.

partly understood in terms of an enhancement of the isotropic
exchange interactions occasioned by more diffuse magnetic
orbitals.10 The increase in Hc has been associated with an
enhancement of anisotropic exchange interactions resulting
from spin-orbit effects.11

In order to explore the role of spin-orbit effects in this
series, we present a theoretical framework for understanding
the magnitude and symmetry of the anisotropic exchange
terms. While the results of this analysis relate directly to the
properties of molecular p-block magnets, they are of equal
relevance to more conventional d- and f -electron systems.
The theoretical arguments are complemented by the results of
ferromagnetic resonance (FMR) experiments on 1 and 2, which
have allowed detailed insight into the magnetic anisotropy in
their ordered phase. Both 1 and 2 exhibit a zero-field gap in
the resonance frequency that is several orders of magnitude
larger than that observed in light-atom ferromagnets, and
consistent with the presence of easy-axis magnetic anisotropy.
These observations are shown to be in good agreement with
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FIG. 2. (Color online) Splitting of the three singlet and triplet
states arising from the two-site, two-orbital treatment of a lattice
of interacting S = 1

2 radicals. U represents the onsite Coulomb
repulsion, t is the charge transfer or hopping integral, and K is the
electronic exchange integral. The singlet-triplet energy gap is defined
such that the exchange coupling constant J = �EST. The notation
|ab̄〉 denotes a state with an ms = + 1

2 in orbital a, and ms = − 1
2 in

orbital b.

the anticipated symmetry and magnitude of the anisotropic
exchange terms.

II. MAGNETIC HAMILTONIAN

Organic radicals have been studied extensively for many
years, with a view to harnessing their unpaired electrons
to serve as charge carriers and magnetic spins.12–14 Histor-
ically, the incorporation of heavy atoms into radicals has
been pursued in order to enhance conductivity by way of
the more diffuse orbitals.15 If one considers a lattice of
radicals, each with one unpaired electron, the electronic and
magnetic structure of the resulting array can be conveniently
understood with reference to the Hubbard model.16 When the
intermolecular charge transfer or hopping integral t is large in
comparison to the onsite Coulomb potential U , the material
should possess a metallic ground state with a half-filled
(f = 1

2 ) band. However, despite steady progress in the design
of materials with increased t/U ratios, a radical-based f = 1

2
system displaying metallic properties has yet to be realized.
Instead, for the resulting Mott insulating case when overlap is
small compared to U , the unpaired electrons are localized, and
the low-energy degrees of freedom are essentially magnetic.

The Hamiltonian that describes these magnetic degrees of
freedom is typically discussed with specific reference to the
two-site, two-orbital case shown in Fig. 2.17 This configuration
affords two charge-transfer singlet states S (+) (in-phase) and
S (−) (out-of-phase), an open-shell singlet state S (0), and

FIG. 3. (Color online) (a) UB3LYP/6-311G(d,p) Kohn-Sham iso-
surface for the A′′ SOMO of 1. (b) Schematic view of overlay of SO-
MOs on adjacent radicals along slipped π -stacks. (c) Near orthogonal
overlap of neighboring SOMOs along the π -stack, leading to a small
t
ij

00 and thus a positive ferromagnetic exchange interaction J π .

a triplet manifold {T }. The effect of the onsite Coulomb
potential is to increase the energy of the charge-transfer states
by U with respect to the open-shell states. Electronic exchange
(or Hund’s rule coupling) stabilizes the triplet with respect to
the open-shell singlet S (0) by 2K such that, in the absence of
hopping, the two sites possess a triplet ground state. When
hopping is included, there is a mixing of the in-phase charge-
transfer singlet S (+) with the open-shell singlet S (0), lowering
the energy of the latter by 4t2/U at second order. As a result,
the singlet-triplet energy gap �EST = J = 2K − 4t2/U and
consequently the spin state of the two sites depends on the
relative magnitude of K, t , and U . A ferromagnetic state is
stabilized for small t/K ratios, i.e., positive J values. This
observation is equivalent to the orthogonal overlap condition
popularized by Kahn,18,19 and employed extensively in the
design of materials displaying ferromagnetic interactions.

