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Theoretical investigation of the inverse Faraday effect via a stimulated Raman scattering process
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We study theoretically the origin and mechanism of the ultrafast inverse Faraday effect, which is a magneto-
optical effect, attracting much interest nowadays. Laser-induced subpicosecond spin dynamics in hydrogenlike
systems and isolated many-electron atoms are investigated in order to get insight into this process. We show
that the stimulated Raman scattering process leads to a change of the magnetic state of a system. We obtain the
time evolution of the induced magnetization, its dependencies on laser properties, and the connection with the
spin-orbit coupling of a system.
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INTRODUCTION

Ultrafast optical control of the magnetic state of a medium
has recently become a subject of intense research in modern
magnetism.1,2 The manipulation of a magnetic order by
subpicosecond laser pulses is challenging for the development
of novel concepts for high-speed magnetic recording, infor-
mation processing, and data storage. And at the same time,
it reveals fundamental questions on magnetization dynamics
and makes it possible to understand the fascinating physics of
processes, which happen on subpicosecond time scales.

A set of experiments has revealed a direct subpicosecond
optical control on magnetization via the inverse Faraday
effect, i.e., the process of the generation of a magnetic
field by nonlinear polarized light.3–5 In these experiments
circularly polarized high-intensity laser pulses several tens of
femtoseconds long are used to excite a magnetic system of
a sample.6–14 It was shown that such laser pulses act as an
effective magnetic field in oxidic materials, which are weak
ferromagnets6–10 and even compensated antiferromagnets12

and paramagnets.13 However, the mechanisms of laser-induced
magnetization dynamics are still poorly understood in spite of
much experimental6–18 and theoretical19–27 effort.

One of the open questions is the evolution of the magnetic
momentum of a medium excited by a laser pulse.18,21,24 It
cannot be answered without the knowledge of the laser-
induced transitions, which lead to the change of the magnetic
state of a system in the inverse Faraday effect experiments.
In order to get a detailed insight into such transitions, we
study the stimulated Raman scattering process, which has
been suggested to be responsible for this effect.4,9,20 In this
process a laser pulse stimulates an optical transition from the
ground state to a virtual excited state, which is split due to
some interaction, for example, the spin-orbit coupling. Then
the transition back to the ground state is stimulated. But due to
the transition to the virtual state, the magnetic state of the
electron brought back to the ground state is changed. We
simulate this process in our systems at the femtosecond time
scale and describe the mechanism of how optical transitions,
excited by circularly polarized light, can lead to a change of a
magnetic state of a system. We investigate the spin dynamics,
which accompanied this process, and study how it depends on
system and laser properties.

Another question is the role of the spin-orbit coupling
(SOC) in the inverse Faraday effect (IFE). It is commonly

accepted that SOC is necessary for magneto-optical effects.5

But what is the exact function of this interaction in the process?
It is also unclear what happens when the spectral width of the
laser pulse is of the order of the SOC and whether it limits the
pulse duration required for the effect. We make a detailed study
of the laser-induced spin dynamics in a hydrogen atomlike
model, in which SOC is present, in order to reveal the pure
contribution of this interaction. The simple picture, in which
it is the only spin-dependent interaction, allows us to find out
its connection with the IFE. We vary the value of the SOC and
study how the effect depends on it.

Another important issue, which we address, is the time evo-
lution of the laser-induced magnetization during the presence
of the pulse and why the magnetization remains in a system
after the excitation, as observed in experiments.6–14 We have
shown in our last paper28 that the standard expression5 M(t) ∝
E∗(t) × E(t), which connects the induced magnetization M(t)
with the generating electric field E(t), is not applicable for
subpicosecond pulses. Therefore, the time dependency of the
induced magnetization requires much deeper understanding
for the interpretation of the experiments done on a subpi-
cosecond time scale. In the present article, we calculate M(t)
for atomic systems and its dependence on the laser properties.
We show that a system is brought to a new magnetic state
after the action of an ultrashort laser pulse. The magnetization
dynamics after the excitation by a laser is caused by the fact
that the system is not in the initial state anymore.11,20

We discuss in the first section the role of optical transitions
for the inverse Faraday effect and why much attention should
be given for their analysis. We introduce the method, which
we use to describe the action of laser light on our systems,
in the second section. It is based on the solution of the
time-dependent Schrödinger equation. We solve it up to the
second order of the inverse light velocity 1/c without any
further approximations and derive the induced magnetization
without the application of thermodynamic relations. We study
precisely the time evolution of the involved quantities since it
has been pointed out that theories relying on the assumption
that the action of the laser light is much shorter than relevant
times for the system are not sufficient to describe spin
dynamics during the first several picoseconds.12

In the next section we introduce the mechanism of the
influence of optical transitions on the magnetic state of a
system. We study the role of the spin-orbit coupling in this
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process and the relation of the effect with its value. We
investigate the dependence of the induced magnetization on
the laser properties, such as central frequency and intensity,
and calculate its time evolution. We use a very simple system
in order to make this study very clear and obvious. In the
Sec. IVwe apply this approach to many-electron atoms as an
example of how it can be extended for a more complicated
case. We suggest how our theory can be applied for a solid
state system in the last section.

I. THE INVERSE FARADAY EFFECT AND THE
ULTRAFAST INVERSE FARADAY EFFECT

The inverse Faraday effect was predicted by Pitaevskii3

and was defined by him as “magnetization of a transparent
medium induced by oscillating electric field.” It was derived
by differentiation of the thermodynamic potential with respect
to an external magnetic field. Pershan et al.4 developed
later the theory for this effect based on quantum mechanics.
First, they obtained the effective Hamiltonian derived by
the time-dependent Schrödinger equation up to the second
order. The effective Hamiltonian described the interaction
of light with a transparent medium. Since the assumption
that the laser intensity “changes slowly compared to thermal
relaxation times of the system” was meaningful for the
experimental conditions at that time,29 it was possible to
derive a potential function from this Hamiltonian. Afterwards
it was shown that the induced magnetization is a derivative
of this potential. Their formulation of the effect was “the IFE
consists of a magnetization induced by circularly polarized
light in a nonabsorbing material”. Therefore, the IFE according
to Pitaevskii and Pershan et al.’s formalisms consists of
two processes, which come together: interaction of light
with a transparent magnetic medium (IFE-1); this interaction
produces a quasistationary relaxed state, which leads to the
creation of magnetization in the sample (IFE-2).

The IFE-2 takes place, if the intensity changes slowly
compared to thermal relaxation times of the system. In this case
the interaction of light with a medium leads to a new thermal
equilibrium, because IFE-1 keeps changing the magnetic state
of the system and the system has enough time to relax
according to the new conditions. This quasistationary state
exists only during the presence of the excitation. The IFE-2
process does not take place in the ultrafast magnetization
experiments,13,28 because the action of the laser pulses is
shorter than any relaxation times of a system, and the effects
observed in Refs. 6–14 do not represent the IFE according to
its classical definition.

