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Damping dependence in dynamic magnetic hysteresis of single-domain ferromagnetic particles

H. El Mrabti,1 P. M. Déjardin,1 S. V. Titov,2 and Yu. P. Kalmykov1,*
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It is demonstrated that both the area of the dynamic magnetic hysteresis (DMH) loop and the volume power
loss of an assembly of uniaxial superparamagnetic nanoparticles with a random distribution of easy axes are very
sensitive to damping at low, intermediate, and high frequencies. In particular, a dynamical regime that is resonant
in character occurs in the vicinity of the ferromagnetic resonance (FMR) frequency for low to moderate values of
the alternating current (ac) field amplitude. The resonant regime is characterized by a diamagnetic-like response
of the particles, resulting from a phase lag of the stationary nonlinear magnetization with respect to the applied
field greater than π/2.
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I. INTRODUCTION

The dynamic magnetic hysteresis (DMH) induced in fine
magnetic particles by an external alternating current (ac)
field constitutes a topic of substantial interest since the
phenomenon occurs in magnetic information storage and
magnetodynamic hyperthermia occasioned by induction heat-
ing of nanoparticles.1–3 Superparamagnetism, which plays a
crucial role in the magnetodynamics of nanoparticles, naturally
emphasizes the physics of DMH, since in superparamagnetic
particles, the temperature directly influences the remagnetiza-
tion conditions, strongly affecting the effective rates, and so
altering the loop shape, coercive force, and specific power loss.

The theory of DMH in single-domain magnetically
isotropic particles subjected to thermal fluctuations, having
been proposed by Ignachenko and Gekht,4 was later extended
to uniaxial superparamagnetic particles with moderate to high
internal barriers.5–7 These approaches all stem from Brown’s
treatment of thermal fluctuations of the magnetization of
a single-domain ferromagnetic particle8 inspired by Néel.9

By setting the theory firmly in the context of classical
Brownian motion, Brown derived the Fokker-Planck equation
for the probability density function W of the magnetization
orientations on a sphere of unit radius. This equation is

2τN

∂

∂t
W = β[α−1u · (∇V × ∇W ) + ∇ · (W∇V )] + ∇2W,

(1)

where u = M/MS is a unit vector along the magnetization vec-
tor M, MS is the saturation magnetization (assumed constant
for a given temperature), ∇ = ∂/∂u is the gradient operator on
the unit sphere, V is the free-energy density, β = v/ (kT ), v is
the volume of the particle, k is Boltzmann’s constant, T is the
absolute temperature, τN = βMs(1 + α2)/ (2αγ ) is the free
(i.e., for V = 0) rotational diffusion time of the magnetization,
γ is the gyromagnetic ratio, and α is a phenomenological
dimensionless damping constant (in principle, it is possible
to estimate α experimentally by measuring the decay rate,
the mean excess energy, or the line width in the magnetic
resonance of superparamagnets10). In general, the damping
strength influences strongly the magnetization dynamics of
superparamagnets, leading to substantial damping dependence
of all their dynamic characteristics such as the DMH.

Nevertheless, damping effects in the DMH of superparam-
agnets have received little attention.

Now, the determination of the DMH from Eq. (1) for
arbitrary ac field strengths always involves nonlinear response
of the magnetization. In the most rudimentary model, the free-
energy density V of a superparamagnetic nanoparticle with
uniaxial anisotropy in superimposed homogeneous external
magnetic direct current (dc) and ac fields H0 + H cos ωt of
arbitrary strengths and orientations with respect to the easy
axis has the form

βV = σ sin2 ϑ − ξ0u · H0/H0 − ξ cos ωt u · H/H, (2)

where σ = βK , K is the anisotropy constant, ξ0 = βMSH0

and ξ = βMSH are the dimensionless external field param-
eters, and ϑ is the polar angle. For an ac field of arbitrary
strength, efficient numerical algorithms have been proposed
by Raikher et al.11 and Déjardin et al.,12 yielding the nonlinear
magnetic susceptibility, the nonlinear ferromagnetic resonance
(FMR), and nonlinear DMH. However, their calculations were
restricted to fields aligned along the easy axis of the particle.
Although the latter assumption simplifies the calculations
because the problem becomes axially symmetric, it is hardly
realizable under experimental conditions. Moreover, many
interesting nonlinear effects (such as the damping dependence
of the DMH loop area, the interplay between thermoactivation
and precession, etc.) cannot be treated and consequently under-
stood because no dynamical coupling between the longitudinal
and transverse (precessional) modes exists. Conversely, the
nonlinear dynamical response of a uniaxial superparamagnet
in an ac field applied at an angle to the easy axis is very
sensitive to damping in the underdamped range, α < 1, due
to the coupling now induced by the driving field between
the precession of the magnetization and its thermoactivation
over the potential barrier.13–15 Recently, Poperechny et al.16