The crystal architecture of 1–4 is such that the slipped
π -stacked packing of radicals conforms almost perfectly to
this prescription for ferromagnetism. The singly occupied
molecular orbital (SOMO) is illustrated in Fig 3(a). The
specific slippage of radicals along the π -stacks with respect to
the stacking axis is such that the transfer integral between
neighboring SOMOs (defined explicitly as t

ij

00 below) is
reduced to nearly zero [Figs. 3(b) and 3(c)].10 As a result, the
intrastack exchange interactions are expected to be ferromag-
netic (J π > 0) for 1 and 2. In conjunction with ferromagnetic
interstack interactions, these considerations explain the ferro-
magnetically ordered ground state. The precariousness of the
orthogonal overlap condition, however, is highlighted by the
antiferromagnetic ordering of 3, which differs from 1 and 2
only slightly in terms of slippage and internal bond lengths.
Indeed, the ferromagnetic order can be destroyed by small
changes in the degree of slippage either by chemical pressure,
that is, through modification of the axial ligands,9 or by the
application of physical pressure.20 While these arguments
provide a satisfying rationalization of the isotropic magnetic
interactions, it is our contention that a full understanding of
the magnetic response of these systems requires the explicit
inclusion of spin-orbit effects into the magnetic Hamiltonian.

Spin-orbit (SO) effects are incorporated by the addition
of HSO = λ L · S to the nonrelativistic Hamiltonian, mixing
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FIG. 4. (Color online) Spin-orbit splitting, for Cs symmetry, of
the triplet manifold {T } in the two-site two-orbital case (continued
from Fig. 2). The product of the spin and orbital symmetry is A′ for Tx

and Ty and A′′ for Tz. The splitting stabilizes the triplet with respect
to the open-shell singlet S (0) and provides the source of magnetic
anisotropy.

states of pure L and S, while conserving the total angular
momentum J = L + S. The spin-orbit constant λ grows
sharply with atomic number (λ ∝ Z2 to Z4).21 In the absence
of SO coupling, isolated radicals possess a spin-doublet ground
state with L = 0 and S = 1

2 . In the presence of SO coupling,
the ground state is instead a J = 1

2 doublet that is not a separate
eigenstate of either L2 or S2. The effect of the spin-orbit
coupling can be seen in the response of the resulting state to
an external magnetic field Hext, which can be considered using
an effective spin Hamiltonian H = Hext · g · S. For historical
reasons, the effective spin is written as S rather than being iden-
tified as J. The g tensor is often found to be quite anisotropic
in heavy-atom radicals, indicating strong SO coupling.22

For such radicals, the spin-orbit effects may also lead to
anisotropic magnetic interactions in the solid state. For the
two-site case, in the absence of SO coupling, the isotropic
magnetic interaction Hiso = −J Si · Sj was shown to permit
pure spin singlet S (0) and triplet {T } eigenstates. In the
general case, this interaction does not commute with the SO
interaction, which admits singlet and triplet J states. When
both are present, there are two consequences. First, the triplet
manifold is split, an effect that is manifest as a magnetic
anisotropy in ferromagnetic materials. Second, the eigenstates
of the two-site model are not pure singlets or triplets of the
effective spin; this effect is responsible for weak ferromagnetic
moments in antiferromagnetic materials.

In reference to the two-site Hubbard model discussed
above, the effect of spin-orbit coupling is to mix states of the
triplet manifold {T } with the in-phase charge-transfer singlet
S (+) as shown in Fig. 4. By analogy with the stabilization
of S (0) due to hopping, the triplet state(s) capable of mixing
are also lowered in energy at second order in λ, splitting the
triplet manifold. Since both the open-shell singlet S (0) and
those triplet states are now mixed with the charge-transfer
singlet S (+), there is also a resultant mixing of the open-shell
triplet and singlet states. This latter effect is the celebrated
Dzyaloshinskii-Moriya (DM) interaction.