However, a kind of the IFE-2 valid for the ultrafast
dynamics would be the IFE-2uf process. The IFE-2uf takes
place because the system is brought away from its ground
magnetic state by transitions induced by circularly polarized
laser light. The system has to react to being in this new state;
thus magnetic precessions start. There are also some decay
processes observed in the next several tenths of a picosecond
due to relaxation or damping processes. We suggest that the
term “ultrafast IFE” should be meant by the combination of
the IFE-1 and IFE-2uf processes.

Magnetization dynamics after the excitation, i.e., the IFE-
2uf process, is straightforwardly accessed in the experiments.

Magnetic precessions are the usual target for the problem of
all-optical manipulation of a magnetic order.1,2,30 However,
these effects are initially caused by the action of a laser light
on the system, i.e., by the IFE-1 process. Therefore, it is
essential to get insight into and characterize the IFE-1 in order
to control the subsequent dynamics. The same suggestion was
made by Satoh et al.12 and Reid et al.,13 who both came to
the conclusion that the analysis of the evolution of the orbital
and spin momenta and the selection rules are necessary for the
description of the whole effect.

We consider the IFE-1 process as coherent spin excitations
due to the stimulated Raman scattering process. Therefore, we
concentrate on the study of the connection between optically
induced transitions and the spin state, which we think is the
most relevant for the whole ultrafast inverse Faraday effect.
We also briefly discuss the IFE-2uf process in Sec. V, where
we suggest how our approach can be used to study the spin
precessions induced by the optical transitions.

II. THE ACTION OF A LASER FIELD ON AN ELECTRONIC
SYSTEM

We consider the action of a laser pulse with a frequency ω0

and an electric field E,

E = −zEf (t/T ) sin(ω0t). (1)

on an electronic system with spatial extend much smaller than
the wavelength λ0 = c/ω0. E is the amplitude of the electric
field, z is perpendicular to the direction of propagation, and
the function f (t/T ) describes the time dependence of the
amplitude of the electric field.

Let us briefly recall the approach to describe the action of
the electric field E on the system, which was introduced in
Ref. 28. The electric field is related to the vector potential31

E = −1

c
Ȧ. (2)

The vector potential obeys the wave equation

�A =
(

∂

c∂t

)2

A = 1

c2
Ä, ∇A = 0. (3)

The spatial extent of the wave train, cT , has to be large
compared to the wavelength λ0 to ensure that A fullfills Eq. (3).

An unpertubed electronic system is described by the
Hamiltonian

H0 =
∑

α

p2
α

/
2 + Vint. (4)

pα is the momentum of an electron, and Vint is the sum of
the kinetic energy of nuclei, the interaction energy between
electrons and nuclei, and the mutual Coulomb energy of the
electrons and nuclei. The interactions, which are important
for effects on the spin of the electrons, such as the spin-orbit
and Zeeman interactions, must be also included in Vint. The
summation is over all electrons in the system, and the mass
and charge of an electron and Planck’s constant are set to
1 (atomic units).

Wave functions of a perturbed electronic system are found
by the solution of the time-dependent Schrödinger equation.
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The momentum operator is replaced by p − A/c, and the
equation of motion for an electronic wave function � is

i
∂�

∂t
=

[∑
α

[pα − A(rα,t)/c]2/2 + Vint

]
�. (5)

The solution is the expansion

�(t) = e−iH0t [�0 + �1(t) + �2(t) + · · · ]. (6)

The Raman process, which we are interested in, is of the
second order in the inverse speed of light 1/c. Therefore, the
terms up to the third one in the expansion (6) are important.
They are derived in Appendix A for the case when the time-
dependent function of the amplitude E of the electric field is
Gaussian shaped: f (t/T ) = e−t2/T 2

/
√

π3 (3D normalized).
In the case of a discrete spectrum, the first order wave

function is the summation over all possible final states f ,
which a one photon transition can lead to,

�1(t) =
∑
f

d0f 	
(1)
f (t)φf , (7)

where d0f = 〈φf |z · ∑
α rα|�0〉 is the dipole matrix element

of the transition from the ground state 0 to a final state f , φf is
the wave function of the f state, and the time dependency of
�1(t) is introduced by the function 	

(1)
f (t) (cf. Appendix A).

The second order wave function is the summation over
all possible intermediate j and final f states, to which the
transitions are allowed:

�2(t) =
∑
j,f

d0j djf 	
(2)
j,f (t)φf . (8)

The time-dependent function 	
(2)
j,f (t) is

	
(2)
j,f (t) = 2(εf − εj )(εj − ε0)√

π

(NT

2πc

)2

×
∫ t/T

−∞
ds ′

[
ei(εf −εj )T s ′

cos(ω0T s ′)e−s ′2

×
[
e− [T (ω0j +ω0)]2

4 erfc

(
i

2
T (ω0j + ω0) − s ′

)

+ e− [T (ω0j −ω0)]2

4 erfc

(
i

2
T (ω0j − ω0) − s ′

)]]
, (9)

where s ′ stands for t ′/T ; ε0, εj , and εf are the energies of
the initial i, an intermediate j , and a final state f ; and ωkl =
εl − εk . k and l stand for 0, j or f .

Equations (8) and (9) are exact for all T , ω0, and ω0j , and,
therefore, are applicable to any regime of excitation, i.e.,

(a) the ultrafast regime, when the length of the pulse T is
in the subpicosecond region (T |ω0j ± ω0| ∼ 1) and

(b) the “stationary” regime, when the length of the pulse is
in the nanosecond region (T |ω0j ± ω0| � 1).

The regime (a) is typically realized in modern magneto-
optical experiments,1,2 while (b) was the condition of the
“classical” inverse Faraday experiment,29 for which the stan-
dard theory by Pitaevskii3 and later by Pershan et al.4 was
developed. Equation (8) turns into this theory at large T as
follows.28

For large complex arguments z = |z| eiθ , |z| → ∞, and
the polar angle |θ | < 3π/4, the function erfc(z) approaches

asymptotically e−z2

√
πz

.32 From the condition |θ | < 3π/4, it
follows that T |ω0j ± ω| > 2t/T , and the condition T |ω0j ±
ω| � 1 is necessary for |z| → ∞. Substituting this asymptote
into Eq. (8), one obtains

�2(t) = −i

∫ t

−∞
Heff(t

′)dt ′ . (10)

The function Heff(t) is exactly the effective Hamiltonian,
which was defined by Pershan et al.4 as

〈f |Heff(t)|i〉 = −i
∑

j

[
v0j (t)v∗

jf (t)

ω0j + ω0
+ vjf (t)v∗

0j (t)

ω0j − ω0

]
eiω0f t

(11)

with vkl(t) = dklE(t).
It follows from Eq. (8), that the function 	

(2)
j,f (t) decreases

rapidly, when T |ω0j ± ω0| becomes larger, but would not
feel the change of frequency, when T |ω0j ± ω0| � 1. How-
ever, the contributions from the levels with energy far away
from the resonance frequency to the function 	

(2)
j,f (t) are

negligible in the ultrafast regime (T |ω0j ± ω0| ∼ 1).