elaborated a numerical method for the calculation of the
nonlinear ac stationary response, and they presented detailed
results for the temperature and frequency dependence of the
nonlinear DMH of uniaxial superparamagnets with randomly
oriented easy axes. However, they neglected the gyromagnetic
term in Eq. (1), so that their results apply only in the
intermediate to high damping (IHD) range, α � 1, and low
frequencies, where precessional effects may be ignored. Now,
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an effective numerical algorithm for the calculation of the
nonlinear ac stationary response valid in wide damping and
all frequency ranges for both an individual nanoparticle and
an assembly of noninteracting particles has been given by
Titov et al..17 In particular, they demonstrated that the usual
assumption that the strong external fields are applied along
the easy axis yields a poor description of the response of an
assembly of randomly oriented nanoparticles; however, they
also showed that for the linear response, this assumption may
be retained by defining an effective anisotropy parameter.
Here, we shall evaluate via the method developed in Ref. 15
the damping dependence of the DMH of an assembly of
noninteracting uniaxial superparamagnetic nanoparticles with
randomly oriented easy axes.

II. BASIC EQUATIONS

Now, the DMH loop represents a parametric plot of the
steady-state time-dependent magnetization as a function of
the ac field, i.e., MH (t) vs. H (t) = H cos ωt . The steady-state
magnetization MH (t) of the assembly is given by (we shall
suppose for simplicity that the dc field H0 = 0)15

MH (t) = MS

∞∑
k=−∞

mk
1e

ikωt , (3)

where

mk
1 =

√
4π

3

[
ck

1,0 cos ψ + ck
1,−1 − ck

1,1√
2

sin ψ

]
,

ψ is the angle between H and the Z axis, which is taken as the
easy axis of the particle, the overbar denotes averaging over
easy-axis orientations (see Appendix), ck

n,m are the frequency-
dependent Fourier coefficients in the Fourier expansion of the
probability distribution function W (ϑ,ϕ,t) in Eq. (1), viz.,

W (ϑ,ϕ,t) =
∞∑

n=0

n∑
m=−n

∞∑
k=−∞

ck
n,mYn,m (ϑ,ϕ) eikωt , (4)

and Yn,m (ϑ,ϕ) is a spherical harmonic of order n and rank
m. The numerical method of calculation of ck

n,m using matrix
continued fractions (MCFs) is described in detail in Ref. 15
(see Appendix). Furthermore, we can calculate the normalized
area of the DMH loop An (which is the energy loss per particle
and per cycle of the ac field), defined as6

An = 1

4MSH

∮
MH (t)dH (t) = −π

4
Im

(
m1

1

)
. (5)

This is related to the volume power loss R via R =
2vMSHωAn/π .6

For a weak ac field (ξ → 0), χ (ω) = 2m1
1/ξ defines the

linear dynamic susceptibility.14,15 Here, the behavior of the
DMH can be readily understood because at low frequencies,
χ (ω) can be described by the Debye-like formula9

χ (ω)

χ (0)
≈ 1

1 + iωτ
, (6)

where τ is the reversal time in the absence of the ac and dc
fields, and τ can be estimated from Brown’s formula for the

axially symmetric potential σ sin2 ϑ , namely,6

τ ∼ τ0
(1 + α2)

2α

√
π

σ
eσ , (7)

where τ0 = MS/ (2γK) is a characteristic relaxation time
(with typical estimations τ0 ∼ 10−10 s and τ ∼ 1.2 × 10−8 ÷
2 × 10−2 s for σ ∼ 5 ÷ 20 and α ∼ 1). Then, noting that

MH (t)

MH (0)
≈ cos ωt + ωτ sin ωt

1 + ω2τ 2
, (8)

and introducing the reduced variables x(t) = H (t)/H and
y(t) = MH (t)/MH (0), we have the equation of an ellipse in
the (x,y) plane, namely,6

x2 + 1

ω2τ 2
[(1 + ω2τ 2)y − x]2 = 1. (9)

This ellipse is centered at (0,0), and its major axis is
tilted at an angle 1

2 arctan[2/(ωτ )2].6 For strong ac field
amplitudes, where analytical formulas for MH (t) are not
available, DMH loops exhibit a variety of complicated shapes
with a pronounced frequency and temperature dependence16;
nevertheless, their qualitative behavior can be understood.