The states of the triplet manifold capable of mixing with
the charge-transfer singlet are determined by the point group
symmetry of the two sites, making symmetry an invaluable
tool for investigating the magnetic effects of the spin-orbit
interaction. It allows for the prediction of not only the specific
splitting of the triplet manifold, but also the orientation of
the canted moments in antiferromagnets. To demonstrate this,
we provide two concrete examples. In the first case, the two
sites are related by an inversion center, so that the minimum
symmetry point group is Ci , which has two irreducible
representations denoted Ag and Au. It can be shown that the
spin-orbit interaction can only mix states where the product of
spin and orbital wave functions belongs to the same irreducible
representation. In this case, the spin and orbital wave functions
of S (+) both belong to the Ag representation, resulting in a
product Ag ⊗ Ag = Ag . On the other hand, all the states in the
triplet manifold have an orbital wave function of the Au and
spin wave functions of the Ag representation, with a product
Au ⊗ Ag = Au. For this specific case, therefore, no state in the
triplet manifold is capable of mixing with S (+) so that there is
no splitting of the triplet manifold and no weak ferromagnetic
moment. This result explains the rarity of spin canting for
materials in centric space groups, but does not exclude the
possibility.23

A second example, one that is directly applicable to 1 and
2, is the case of mirror symmetry. Each molecule in a single
π -stack is bisected by a mirror plane, making it appropriate
to define molecular coordinates with respect to the local Cs

symmetry: the z-axis is defined as normal to the mirror, and
lies in the crystallographic ab-plane; the x-axis is aligned
with the crystallographic c-axis, and the y-axis is chosen to
form an orthogonal right-handed system (see Fig. 5). The
Cs point group contains two irreducible representations: A′,
which is symmetric with respect to the mirror plane, and A′′,
which is antisymmetric. In this symmetry, the orbital wave
function of all six states of the two-site model transforms as the
same representation as the SOMO, that is, A′′. The spin wave
function of the charge-transfer singlet S (+) transforms as A′,
resulting in a product A′′ ⊗ A′ = A′′. The spin wave functions
of the states in the triplet manifold Tx , Ty , and Tz transform
as A′′, A′′, and A′, respectively. Therefore, only the Tz state of
the triplet manifold has the correct symmetry to mix with the
charge-transfer singlet. The interpretation of this result is that
(a) for a ferromagnetic ground state, there is a preference for
magnetization in the xy-plane of the molecules, and (b) for
an antiferromagnetic ground state, the canted moment must
lie in the xy-plane, as it arises directly from mixing Tz into
the open-shell singlet. Although this approach of considering
the total state symmetries provides an appealing qualitative
view of the spin-orbit effects, a more convenient approach for
quantitative analysis is provided below.

We will follow the approach first introduced by Moriya,24

and later emphasized by Aharony et al.,25 of first treating HSO

as a perturbation on the states of each single radical site before
introducing hopping and Coulomb exchange. The magnetic in-
teractions between radicals will then be considered, and shown
to be anisotropic. As might be expected, the results of this
approach agree qualitatively with results already described,
but, in addition, will allow for the estimation of the magnitude
of spin-orbit effects in terms of the parameters λ, t, and U .

094430-3



WINTER, OAKLEY, KOVALEV, AND HILL PHYSICAL REVIEW B 85, 094430 (2012)

FIG. 5. (Color online) (a) Definition of local coordinate system
of a single radical, viewed parallel to the [1̄10] and [110] directions.
(b) Relative orientation of local coordinates of four radicals in the unit
cell, viewed parallel to the [110] direction. (c) Anisotropic exchange
terms viewed parallel to the [001] direction for three unit cells. Dashed
blue lines indicate both the crystallographic mirror planes and the
local easy xy-planes (see Fig. 1). The relative orientation of local Dij

vectors is indicated by an arrow along the local z-axis.