III. THE HYDROGEN ATOMLIKE SYSTEM EXCITED
BY POLARIZED LASER LIGHT

We start from the study of a simple hydrogen atomlike
system excited by a laser pulse. We consider the excitation
of a Gaussian-shaped laser pulse, which is 100-fs long
(T = 10−13 s), circularly left polarized, propagating in the z

direction, i.e., z = (nx + iny)/
√

2, where nx and ny are the unit
vectors in the x and y directions. We assume that the system
is initially in the ground 1s state with the spin s0 aligned
initially in the x direction (s0x = 1/2). This means that the

wave function of the initial state is �0 = Y00R1s(
1√
2

1√
2

), where

Y00 and R1s are the radial and spherical parts, respectively, of
the 1s-state wave function. The pulse causes a transition from
the ground state to the 2p state, which is noticeably split due
to the SOC (two orders of magnitude higher than in a real
hydrogen atom). The SOC is considered for this system in
order to understand the role of this interaction and study the
consequence of its variation. Then the transition back to the
ground state is stimulated (Fig. 1). We assume that the laser
frequency ω0 is close to the resonance frequency between 1s

and 2p states, and the contribution from the transitions to the
other p states can be ignored. The energies ε1s and ε2p of the
1s and 2p states are equal to the original ones of a hydrogen

FIG. 1. (Color online) The hydrogen atomlike system excited by
a circularly left-polarized pulse. The process designated as σ+ is
the absorption of a left-polarized photon. σ− is the emission of a
left-polarized photon.
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atom, and the levels 2p1/2 and 2p3/2 are below and above 2p,
respectively: ε2p1/2 = ε2p − (2/3)λ and ε2p3/2 = ε2p + (1/3)λ,
where λ is the value of the SOC. We take NT/2πd0ω0c = 1
for simplicity. We want to answer the two following questions.
How would be the orientation of the spin influenced after
the two transitions? What is the probability that the spin flip
process would take place (the probability to find the spin in
the −x direction) due to this process?

These questions can be answered by the second order wave
function (8), since it describes two photon transitions, which
lead to the Raman process. To obtain this function, we have to
calculate the dipole matrix elements of the transitions caused
by the laser pulse, and the time-dependent parts 	

(2)
j,f (t).

A. The second order wave function

The second order wave function �2(t), which describes the
stimulated Raman scattering process, induced by circularly
polarized light in our system, is derived in Appendix B:

�2(t) = |d0|2√
2

(
	

(2)
3/2(t)

1
3 	

(2)
3/2(t) + 2

3 	
(2)
1/2(t)

)
Y00R1s . (12)

The functions 	
(2)
3/2(t) and 	

(2)
1/2(t) are the time-dependent parts,

which enter Eq. (8), when the intermediate state is 2p3/2

or 2p1/2, correspondingly. These functions depend on the
energies of initial, intermediate, and final states. Since we
assumed that the SOC in our system is considerable and the
2p state is split, 	

(2)
3/2(t) = 	

(2)
1/2(t). For the exact definition of

d0, see Appendix B.
The second order wave function �2(t) is a spinor with

nonequal time-dependent spin-up and -down parts [	(2)
3/2(t) =

1
3 	

(2)
3/2(t) + 2

3 	
(2)
1/2(t)]. It means that the spin does not remain

in the x direction (the corresponding spinor would be with
equal up and down parts), but performs a rotation in time.
�2(t) is zero before the action of the pulse begins, changes
smoothly during the excitation, and remains nonzero after the
pulse is gone. The time evolution of the function |�2(t)|2,
which is the probability of the Raman scattering process,
is depicted on Fig. 2 at laser frequency ω0 = ω1s,2p1/2 −
λ/2 = ω1s,2p3/2 + λ/2, i.e., between the resonance frequency
ω1s,2p1/2 = (ε2p1/2 − ε1s) of the 1s state with the 2p1/2 state,
and the resonance frequency ω1s,2p3/2 = (ε2p3/2 − ε1s) of the 1s

state with the 2p3/2 state. Therefore, it follows from Eq. (12)
that the Raman scattering process starts with the action of
the pulse and, while the system undergoes this process, the
alignment of the spin is changing. Since �2(t) is nonzero after
the action of the pulse, in the end the spin is rotated relative to
the initial position.

B. The probability of the spin flip

� ln
2 (t) ∝ Y00R1s

( 1√
2

1√
2

)
. (13)

The probability of the spin flip, wsf(t), that the spin is in the
reversed position relative to the initial one after the action of
light, is the projection of the wave function of an electron on

FIG. 2. (Color online) The time evolution of the probability of
the Raman scattering process at λ ≈ 27 meV.

the 1s state with the spinor 1√
2
( 1−1 ), corresponding to a spin in

the −x direction,

wsf(t) =
∣∣〈�0 + �1(t) + �2(t)

∣∣1s, 1√
2

( 1
−1

)〉∣∣2

|�0 + �1(t) + �2(t)|2 . (14)

The projections of �0 and �1(t) [Eq. (A3)] onto |1s, 1√
2
( 1−1 )〉

are zero. The probability of the spin flip is simply

wsf(t) =
∣∣〈�2(t)

∣∣1s, 1√
2

( 1
−1

)〉∣∣2

|�0 + �2(t)|2 . (15)

We are interested in the final probability of the spin-flip
process in our system. That is, the probability that spin is
reversed after the excitation has already acted on a system,
causing the two transitions. For this purpose, we define the
time τp, when the action of the pulse finishes [E(t > τp) = 0].
We use τp = 4T , when e−t2/T 2

, which describes the amplitude
of our pulse, becomes negligible.

Figure 3 shows the probability of the spin-flip process in our
system after the action of the laser pulse, wsf(τp), depending on
the excitation frequency at three different values of the SOC.
It can be seen that the SOC plays a crucial role in our model.
The spin-flip probability is lower at low values of the SOC.
But if the SOC is too large, then the probability of the effect
is quite low for the excitation frequencies between ε2p3/2 and
ε2p1/2 .

It follows from Eq. (12) that if λ = 0, no rotation of the
spin would be observed. Zero or negligible SOC means that
ε2p3/2 ≈ ε2p1/2 and, consequently, 	(2)

3/2(t) ≈ 	
(2)
1/2(t). Therefore,

at any time t the spin-up and -down parts of the spinor (12)
would be equal to each other, which is the condition that the
spin is in the x direction, and no rotation would be observed.
It explains why if λ is too low, the effect starts to disappear. If
the SOC is much higher than the spectral width (≈20 meV for
T = 100 fs), the two resonances become isolated.

Another important issue for the effect is the polarization
of the laser light. If the light was linear, there would be no
spin rotation in the system. It is shown in Appendix C that
in the case of the excitation with linear light in any direction,
the spinor of the second order wave function would always
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FIG. 3. (Color online) The total probability of the spin flip after
the action of the laser pulse depending on the frequency of excitation
at different values of λ.

correspond to the alignment of the spin in the x direction and
no rotation would be observed.