III. RESULTS AND DISCUSSION

Here, we focus our attention on the damping dependence
of the DMH loop, DMH area, and specific power loss at low
(ωτ � 1), intermediate (τ−1 < ω < 0.2ωFMR), and FMR (ω ∼
ωFMR) frequencies. For moderate barrier heights (σ = 5),
DMH loops in the quasistatic (ωτ0 = 0.001) and intermediate
(ωτ0 = 0.1) frequencies for various α are shown in Fig. 1.
One may discern from Figs. 1(a) and 1(b) the variation of the
coercive force of the assembly with damping under quasistatic
conditions. As the damping is increased, the coercive force
is reduced until α = 1, where the average reversal time
attains a minimum. Then, the coercive force increases again
in unbounded fashion, while the remanent field increases until
α reaches the critical value αcr ≈ (2ωτ0)−1. This value of α

actually delineates the limit of the switching regime. If α >

αcr, one encounters the “kinetic freezing” regime,16 where
the motion of the magnetization is so overdamped that the
magnetization vector barely departs from its initial orientation
in spite of the energetically unfavorable situation. The DMH
loop then flattens, merging progressively with the field axis at
α � 1. In the IHD damping range (α � 1), the gyromagnetic
term in the Fokker-Planck equation Eq. (1) can be ignored
in the calculation of the coercive force of an assembly of
nanoparticles with randomly distributed easy axes in this DMH
regime.

As shown by Poperechny et al.,16 the kinetic picture of
DMH is essentially quite different from the Stoner-Wohlfarth
one. At low frequencies, where the field changes are quasi-
adiabatic, the dynamic magnetization regime represents the
so-called switching regime, meaning that the magnetization
may reverse due to the cooperative shuttling action of thermal
agitation and applied field. For low (but finite) damping, this
results in a coercive force smaller than the Stoner-Wohlfarth
value hSW = 0.48. Furthermore, the remanent field is also
smaller than the Stoner-Wohlfarth one mSW

r = 0.5. This may
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FIG. 1. (Color online) DMH loops [m(t) = MH (t)/MS vs h(t) = (ξ/2σ ) cos ωt] at quasistatic and intermediate frequencies for various
values of the damping parameter α.

be understood via the plot of loop area vs α (Fig. 2), where a
minimum is obtained for α ≈ 1 since under quasiadiabatic
changes of the applied field (see curve 2 in Fig. 2), the
coercivity may be within the Néel criterion ωτ = 1,9,18

where 12

τ ∼ τ0

√
π (1 + α2)

ασ 1/2
(
1 − h2

ef

)
(1 − hef )

eσ (1−hef )2
, (10)

and hef = ξ/(2
√

2σ ) is an ac field parameter, leading to a
(transcendental) equation for the coercive force similar in form
to that given by Sharrock.16,19 This procedure is, however,
restricted to moderate to low temperatures16 because at higher
temperatures, such an equation may not have a physically
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FIG. 2. (Color online) DMH loop area vs the damping parameter
at quasistatic and intermediate frequencies.

meaningful solution. We may use these results for an assembly
of randomly oriented particles to qualitatively estimate the
coercive force because the relaxation time averaged over all
easy-axis orientations is a minimum at α ≈ 1. However, on
increasing the frequency by two orders of magnitude (see
Figs. 1(c) and 1(d) and curve 1 in Fig. 2), we may perceive
a different qualitative behavior of the DMH with damping
because the coercivity now increases with increasing α. In
effect, in this intermediate frequency range, the field variations
compete with thermal agitation. Then, the effective reversal
time is no longer given by Eq. (7), because the crossover
between very low damping and intermediate to high damping
is shifted to smaller α, meaning that gyroscopic effects can
no longer be ignored in the DMH process. The remanent field
and coercive force are, for low damping, much smaller than
the Stoner-Wohlfarth values. However, they again grow as the
damping increases until α reaches its maximum αcr (Fig. 2),
where the “kinetic freezing” regime is encountered. For α <

αcr, the DMH loops become quasi-elliptic.
Yet another new feature that has been ignored in previous