The convention used in this paper is to label unperturbed
orbitals with roman characters and perturbed orbitals with the
corresponding greek characters. In the unperturbed ground
state of each radical, the highest occupied orbital is the
singly occupied molecular orbital (SOMO, labeled a = 0).
Each single-particle energy level is at least twofold degenerate
owing to the degeneracy of ms = ± 1

2 states. The effect of
turning on the SO perturbation is to alter the single-particle
energy levels through mixing of orbital and spin states:

|α,mj 〉
= |a,ms〉 + λ

∑
b,m′

s

〈b,ms ′ |L · S|a,ms〉
εb − εa

|b,ms ′ 〉 + O(λ2),

(1)

where mj = ms and εa denotes the energy of the unperturbed
a orbital. If the perturbation is small (λ � �ε = εb − εa),
then the ordering of orbitals is unchanged in the perturbed
ground state; the perturbed SOMO is obtained directly from
its unperturbed counterpart. Each perturbed single-particle
energy level is still at least doubly degenerate, with mj = ± 1

2 .
Moriya’s results for the magnetic interactions of the

perturbed state are obtained by neglecting the effect of the
perturbation on the Coulomb exchange and onsite Coulomb
repulsion, in which case the spin-orbit effects are contained
within a hopping term that conserves ms but not necessarily
mj . As before, we will consider the two-site, two-orbital case.
When written in the perturbed basis, the Hamiltonian con-

tains, respectively, the anisotropic hopping term, a Coulomb
exchange term, and an onsite Coulomb repulsion term:

H =
∑
〈ij〉

(c†i · Tij · cj + h.c.)

+
∑

mj ,m
′
j

〈ij〉

Kij c
†
i,mj

c
†
j,m′

j
cj,mj

ci,m′
j
+ U

∑
i

c
†
i,↑ci,↑c

†
i,↓ci,↓,

(2)

where

ci =
(

ci,↑
ci,↓

)
(3)

and c
†
i,↑ (c†i,↓) creates an electron in the perturbed SOMO at

the ith site, with mj = + 1
2 (− 1

2 ). The notation 〈ij 〉 indicates
a summation over nearest neighbors. The 2 × 2 matrix Tij is
given by

Tij = t
ij

00I2×2 + 1

2

∑
μ={x,y,z}

C
ij

00,μσμ, (4)

where t
ij

ab is the transfer integral between unperturbed a

and b orbitals at sites i and j , respectively; I2×2 is the
two-dimensional identity matrix, σμ is a Pauli matrix, and
C

ij

00 is Moriya’s SO-mediated transfer parameter given by

C
ij

00,μ = λ
∑
a,b

〈0i |L̂i
μ|ai〉

εa − ε0
t
ij

a0 + t
ij

0b

〈bj |L̂j
μ|0j 〉

εb − ε0
. (5)

Just as in the absence of spin-orbit coupling, in the large-U
limit, the hopping is treated as a perturbative correction to
the energy. Up to second order, the resulting effective-spin
Hamiltonian is given by

Hij = −Jij Ŝi · Ŝj + Dij · (Ŝi × Ŝj ) + Ŝi · �ij · Ŝj , (6)

where

Jij = 2Kij − 4t
ij

00

2

U
+

∑
μ

∣∣Cij

00,μ

∣∣2

U
, (7)

[Dij ]μ = 2i

U

(
C

ij

00,μt
ji

00 − t
ij

00C
ji

00,μ

)
, (8)

[�ij ]μ,ν = 1

U

(
C

ij

00,μC
ji

00,ν + C
ji

00,μC
ij

00,ν

)
. (9)

The first term in the Hamiltonian represents the isotropic
exchange interaction. The second term, for which Dij is a
vector, represents the antisymmetric Dzyaloshinsky-Moriya
(DM) interaction. The third term, for which �ij is a symmetric
rank-two tensor, gives rise to the anisotropic exchange (AE),
which is responsible for the splitting of the triplet manifold.

We limit our analysis of the anisotropic interactions to
those between nearest neighbors in a single π -stack. Given the
fairly one-dimensional structure of 1 and 2, these intrastack
interactions are expected to dominate over the correspond-
ing interstack interactions. The presence of this crystallo-
graphic mirror plane bisecting each π -stack provides that
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C
ij,π

00,x = C
ij,π

00,y = 0. In order to see this, we discuss the
symmetry of the matrix elements in Eq. (5). The local angular
momentum operators L̂i

μ,L̂
j
μ transform as A′′,A′′, and A′ for

μ = x,y, and z, respectively. The unperturbed SOMOs on each
radical, that is, |0i〉,|0j 〉, are of A′′ symmetry. The requirement
that nonzero matrix elements must transform as A′ provides
some restrictions on C

ij

00,μ:

(i) C
ij,π

00,μ is only nonzero for orbitals |ai〉,|bj 〉 that trans-

form as A′′; otherwise, t
ij

a0,t
ij

0b would vanish.
(ii) As a result, C

ij,π

00,μ is only nonzero for μ = z since the

matrix elements 〈0i |L̂i
x,y |ai〉,〈bj |L̂j

x,y |0j 〉 transform as A′′ ⊗
A′′ ⊗ A′′ = A′′ and therefore vanish.