C. The laser-induced magnetization

We derive the induced magnetization �M(t) as a function of
time for this model. A “direction” (ex,ey,ez) of a spin (which
is actually where its mean value maximum points to) with
a wave function � ′ can be determined with the help of the
Pauli matrices σα (α stands for x,y,z): eα = 〈� ′|σα|� ′〉/|� ′|2.
Taking into account that the electron remains in the initial
state with a certain probability, we substitute � ′ = �0 + �2(t)
and obtain the new “orientation” of the spin in the s state
due to the Raman process. After the subtraction of the
initial magnetization and multiplication by the spin magnetic
momentum μ, the induced magnetization is obtained:

�M(t) = μ

( 〈�0 + �2(t)|σ |�0 + �2(t)〉
|�0 + �2(t)|2 − 〈�0|σ |�0〉

)
≈ μ(〈�0|σ |�2(t)〉 + 〈�2(t)|σ |�0〉
+ 〈�2(t)|σ |�2(t)〉). (16)

Function �2(t) is proportional to the peak light intensity,
�2(t) ∝ N 2 ∝ E2 [Eqs. (8) and (9)], so are the former two
terms. The last term is proportional to the peak intensity
squared and can be ignored. Thus, we obtain that the induced
magnetization is linear with the light intensity as seen in
experiments7 due to the interference between the initial and
final state, although the probability of such a process is
proportional to the intensity squared:

�M(t) ≈ μ (〈�0|σ |�2(t)〉 + 〈�2(t)|σ |�0〉) . (17)

The quantity which the magnetization depends on is the second
order wave function �2(t). This function develops during the
action of the pulse and remains constant after the action.
Therefore, magnetization in the system is induced via the
optical transitions due to the excitation and remains altered
after it. As an example the time dependence of the altered
components of the magnetization vector due to the excitation
with the frequency ω0 = 10.20 eV at λ = 27.2 eV is shown
on the Fig. 4.

FIG. 4. (Color online) The time dependence of the components
of the induced magnetization �Mx,y,z at the laser excitation with the
frequency ω0 = 10.2 eV at λ = 27.2 eV.

In contrast to the equation �M(t) ∝ E∗(t) × E(t), which is
usually used to describe the IFE, despite however not providing
the answer as to why the change of magnetization is nonzero
after the laser pulse has faded away [E(τp) = 0 ⇒ �M(τp) =
0 ?], Eq. (16) explains the generation of an effective magnetic
field after the excitation by ultrashort laser pulses. According to
this relation the magnetization also depends on the electric field
E(t) via �2(t), but this dependence is much more complicated.
In fact, the equation �M(t) ∝ E∗(t) × E(t) is the limit for the
case of excitation by very long pulses, when thermodynamic
relations can be applied, which was the condition at the time,
when it was derived.3,4,28,29

D. The influence of the Raman scattering process
on the spin orientation

We study the final spin orientation after the Raman
scattering process depending on the excitation frequency. We
substitute � ′ = �0 + �2(τp) to eα = 〈� ′|σα|� ′〉/|� ′|2 and
obtain the expectation value of the spin orientation after the
excitation has finished.

We vary the laser frequency ω0 between ω1s,2p3/2 − 3λ and
ω1s,2p1/2 + 3λ, covering the region, when the frequency is close
to the resonances [“blue” region “b” on Fig. 5(a)] and far away
from them [“green” regions “c” on Fig. 5(a)]. We obtain that
the frequency dependence of the final spin orientation can be
separated into two regimes:

(1) The excitation frequency is close to the resonance. This
case is shown on Fig. 5(b). Each blue arrow corresponds to the
final spin orientation at a different laser frequency ω0, which is
varied within the blue region b on Fig. 5(a). When ω0 is at the
“left” boundary of the region b, the spin orientation is close to
the initial one. It moves counterclockwise on the plot with the
increase of the frequency and arrives again to the position close
to the initial one, when the frequency approaches the “right”
boundary. At this regime, first, the effect is quite strong (�M

is large). Second, the direction of the spin is highly affected
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FIG. 5. (Color online) (a) The scale within which the laser
frequency is varied. Blue region b corresponds to the plot (b), and
green regions c correspond to the plot (c). The blue stars show
the exact positions of the resonances (left: ω0 = ω1s,2p3/2 , right:
ω0 = ω1s,2p1/2 ). (b) The final direction of the spin due to the Raman
process depending on the frequency of excitation in the resonant
region b. It moves counterclockwise on the plot, when ω0 increases.
(c) The final position of the spin due to the Raman process depending
on the frequency of excitation in nonresonant regions c, xy plane, the
plot is stretched in the y direction. The initial position of the spin is
shown with the bold black arrow. λ = 27.2 meV.

by the excitation frequency. Third, the spin alignment is not in
the xy plane.

(2) The situation is quite different, when the frequency
is away from the resonances. When the frequency is varied
within the regions c on Fig. 5(a), the final spin orientation is
always in the xy plane, which is depicted on Fig. 5(c). The
effect is much lower in comparison to the resonance regime
(1). The final spin direction still depends on the frequency
but much less. The plots are similar for the situations, when
the frequency decreases in the left region c, and increases in
the right region c. When the frequency goes away from the

resonance, the final spin position approaches the initial one
from the same “side” in both cases.

The classical interpretation of the IFE3,4 is that the circularly
polarized laser pulse acts as an external magnetic field in
the direction of light propagation z, so it is expected that
a spin would start a precession in the xy plane. We have
shown that the interpretation of the effect should be different
on subpicosecond time scales.28 The change of the initial
magnetic state due to laser-induced transitions should be
considered, and spin precessions start, because the system is
brought away from the ground state. The present example
shows that the new spin position after the action of the light
is in the xy plane, when the frequency is away from the
resonances; however this does not hold for the resonance
case. This discrepancy from the classical view may come from
the fact that it was developed under the assumption that the
excitation is away from any resonance in the system.4

The final value of �Mx,y,z depends not only linearly on the
peak intensity of light, but also on the pulse shape [Eqs. (8) and
(9)] and the frequency of excitation (Fig. 5). This statement is
supported by the observation in Ref. 14 that the initial phase
and amplitude of the oscillation of the polarization of the probe
pulse, which is connected with the induced magnetization,
depends on the pump wavelength. This result opens large
opportunities for tuning spin dynamics by the frequency chirp
of a pump laser.

We showed that a laser pulse causes optical transitions,
which change the orientation of the spin. Therefore, the laser
light can directly transfer the momentum to the spin. The
SOC is essential for this process. The existence of this effect
is confirmed by the observations of very related processes
in quantum wells33 and quantum dots34–36 with an applied
external magnetic field in the Voigt geometry.

IV. LASER-INDUCED MAGNETIZATION DYNAMICS
IN ISOLATED ATOMS

The next system, in which we investigate the laser-induced
ultrafast magnetization phenomenon, is an atomic gas (isolated
atoms). A laser pulse causes transitions from the ground state
to the excited states of an atom. The excited states are split due
to the fine structure. The aim is to look at how this transition
influences a magnetic state of an electron brought back to the
ground state. We present our results on the cobalt atom, but
the same considerations can be applied to any atom.