studies4–7,10,16 is the damping dependence of the DMH at FMR
frequencies. Here, DMH is encountered due to the resonant
behavior of the nonlinear response (see Fig. 3). Therefore, such
a regime may be termed the “resonant” regime, leading also
to the concept of resonant switching of the magnetization.
Here, the magnetization may be advantageously switched,
because the field required to reverse the magnetization is
much smaller than the quasistatic coercive force. Now for
moderate ac fields, the DMH loops have an ellipsoidal shape
(see Fig. 4), so that we may again infer that only a few
harmonics actually contribute to the nonlinear response. In
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strong ac fields, the FMR peak and DMH loop area decrease
substantially.15 In Fig. 5, the behavior of the resonant DMH
loop vs damping is shown. For low damping, α 	 1, and
high frequencies, ω � ωFMR, the coercive force and remanence
are small, and the system of single-domain ferromagnetic
particles has diamagnetic-like behavior, in the sense that
the largest positive value of the magnetization is attained at
negative values of the field and vice versa, in contrast to
the low-frequency behavior. Just as with linear response, in
the vicinity of the FMR absorption peak, the orientation of the
DMH loops depends on the phase lag �φ between MH (t) and
H (t), which may exceed π/2 (�φ being strongly damping
dependent). Obviously, this effect does not exist at low and
intermediate frequencies, where �φ is always less than π/2.
On increasing α from very low values, the loop area increases
as the Q factor of the resonance decreases. This happens as the
FMR peak merges with the broadband intermediate frequency
“intrawell” peak.17 Here, the loop area passes through a
maximum at some αcr value. Then, as α is increased further,
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FIG. 4. (Color online) Resonant DMH loops for various values
of the damping parameter α.
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the kinetic freezing regime progressively appears. Indeed, that
regime occurring in the FMR frequency region is analogous to
that characteristic of a driven overdamped nonlinear oscillator.
We note that, since, in practical applications, the resonant
DMH loop area is smaller than the DMH in the quasistatic
regime, the heat generated by the magnetic system is smaller
in that regime. Resonant DMH occurs in a frequency band that
is much narrower than that of the quasistatic regime because
in that regime, the magnetization behaves like a nonlinear
dash pot; in contrast, in the resonant regime (for given α),
the magnetization behavior is analogous to that of a driven
underdamped nonlinear oscillator. Since the resonant DMH
occurs at very high (GHz) frequencies, the magnetization
switching may be termed ultrafast, since the behavior of the
reversal rate of the magnetization is mostly governed by the
frequency of the external driving field, or equivalently, the rate
of change of the applied field amplitude.

To conclude, we have shown that the DMH loops and ab-
sorption power of magnetic nanoparticle assemblies strongly
depend on damping in all frequency ranges. In particular,
we have shown that at low frequencies, the DMH loops
exhibit a pronounced damping dependence due to coupling
of the thermally activated magnetization reversal mode with
the precessional modes of the magnetization via the driving
ac field. Furthermore, the damping dependence of the DMH
that occurs in the FMR frequency range may be used to
model ultrafast switching of the magnetization in nanomagnets
following an ultrafast change in the applied field. The predicted
damping dependence of the DMH may be important in practi-
cal applications (magnetic information storage, hyperthermia)
for which the parameters of the DMH loop are of upmost
importance.16
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APPENDIX: MATRIX CONTINUED FRACTION SOLUTION

As shown in Ref. 17a, the stationary ac nonlinear response
can be calculated from the formally exact matrix continued
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fraction solution ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

c−2
1

c−1
1

c0
1

c1
1

c2
1

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −1√
4π

S1 ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

0

p−
1

q−
1

p−
1

0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A1)

where the infinite matrix continued fraction S1 is defined by the recurrence equation

Sn = −[Qn + Q+
n Sn+1Q−

n+1 ]−1,

the three-diagonal supermatrixes Qn and Q±
n are given explicitly in Ref. 17a, and the column vectors ck

1, p−
1 , and q−

1 are defined
as

ck
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ck
2,−2

ck
2,−1

ck
2,0

ck
2,1

ck
2,2

ck
1,−1

ck
1,0

ck
1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, q−
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0
2σ√

5
0

0
ξ0 sin ψ√

6
ξ0 cos ψ√

3

− ξ0 sin ψ√
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, p−
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0
ξ sin ψ

2
√

6
cos ψξ

2
√

3

− ξ sin ψ

2
√

6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here, ck
l,m are coefficients in the Fourier time series Eq. (4).

Clearly, Eq. (A1) yields all the Fourier amplitudes required for
the calculation of MH (t) in Eq. (3) and, hence, the DMH.

For an assembly of randomly oriented noninteracting

uniaxial particles, in the calculation of the averages mk
1 in

Eq. (3) using Gaussian quadratures,20 we only require (due to
cylindrical symmetry about the Z axis)15

mk
1 =

∫ π/2

0
mk

1(ψ) sin ψdψ = π

4

n∑
i=1

wim
k
1(ψi) sin ψi,

where20

wi = 2(1 − x2
i )

[(n + 1)Pn+1(xi)] 2
, ψi = π

4
(xi + 1) ,

and xi is the ith root of the Legendre polynomial
Pn(x).19

For very low damping, α < 0.005, the method is difficult to
apply because the matrixes involved become ill conditioned, so
that numerical inversions are no longer possible. The problem
of convergence of matrix continued fractions is discussed in
detail by Risken.21
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