Given these symmetry considerations, Dij must be normal
to the mirror plane bisecting sites i,j . For antiferromagnetic
alignment, canted moments are therefore preferred to lie
within the mirror plane, that is, the molecular xy-plane. For
ferromagnetically aligned spins, this result also dictates that
the AE interaction favors alignment of spins in the same plane.
As discussed below, this implies easy-axis anisotropy in 1 and
2, in the context of the crystallographic symmetry. The results
here are thus in exact agreement with the results obtained
by considering the mixing of the Tz and S (0) states. In local
coordinates, the interaction between nearest neighbors in a
π -stack is therefore

Hπ
ij = −

⎛
⎝2K

ij

00 +
∣∣Cij,π

00,z

∣∣2 − 4t
ij

00

2

U

⎞
⎠ Ŝi · Ŝj

+ 4iC
ij,π

00,z t
ij

00

U
(Ŝi,x Ŝj,y − Ŝi,y Ŝj,x) + 2

∣∣Cij,π

00,z

∣∣2

U
Ŝi,zŜj,z.

(10)

The order of magnitude of these terms has been estimated
previously for 1.11 Of particular note is the exceptionally small
value of t

ij

00 ∼ 0.01 eV, due to the near orthogonal overlap
of neighboring SOMOs discussed above.9,10 The transfer
integrals t

ij

a0 that determine the magnitude of C
ij,π

00 are not
so constrained; we estimate these to be much larger than t

ij

00,
on the order of 0.1 eV. For 1, the molecular spin-orbit coupling
constant λ can be represented in terms of the atomic value for
selenium (0.1 eV),26 and �ε = εa − ε0 can be taken to be
1 eV. Thus, the value of |Cij

00| can be estimated as λt
ij

a0/�ε ∼
0.01 eV. Based on these values, and taking U ∼ 0.8 eV from
electrochemical measurements,6 both the second (DM) and
third (AE) terms in Eq. (10) are found to be ∼10−4 eV.
Extending this approach to the mixed S/Se variant 2, and
approximating λ as the average of the atomic SO constants
of the selenium and sulfur,26 leads to an estimated reduction
in the value of |Cij

00| by a factor of about 0.6 (see Table I). This
qualitative conclusion compares well with the results obtained
by FMR measurements.

III. FMR STUDIES

In order to probe the magnetic anisotropy of 1 and 2,
we have measured electron spin resonance (ESR) spectra at
low temperature, a technique that is sensitive to the bulk
magnetic excitations (spin waves) of the ferromagnetically

TABLE I. Magnetic and spin-orbit parameters.

1 2

TC (K)a 17 12.8
Hc (Oe)a 1370 (2 K) 250 (2 K)
HA (Oe)a 8200 (5 K) 3100 (4 K)
λavg (eV)b 0.116 0.069
∼ |Cij,π

00 | (eV) 0.022 0.014

aData from Ref. 6.
bBased on values in Ref. 26.

ordered phase.27 This technique has been employed in the
study of various organic materials including charge-transfer
salts,28,29 doped fullerenes,30 and radicals.31,32

In a typical single-crystal experiment, microwave radiation
is applied to a sample at a set frequency, and the energies
of magnetic excitations are tuned using an external field Hext

that can be varied in magnitude and direction with respect
to the crystal. Since the dimensions of the crystal are much
smaller than the wavelength of the radiation, only k = 0 spin
waves are usually excited. Whenever the energy of such spin
waves matches the frequency of applied radiation, resonant
absorption is observed.