The essential difference of a many-electron system to a
one with a spin 1/2 is that its spin is composed of several
electron spins according to Hund’s rules. Therefore, spin is
not a fundamental quantity anymore, and the expectation value
of the spin orientation cannot be accessed straightforwardly.
The information, which can be obtained, is the probability that
the spin is in a certain state and the mean value of the spin
〈Sα〉 in a chosen direction α. It means that the direction of
the maximum mean value of the spin projection cannot be
calculated and 〈Sx〉2 + 〈Sy〉2 + 〈Sz〉2 is not conserved in the
case of a spin larger than 1/2. The same holds for the total
momentum J > 1/2.

The ground state of Co is 3d74s2 with the total momentum
J = 9/2, the orbital momentum L = 3, and the spin S = 3/2.
We assume that in the initial state the projection of the
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FIG. 6. (Color online) Co atom excited by a circularly left-
polarized pulse.

total momentum is defined in the x direction: Jx = 9/2.
We consider the action of the same laser pulse as in the
previous section: 100-fs long, Gaussian shaped, left polarized,
propagating in the z direction, being perpendicular to the initial
alignment of the magnetic momentum. We account for all
excited states to which the laser can cause transitions from the
ground state (Fig. 6).

First, we have to find the ground state of the system �0 by
the solution of the equation

ĵx�0 = (9/2)�0, (18)

where ĵx is the momentum operator with (2J + 1)(2J + 1)
elements. Since we work in the z representation, the only
nonzero elements of the ĵx matrix are subdiagonal and
superdiagonal ones:

〈m + 1|ĵx |m〉 = 1
2

√
(J − m)(J + m + 1),

〈m − 1|ĵx |m〉 = 1
2

√
(J + m)(J − m + 1), (19)

〈q|ĵx |m〉 = 0, q = m ± 1.

The resulting ground state wave function in the Jz representa-
tion is

�0 =

⎛
⎜⎜⎝

ψ9/2

ψ7/2
...

ψ−9/2

⎞
⎟⎟⎠ (20)

with 2J + 1 elements. It is the superposition of the eigen-

functions of the states with Jz = m. For example, (

0
1
.
.
.
0

) is the

eigenfunction of the state Jz = 7/2.
The transitions from the state {n,J,Jz = m} via an ab-

sorption of a left-polarized photon are allowed to the states
{n′,J ′ = J,J ± 1,J ′

z = m + 1}. The reversed process of the
stimulated emission leads to the transitions back to {n,J,m}
with a dipole matrix element, which is the conjugate complex
of the dipole matrix element of the first transition.

As �n′J ′
2 (t) we designate the wave function, which de-

scribes the process with two transitions {n,J,Jx = 9/2} →

{n′,J ′ = J,J ± 1,J ′
x} → {n,J,J ′′

x }. Applying Eq. (8), we ob-
tain

�n′J ′
2 (t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

|〈n′J ′ 11/2|r+|nJ 9/2〉|2ψ9/2
...

|〈n′J ′ m + 1|r+|nJ m〉|2ψm

...
|〈n′J ′ − 7/2|r+|nJ − 9/2〉|2ψ−9/2

⎞
⎟⎟⎟⎟⎟⎟⎠

	
(2)
n′J ′ (t),

(21)

where r+ = (x + iy)/
√

2 and 	
(2)
n′J ′ (t) is the time-dependent

part, which depends also on the energy difference of the
states {n,J } and {n′,J ′}. The dipole matrix elements 〈J ′ m +
1|r+|J m〉 can be found using the relations37

〈J m + 1|r+|J m〉

=
√

(J − m)(J + m + 1)

J (J + 1)(2J + 1)
〈J |r|J 〉,

〈J − 1 m + 1|r+|J m〉

=
√

(J − m)(J − m − 1)

J (2J − 1)(2J + 1)
〈J − 1|r|J 〉, (22)

〈J + 1 m + 1|r+|J m〉

= −
√

(J + m + 1)(J + m + 2)

(J + 1)(2J + 1)(2J + 3)
〈J + 1|r|J 〉.

We sum up contributions from all possible transitions which
lead to the Raman processes and obtain the corresponding
second order function

�R
2 (t) =

∑
n′J ′

�n′J ′
2 (t) =

⎛
⎜⎜⎝

φ9/2

φ7/2
...

φ−9/2

⎞
⎟⎟⎠ . (23)

The resulting wave function (

φ9/2
φ7/2

.

.

.
φ−9/2

) is not proportional to

the wave function of the ground state, (

ψ9/2
ψ7/2

.

.

.
ψ−9/2

), because each

element of the latter spinor was multiplied by a different factor.
Consequently, the spinor of the resulting wave function does
not correspond to the state with Jx = 9/2 anymore, and the
projection of the magnetic momentum of the final state is
different from the initial one. Therefore, the magnetic state of
the system is altered after experiencing the Raman process.

In order to find out how the projection of magnetic mo-
mentum has changed, the selection rules should be examined.
For the Jx component under an excitation with the vector
(x + iy)/

√
2, they are: for the transition to the intermediate

level, the allowed values of the new x projection J ′
x are

Jx,Jx ± 1; and for ones to the final (ground) state, J ′′
x =

Jx,Jx ± 1,Jx ± 2. But Jx = 9/2 is the maximum value of
the projection of J = 9/2, and J ′′

x = Jx + 1,Jx + 2 are not
possible in our case. Therefore, the possible values of the new
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magnetic momentum projection are J ′′
x = 9/2,7/2,5/2 after

the excitation.
The new projection of magnetic momentum can take each

of that values with a certain probability, which depends on
the function �2(t). As �0,J x=mx

we designate the normal-
ized eigenfunction of the state {J = 9/2,Jx = mx}. Then,
the probability, that an electron experiences the stimulated
Raman scattering process and comes to the ground state with
the projection of the magnetic momentum Jx = mx , is the
projection of the function �2(t) on �0,J x=mx

:

wmx
(t) =

∣∣〈�R
2 (t)

∣∣�0,Jx=mx

〉∣∣2

|�0 + �1 + �2|2 , (24)

where wmx
= 0 for mx = 9/2,7/2,5/2. The sum of the

functions wmx
(t) is the probability of the Raman-like process,

w5/2(t) + w7/2(t) + w9/2(t) = |�R
2 |2. In order to calculate

them, we have to know the energies of the excited states
{n′J ′} of Co and the corresponding dipole matrix elements,
〈n′J ′|r|nJ 〉. We took this data from the NIST Atomic Spectra
Database.38

We calculated the probabilities w5/2(τp), w7/2(τp), and
w9/2(τp) that the x projection of the magnetic momentum
changed to 5/2 or 7/2 or came back to the same state
(Jx = 9/2) after the laser excitation, accordingly. The results
are depicted on Fig. 7 depending on the laser frequency for
the excitation by Gaussian-shaped laser pulse with the electric
field amplitude E = 5 × 107 V/m, which is a typical value
in modern ultrafast magnetization experiments.2 For each fre-
quency, the contribution of every allowed excited level is taken
into account (see Fig. 6). The three strongest lines on Fig. 7
correspond to the frequencies of the laser in resonance with
the most intense transitions in Co (therefore, the probability of
the effect becomes higher for these frequencies). Although the
case when the projection of the magnetic momentum does not
change is most probable, the probability that the value of Jx

FIG. 7. (Color online) The probabilities of possible values of a
new magnetic momentum projection Jx after the Raman scattering
process in a Co atom depending on the frequency of excitation. The
inset zooms-in on the region where w5/2 can be discerned.