The angular dependence of the transmission spectra for the
mixed S/Se radical 2 is shown in Figs. 6 and 7.33 The polar
angle θH gives the angle between Hext and the crystallographic
c-axis, while φH is the azimuthal angle. As with analogous
studies of 1, reported previously in Ref. 11, the variation of

FIG. 6. (Color online) Transmission spectra for 2 as a function of
polar angle θH for ω = 73 GHz and T = 2 K. The needle axis and
crystallographic c-axis are approximately equivalent. The resonance
for Hext || c-axis (θH = 0◦) is sharp and consists of a single peak,
whereas the resonance for Hext ⊥ c-axis (θH = 90◦) is broad and
multipeaked.
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FIG. 7. (Color online) Transmission spectra for 2 as a function of
azimuthal angle φ for Hext ⊥ c-axis (θH = 90◦) and ω = 127 GHz.
The average position of the resonance is constant, suggesting little
anisotropy in the ab-plane, but a splitting is observed with period
of �φH = 90◦. The relationship between the experimental φH angle
and the crystal axes is unknown, although the results imply φH = 0◦

corresponds to Hext || a- or b-axis (see discussion).

the resonance field with θH is indicative of easy-axis magnetic
anisotropy with an easy c-axis. For 2, a slight splitting of
the resonance was also observed for θH = 0◦, the magnitude
of which is periodic in φH with a maximum on the order
of 300 Oe, as shown in Fig. 7 for Hext oriented in the ab-
plane. Evidence of a similar splitting can be observed in the
lineshapes of 1. However, the magnitude of the splitting does
not exceed 100 Oe, making resolution difficult.

It is tempting to associate this splitting with the presence
of magnetically inequivalent sites. Indeed, in the context of
the crystal, the interactions given in Eq. (10) establish four
different orientations for the Dij within the unit cell, providing
four magnetically inequivalent π -stacks (see Fig. 5). Stacks
(sublattices) related by a twofold axis (4̄2) possess identical
local easy planes, but Dij vectors that are antiparallel while
stacks related by a 4̄ or 4̄3 operation possess orthogonal
local easy planes. This latter observation explains the easy
crystallographic c-axis, as alignment of spins parallel to this
axis is the only orientation that allows all spins to lie within
their local easy plane while satisfying the ferromagnetic
interstack exchange. In this sense, the angular dependence
of the resonance properties of both 1 and 2 can be expected to
resemble closely those of a uniaxial ferromagnet. Indeed, the
appearance of the hysteresis curves for these materials closely
resembles those predicted for this case.34

Accordingly, we consider the resonance properties of 1
and 2 in the context of exchange-coupled, but magnetically
inequivalent, π -stacks by modifying the results obtained by

Tomita for the paramagnetic resonance of exchange-coupled
spins.35 Based on this approach, we identify and discuss three
regimes:

(i) In the absence of exchange coupling between the stacks,
the magnetic excitations of the crystal are exactly the one-
dimensional k = 0 spin waves of the individual stacks. For
a given sublattice labeled by χ , the excitation energy of this
mode is given by the expectation value of the Hamiltonian

Hχ =
∑
〈ij〉

Hπ
ij,χ +

∑
i

gμB Sχ

i · Hext (11)

and can generally be determined by the usual Holstein-
Primakoff approach.27 Here, we have ignored the anisotropy
of the g tensor. For a collinear spin arrangement, the AE term
is the only contributor to the k = 0 spin-wave energy, implying
two experimentally distinct sublattices with orthogonal easy
planes. In this regime, the spectra of 1 and 2 would display
two distinct resonances with an energetic separation 〈�H〉k=0,
corresponding to the excitation of spin waves in these two
sublattices. It can be shown that whenever φH measured from
the a-axis is a multiple of 90◦ or θH = 0◦, the spin waves
become degenerate, and the resonances would coalesce into a
single peak. This general angular dependence agrees with the
experiment, but the magnitude of splitting observed is far less
than predicted in the absence of exchange.

(ii) For the opposite case, when the magnitude of interstack
exchange coupling (∼J⊥) far exceeds 〈�H〉k=0, only a single
“exchange amalgamated” resonance will be observed, repre-
senting a bulk, sublattice averaged spin wave. The position of
this resonance can be predicted based on the expectation value
of the average Hamiltonian H̄ = 1/4

∑
χ Hχ .