FIG. 8. (Color online) The components of altered magnetization
�M(τp) after the Raman scattering process in a Co atom depending
on the frequency of excitation. The inset zooms-in on the region
where the �Mx component can be discerned.

changes to 7/2 is essential and is nonzero even for the value of
5/2 (see the inset of Fig. 7). It means that the magnetic state of
an atom is changed with a certain probability due to transitions
caused by laser excitation. Applying analogous considerations
as in the previous section, it can be easily shown that the
effect is present in isolated atoms, only when the laser light is
polarized.

The induced magnetization �M(t) can be derived by the
analogy to the previous section [Eq. (16)].

�Mα(t) ≈ −μBgJ (〈�0|ĵα|�2(t)〉 + 〈�2(t)|ĵα|�0〉). (25)

Here α stays for x,y, and z, ĵα is the momentum operator,
μB is Bohr magneton, and gJ is Landé g factor, which for the
ground state of Co equals to 5/6. The components of �M(τp)
are depicted on the Fig. 8 at the time t = τp, i.e., after the action
of the light, depending on the frequency ω0 of the excitation.
The properties of the excitation are the same as for the previous
plot. The x component of �M(τp) is very weak compared to
the other components (see the inset of Fig. 8). It results from
the selection rules, which do not allow Jx to change more than
by 2 and be lower than 5/2 in such a Raman process. This
result is in line with the results from Sec. III D.

Strictly speaking, the effect considered in the systems in
Secs. III and IV is not the stimulated Raman scattering in the
case of zero Zeeman splitting. Stimulated Rayleigh scattering
may be a proper term providing the scattering takes place on
a particle, which is much smaller compared to the light wave
length. However, we always assumed that the spins are initially
aligned in a certain direction. This is achieved in experiments
by the application of an external magnetic field or taking a
magnetically ordered material. Therefore, the magnetic states
of a ground state manifold are energetically separated, and the
effect is the stimulated Raman scattering.
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V. TWO MAGNETIC SUBLATTICES

We briefly discuss in this section the connection between
the laser-induced spin excitations, studied above, and the sub-
sequent magnetization dynamics. We consider as an example
an antiferromagnetic system with two magnetic vectors M10

and M20, aligned initially antiparallel to each other, resulting in
a total magnetic momentum M0 = M10 + M20. A circularly
polarized laser pulse coherently acts on this system during
several tenths of a femtosecond. Each subsystem is in a
new magnetic state after the excitation. The new magnetic
vectors are M1l and M2l . If the spin systems were initially
aligned not in the same directions, then they are rotated by
different angles after the action of circularly polarized light
(cf. Appendix D). This may simulate two antiferromagnetic
sublattices. Therefore, M1l and M2l are not collinear anymore.
Also, in general |M1(2)0| = |M1(2)l|, as has been shown in
Sec. IV.

The two antiferromagnetically coupled subsystems obtain
two magnetic vectors now, which are angularly distorted,
resulting in the net magnetic moment Ml = M1l + M2l .
Therefore, the total system is away from the ground state
and is in a new magnetic state now. It leads to the IFE-2uf
process. The antiferromagnetically coupled magnetic vectors
start to precess. The system may also relax from this new state
(due to some dissipation effects, damping, and so on) to some
stationary state at the next several tenths of a picosecond (the
decay observed in experiments).1,2

The final state of a magnetic system can be accessed using
the introduced theory. The knowledge of the magnetic state, in
which the system is brought due to the excitation, allows one
to describe the whole IFE-2uf process.11

CONCLUSIONS

We described the mechanism of the ultrafast inverse
Faraday effect via the stimulated Raman scattering process.
We solved the time-dependent Schrödinger equation to study
the action of the laser light in order to derive correctly the
dynamics of the wave functions of involved electrons during
the excitation. The simplicity of the investigated systems
allowed us to get a detailed insight into the transitions
responsible for the change of magnetic states. We showed
that a laser pulse excites two electron transitions in the
systems: from the initial to the intermediate state and from
the intermediate to the ground state, which with a certain
probability obtains different magnetic signature then before
the excitation. Magnetization due to the action of the pulse is
related to this probability. However, it is linearly dependent
on the laser peak intensity due to the interference between
the initial and final states. The splitting of the intermediate
state and the polarization of the laser light were shown to be
important for this process. In principle, our formalism is not
restricted to the situation when photon is emitted back to the
ground state, and can be applied to the situation when initial
and final states are different. However, it would make the
study more complicated, whereas our goal was to investigate
the mechanism on the clearest basis. We hope that this study
would encourage further work in understanding the role of the
second order transitions for the magneto-optical effects. As

a possibility for future studies, we suggest the investigation
of contributions of other interactions which are specific for a
solid state and essential for its magnetic state, such as crystal
field or Zeeman splitting.
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APPENDIX A: THE SOLUTION OF THE
TIME-DEPENDENT SCHRÖDINGER EQUATION

We derive the solution of Eq. (5) for the case when the
function f (t/T ), which describes the time dependence of the
amplitude of the electric field E [see Eq. (1)], is a Gaussian
function: f (t/T ) = e−t2/T 2

/
√

π3. Expanding the brackets in
Eq. (5), we obtain

i
∂�

∂t
=

[∑
α

[pα − A(rα,t)/c]2/2 + Vint

]
�

=
[
H0 − 1

c

∑
α

A(rα,t)pα + 1

2c2

∑
α

A(rα,t)2

]
�

= [H0 + Hp]� (A1)

The solution is found using the Volterra iteration method
and is the expansion

�(t) = e−iH0t [�0 + �1(t) + �2(t) + · · · ]

= e−iH0t

[
1 − i

∫ t

−∞
H̄p(t ′)dt ′ −

∫ t

−∞
H̄p(t ′)dt ′

×
∫ t ′

−∞
H̄p(t ′′)dt ′′ + · · ·

]
�0 (A2)

with H̄p(t) = eiH0tHp(t)e−iH0t .
The Raman process, which we are interested in, is of the

second order in the inverse speed of light 1/c. Therefore, the
terms up to the third one in the expansion (A2) are important.

In the case of a discrete spectrum, the first order wave
function is the summation over all possible final states, which
a one photon transition can lead to,

�1(t) =
∑
f

I1,f (t)φf (A3)

with the transition amplitudes I1,f ,

I1,f (t) = −i

∫ t

−∞
dt ′ei(εf −ε0)t ′ 〈φf |Hp(t ′)|�0〉, (A4)

where εf and ε0 are the energies of the final state f and the
ground state 0, respectively, and φf is the wave function of the
f state. The transition amplitudes (A4) are

I1,f (t) = i

c
〈φf |z

∑
α

pα|�0〉

×
∫ t

−∞
dt ′ei(εf −ε0)t ′ cos(ω0t)N e−t2/T 2

. (A5)
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The matrix element of the momentum operator can be
conveniently expressed by the dipole operator D = ∑

α rα

using the relation i
∑

α pα = (εf − ε0)D; then

I1,f (t) = (εf − ε0)

c
〈φf |zD|�0〉

×
∫ t

−∞
dt ′ei(εf −ε0)t ′ cos(ω0t)N e−t2/T 2

. (A6)

For convenience we introduce the function 	
(1)
f (t), which is

defined by the relation

I1,f (t) = 〈φf |zD|�0〉	(1)
f (t). (A7)

Using the solution of the Fourier integral39

∫ s

−∞
ds ′eiw±s ′

e−s ′2 =
√

π

2
e− w2±

4 erfc

(
i

2
w± − s

)
, (A8)

and replacing s by t/T and w± by T (εf − ε0 ± ω0), we obtain
the time dependence of

	
(1)
f (t) = NT (εf − ε0)

2πc

×
[
e− [T (ω0f +ω0)]2

4 erfc

(
i

2
T (ω0f + ω0) − t

T

)

+ e− [T (ω0f −ω0)]2

4 erfc

(
i

2
T (ω0f − ω0) − t

T

)]
. (A9)

with ω0f = εf − ε0 and N being the normalization factor of
the wave train.

Finally, the time evolution of the function �1(t) is

�1(t) =
∑
f

d0f 	
(1)
f (t)φf , (A10)

where d0f = 〈φf |zD|�0〉 is the dipole matrix element of the
transition from the ground state 0 to the final state f .

In the similar way the second order wave function can be
found:

�2(t) = −i

∫ t

−∞
dt ′H̄p(t ′)�1(t ′)

= −i

∫ t

−∞
dt ′H̄p(t ′)

∑
j

d0j	
(1)
j (t ′)φj

=
∑
j,f

I2,j,f (t)φf (A11)

with the transitions amplitudes

I2,j,f (t) = −i

∫ t

−∞
dt ′

∑
j,f

〈φj |Hp|φf 〉d0j	
(1)
j (t ′). (A12)

The summation is over all possible intermediate j and final f

states, to which the transitions are allowed. Therefore, the time
evolution of the second order wave function can be expressed
as

�2(t) =
∑
j,f

d0j djf 	
(2)
j,f (t)φf . (A13)

The function 	
(2)
j,f (t) is obtained by the substitution of Hp and

	
(1)
j (t) into Eq. (A12):

	
(2)
j,f (t) = 2(εf − εj )(εj − ε0)√

π

(NT

2πc

)2

×
∫ t/T

−∞
ds ′

[
ei(εf −εj )T s ′

cos(ω0T s ′)e−s ′2

×
[
e− [T (ω0j +ω0)]2

4 erfc

(
i

2
T (ω0j + ω0) − s ′

)

+ e− [T (ω0j −ω0)]2

4 erfc

(
i

2
T (ω0j − ω0) − s ′

)]]
.

(A14)

We neglected the term A2/2c2 in the Hamiltonian function
Hp(t) for the following reason. If we substitute this part to the
integral (A4), we obtain

−i

∫ t

−∞
dt ′ei(εf −ε0)t ′ 〈φf | 1

2c2
A2|�0〉

= − i

4c2

∫ t

−∞
dt ′(Nf )2ei(εf −ε0)t ′ 〈φf |1 + cos(2ω0t)|�0〉.

(A15)

The transition matrix element is diagonal in the electronic
states and does not give rise to any transitions.

APPENDIX B: THE CALCULATION OF THE SECOND
ORDER WAVE FUNCTION IN THE HYDROGEN

ATOMLIKE SYSTEM

In order to derive the dipole matrix elements, one has first
to recall the wave functions of levels in a hydrogen atom.37

The wave functions of the 1s state are

�1s
jjz

= R1sψjjz
, (B1)

where j = 1/2 is the total orbital momentum, jz = ±1/2 is
the projection of the momentum on the z direction, R1s = 2e−r

is the radial part, and ψjjz
is the spherical part.

ψ1/2,±1/2 = Y00χ±, (B2)

where Y00 = Yl=0,ml=0 =
√

1
4π

is the spherical harmonic func-

tion, and χ± are the spinor functions: χ+ = ( 1
0 ), χ− = ( 0

1 ).
Similarly, the wave functions of the 2p state are

�
2p

jjz
= R2pψjjz

(B3)

with the radial function R2p = 1
2
√

6
re−r/2 and the spherical

functions

ψ3/2,3/2 = Y11χ+, ψ3/2,1/2 =
√

2

3
Y10χ+ +

√
1

3
Y11χ−,

ψ3/2,−1/2 =
√

2

3
Y10χ− +

√
1

3
Y1−1χ+, ψ3/2,−3/2 = Y1−1χ−,

(B4)

ψ1/2,1/2 =
√

1

3
Y10χ+ −

√
2

3
Y11χ−,

ψ1/2,−1/2 =
√

1

3
Y10χ− −

√
2

3
Y1−1χ+,
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with the spherical harmonics

Y10 =
√

3

4π

z

r
, Y11 =

√
3

8π

y − ix

r
,

(B5)

Y1−1 =
√

3

8π

y + ix

r
.

The dipole matrix elements of the transitions from the 1s to
2p state are

∫
d3r�

2p ∗
j ′j ′

z
zD�1s

jjz
. We assumed that the spin is

initially in the x direction. It means that the ground state wave
function is

�0 = Y00R1s

1√
2

(χ+ + χ−). (B6)

Therefore, the dipole matrix elements of transitions from the
ground state to the excited states in our system are∫

d3r�
2p ∗
jjz

x + iy√
2

�0

=
∫

d3rR2pψ∗
jjz

x + iy√
2

Y00R1s

1√
2

(χ+ + χ−). (B7)

The spinors, entering the integrals, obey the relations χ∗
±χ∓ =

0, χ∗
±χ± = 1. Examining the wave functions of the 2p state

[Eq. (B4)], one can see that there are three types of integrals
entering (B7):∫

d3rY ∗
11R2p

x + iy√
2

Y00R1s

=
∫

d3r
1√
2

1

2
√

6
re−r/2

√
3

8π

y + ix

r
(x + iy)

√
1

4π
2e−r

= −i
215/2

35
d0 (B8)∫

d3rY ∗
10R2p

x + iy√
2

Y00R1s ∝
∫

d3r z(x + iy) = 0

(B9)∫
d3rY ∗

1−1R2p

x + iy√
2

Y00R1s ∝
∫

d3r(y − ix)(x + iy)

= −i

∫
d3r(x2 − y2) = 0. (B10)

Therefore, there are only three nonzero dipole matrix
elements of the transitions from the ground state to the excited
states induced by circularly polarized laser light:

d01 =
∫

d3r�
2p ∗
3/2,3/2

x + iy√
2

�0

= 1√
2

∫
d3r�

2p ∗
3/2,3/2

x + iy√
2

�1s
1/2,1/2 = 1√

2
d0; (B11)

another to {2p,j = 3/2,jz = 1/2}:

d02 =
∫

d3r�
2p ∗
3/2,1/2

x + iy√
2

�0

= 1√
2

∫
d3r�

2p ∗
3/2,1/2

x + iy√
2

�1s
1/2,−1/2 = 1√

2

√
1

3
d0;

(B12)

and one to {2p,j = 1/2,jz = 1/2}:

d03 =
∫

d3r�
2p ∗
1/2,1/2

x + iy√
2

�0

= 1√
2

∫
d3r�

2p ∗
1/2,1/2

x + iy√
2

�1s
1/2,−1/2 = − 1√

2

√
2

3
d0.