(iii) In the intermediate regime, as J⊥ ∼ 〈�H〉k=0, the
resonance properties will display aspects of both previously
discussed regimes. That is, a resonance should be found
centered at the same position as in (ii), but slightly split,
with a reduced peak separation compared with (i). The results
of Tomita suggest the onset of splitting should occur for
J⊥ � 2〈�H〉k=0, allowing for an approximate comparison of
the isotropic intrastack and anisotropic interstack interactions
in 1 and 2.

Following from the above discussion, approximate reso-
nance conditions were obtained from a model coarse-grained
Hamiltonian with anisotropic intrastack interactions that are an
average over the four sublattices in the crystal (see Appendix
for details). Within this approximation, the expected response
is exactly that of a uniaxial easy-axis ferromagnet with an
easy c-axis and spin-wave gap due to spin-orbit effects given
by |C|2/U at Hext = 0. The resonance frequency is given by

ω = γ

{[
Hext cos(θ − θH ) + HA

2 (3 cos2 θ − 1)
]2

− [
HA

2 sin2 θ
]2

} 1
2

, (12)

where θ is the angle between the total magnetization M and
the c-axis, θH is the angle between Hext and the c-axis, and
γ = ḡμB/h̄ is the average gyromagnetic ratio of the radicals.
The anisotropy field HA at zero temperature is given by

HA = 1

γh̄

∣∣Cij,π

00

∣∣2

U
. (13)

094430-6



SPIN-ORBIT EFFECTS IN HEAVY-ATOM ORGANIC . . . PHYSICAL REVIEW B 85, 094430 (2012)

FIG. 8. (Color online) Angular dependence of the resonance field
Hext for 1 and 2 at high frequency. Where splitting of the resonance
is observed, the average position of the two peaks is displayed. The
black curves are a fit of Eq. (14). Data for 1 reproduced from Ref. 11.

The coarse-grained model predicts that the average reso-
nance position is independent of the azimuthal angle φH , in
correspondence with the experimental observations. At high
frequency, such that Hext and ω/γ � HA, then θ = θH for all
orientations, and the approximate angular dependence of the
resonance field can be written as

Hext ≈ ω

γ
− HA

2
(3 cos2 θH − 1) + H 2

Aγ

8ω
sin4 θH , (14)

where the sin4 θH term represents only a small correction. The
experimental angular dependence of the resonance field at high
frequency for 1 and 2 indeed conforms to a predominantly
cos2 θH dependence prescribed by Eq. (14) (Fig. 8). These
results identify both 1 and 2 as uniaxial ferromagnets with an
easy c-axis.

For Hext || c-axis (θ,θH = 0), the resonance frequency
reduces to

ω = γ (Hext + HA). (15)

The temperature dependence of HA for 2 was determined
by a fit of Eq. (15) to data collected at three different
frequencies (72.7, 104.6, and 128.8 GHz). Data for 1 were
taken from Ref. 11. The results show the onset of anisotropy
at temperatures about 10 K above the respective ordering
temperatures of 1 and 2. As the temperature is decreased,
HA continues to rise, having values of 8.2 kOe (at 5 K)
for 1 and 3.1 kOe (at 4 K) for 2 at the lowest measured
temperatures (see Fig. 9). Based on these results, approximate
values for |Cij,π

00 | were estimated and found to agree well with
the anticipated order of magnitude, that is, ∼0.01 eV (see
Table I). The difference in the measured anisotropy of 1 and
the mixed S/Se 2 is well explained by spin-orbit effects; the
ratio of the measured |Cij,π

00 | values is 0.6, in accordance with
the prescribed value.

The results also allow |Cij,π

00 |2/U to be estimated as 7
and 3 K for 1 and 2, respectively. Broken-symmetry density
functional theory (DFT) estimates of J⊥ for 2 suggest
both the isotropic and anisotropic interactions are of similar
magnitude.9 Indeed, our explanation for the splitting of the

FIG. 9. (Color online) Temperature dependence of the anisotropy
field HA for 1 and 2. The ferromagnetic ordering temperatures TC =
12.8, 17 K for 1 and 2, respectively, are indicated by an arrow. Data
for 1 reproduced from Ref. 11.

resonance of 2 requires thatJ⊥ is the same order as |Cij,π

00 |2/U .
In the case of 1, enhancement of the lateral isotropic ex-
change may reduce the splitting, but nonetheless the ordering
temperature of 17 K suggests that the isotropic interactions
do not significantly exceed the 7 K anisotropic terms. This
observation highlights the importance of considering spin-
orbit effects, which should not be assumed to be small in
heavy-atom organic magnets.

IV. CONCLUSION

We have previously proposed that the magnetic anisotropy
in 1 must arise from spin-orbit effects rather than from
magnetic dipolar interactions, which alone could not account
for the observed magnitude of HA.11 In this investigation,
the observation that the anisotropy is a function of the S/Se
content in isostructural radicals offers further evidence for this
conclusion. Since the magnitude of dipolar anisotropy depends
only on crystal structure and morphology, it can not explain the
different magnitude of anisotropy for 1 and 2. Detailed analysis
of the anisotropic exchange, on the other hand, suggests that it
accounts for both the magnitude and uniaxial character of the
magnetic anisotropy.

The results of this study provide a compelling explanation
for the origin of the coercive fields Hc observed for 1 and 2,
which far exceed the coercive fields observed in light-atom
organic magnets. Experimental Hc values scale with the
intrinsic anisotropy field HA, which for the present compounds
is large due to spin-orbit effects associated with the heavy Se
atom. Furthermore, it has been demonstrated that the strength
of this anisotropic exchange is similar to the strength of the
isotropic magnetic interactions, reaffirming the importance of
considering spin-orbit effects on the magnetic properties of
heavy-atom organic materials.

In our analysis, we discussed the importance of both
molecular and crystallographic symmetry in determining the
effect of the anisotropic exchange. We believe we have demon-
strated conclusively the universality of Moriya’s anisotropic
exchange: that it can be found for both metal- and nonmetal-
based heavy-atom magnets. We hope that the detailed analysis
presented here will provide a basis for the future study of
spin-orbit effects in other nonmetal-based magnetic materials,
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and unify the interpretation of magnetic phenomena in d-, f -,
and p-block materials.
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APPENDIX

Neither the isotropic nor DM interactions contribute to the
k = 0 spin-wave gap, and so can be ignored in the calculation
of the resonance conditions. In local coordinates, the AE
Hamiltonian for the four sublattices is given by

Hπ
ij,χ = 2

∣∣Cij,π

00

∣∣2

U
Ŝ

χ

i,zŜ
χ

j,z, (A1)

where χ = {A,B,C,D} label the four sublattices represented
in the crystallographic unit cell (see Fig. 5). Written in terms
of the crystallographic directions, the spin operators are

ŜA
i,z = 1√

2

(
ŜA

i,a + ŜA
i,b

)
, (A2)

ŜB
i,z = 1√

2

(
ŜB

i,a − ŜB
i,b

)
, (A3)

ŜC
i,z = 1√

2

(−ŜC
i,a − ŜC

i,b

)
, (A4)

ŜD
i,z = 1√

2

(−ŜD
i,a + ŜD

i,b

)
, (A5)

where a,b refer to the corresponding crystallographic direc-
tions.

The coarse-graining procedure employed is to write the
approximate Hamiltonian as H̄ ≈ 1

4

∑
χ Hχ and to drop the

sublattice label χ on the spin operators (Ŝχ

i,a → Ŝi,a). The
resulting coarse-grained AE Hamiltonian is then given by

H =
∑
〈ij〉

∣∣Cij,π

00

∣∣2

U
(Ŝi,aŜj,a + Ŝi,bŜj,b). (A6)

Finally, since Ŝi · Ŝj = Ŝi,aŜj,a + Ŝi,bŜj,b + Ŝi,cŜj,c, this can
be rewritten as

H =
∑
〈ij〉

∣∣Cij,π

00

∣∣2

U
(Ŝi · Ŝj − Ŝi,cŜj,c), (A7)

where the additional isotropic component does not affect the
k = 0 spin-wave gap.
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