(B13)

Likewise, there are three allowed transitions from the exited
states back to the 1s state:

(1) to the spin-up state from the {2p,j = 3/2,jz = 3/2}
state with the dipole matrix element d10 = d∗

0 ,
(2) to the spin-down state from {2p,j = 3/2,jz = 1/2}

with d20 = √
1/3d∗

0 , and
(3) to the spin-down state from {2p,j = 1/2,jz = 1/2}

with d30 = −√
2/3d∗

0 .
The time-dependent parts 	(2)(t), which enter Eq. (8),

depend on the energies of initial, intermediate, and final
states. Since we assumed that the SOC in our system is
considerable and the 2p state is split, two functions 	(2)(t)
can be distinguished: the one for the transitions to the excited
states with j = 3/2, designated as 	

(2)
3/2(t), and for j = 1/2,

designated as 	
(2)
1/2(t). Applying Eq. (8) to our system, we

obtain the second order wave function, which describes the
stimulated Raman scattering process:

�2(t) = d01d10	
(2)
3/2(t)�1s

1/2 + d02d20	
(2)
3/2(t)�1s

−1/2

+ d03d30	
(2)
1/2(t)�1s

−1/2

= 1√
2

(
|d0|2	(2)

3/2(t)χ+ + 1

3
|d0|2	(2)

3/2(t)χ−

+ 2

3
|d0|2	(2)

1/2(t)χ−

)
Y00R1s

= |d0|2√
2

(
	

(2)
3/2(t)

1
3 	

(2)
3/2(t) + 2

3 	
(2)
1/2(t)

)
Y00R1s . (B14)

APPENDIX C: THE EFFECT OF LINEAR
POLARIZED LIGHT

If the light was linear, there would be no spin rotation in
the system. For example, for linear light in the x direction, the
integrals entering (B7) are∫

d3rY ∗
11R2pxY00R1s

=
∫

d3r
1√
6

√
1

4π
re−3r/2

√
3

8π

y + ix

r
x = idx,∫

d3rY ∗
10R2pxY00R1s

∝
∫

d3r zx = 0, (C1)∫
d3rY ∗

1−1R2pxY00R1s

=
∫

d3r
1√
6

√
1

4π
re−3r/2

√
3

8π

y − ix

r
x = −idx.

094419-11



DARIA POPOVA, ANDREAS BRINGER, AND STEFAN BLÜGEL PHYSICAL REVIEW B 85, 094419 (2012)

And the second order wave function in the case of linear light
would be

� ln
2 (t) = |dx |2√

2

(
	

(2)
3/2(t) + 1

3 	
(2)
3/2(t) − 2

3 	
(2)
1/2(t)

	
(2)
3/2(t) + 1

3 	
(2)
3/2(t) − 2

3 	
(2)
1/2(t)

)
Y00R1s

= |dx |2
(

4

3
	

(2)
3/2(t) − 2

3
	

(2)
1/2(t)

)
Y00R1s

( 1√
2

1√
2

)
.

(C2)

The spinor of the function would always correspond to the
alignment of the spin in the x direction, and no rotation could
be observed. It can be easily reproduced for linear light in any
direction.

APPENDIX D: THE ACTION OF POLARIZED LIGHT
ON ANTICOLLINEAR SYSTEMS

We show in this Appendix that if the alignments of spin
systems were initially anticollinear, then the systems are
rotated by different angles due to the action of circularly
polarized light. We check it with two equal hydrogen atomlike
models. The spin of the first one is aligned initially in the
x direction, and the spin of the second one is in the −x

direction. The wave function, describing the 1s state of the
first system during and after the action of the pulse, is
�+x

1s (t) = �+x
0 + �+x

2 (t), which is according to Eqs. (B6) and
(B14)

�+x
1s (t) =

⎛
⎝ 1√

2
+ |d0|2	(2)

3/2(t)√
2

1√
2

+ |d0|2
(

1
3 	

(2)
3/2(t) + 2

3 	
(2)
1/2(t)

)
√

2

⎞
⎠Y00R1s . (D1)

The initial wave function �−x
0 of the system with spin aligned

in the −x direction is

�−x
0 =

(
�1s

1/2

−�1s
−1/2

)
=

( 1√
2

− 1√
2

)
Y00R1s . (D2)

The procedure to obtain the second order wave function �−x
2 (t)

described in Appendix B would be equal for this system except
that the function �1s

−1/2 in Eq. (B14) enters with the negative
sign. Therefore, the wave function �−x

1s (t) = �−x
0 + �−x

2 (t)
of the second system is

�−x
1s (t) =

⎛
⎜⎝ 1√

2
+ |d0|2	(2)

3/2(t)√
2

− 1√
2

− |d0|2
(

1
3 	

(2)
3/2(t)+ 2

3 	
(2)
1/2(t)

)
√

2

⎞
⎟⎠ Y00R1s . (D3)

We calculate the expectation value of the orientation of both
systems due to the action of light (e±

x ,e±
y ,e±

z ) with the help of
Pauli matrices σα (α stands for x,y,z) as follows:

e±
α =

〈
�x±

1s (t)
∣∣σα

∣∣�x±
1s (t)

〉
∣∣�x±

1s (t)
∣∣2 . (D4)

Substituting ψ
↑
1s(t) for (1/

√
2)[1 + |d0|2	(2)

3/2(t)] and ψ
↓
1s(t) for

(1/
√

2){1 + |d0|2[ 1
3 	

(2)
3/2(t) + 2

3 	
(2)
1/2(t)]}, the components of

the vectors e+ and e− are

e+
x = −e−

x = 1

2

ψ
↑
1s(t)ψ

↓∗
1s (t) + c.c.

|ψ↑
1s(t)|2 + |ψ↓

1s(t)|2
,

e+
y = −e−

y = 1

2

i[ψ↑
1s(t)ψ

↓∗
1s (t) − c.c.]

|ψ↑
1s(t)|2 + |ψ↓

1s(t)|2
, (D5)

e+
z = e−

z = 1

2

|ψ↑
1s(t)|2 − |ψ↓

1s(t)|2
|ψ↑

1s(t)|2 + |ψ↓
1s(t)|2

.

Thus, the projections of the two spins on the xy plane are
opposite, and the projections on the z axis are equal. This
example shows that although two equal antiparallel spin
systems were collinear, the action of circularly polarized light
led to the deviation from their initial state by different angles.
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