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Neutron scattering study of the magnetic microstructure of nanocrystalline gadolinium
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We report grain-size-dependent results on nanocrystalline bulk Gd obtained by magnetic small-angle neutron
scattering (SANS) and magnetometry. This approach allows one to study systematically how the magnetic
microstructure of this rare-earth metal is affected by defects in the atomic microstructure, which are largely
present in nanocrystalline materials, predominantly in the form of grain boundaries. The neutron scattering data
reveal two types of angular anisotropies in the magnetic-field-dependent scattering cross section that are typically
not seen in the coarse-grained polycrystal. In particular, a cloverleaf-shaped anisotropy and an elongation of the
scattering pattern in the direction of the applied magnetic field have been detected. While the first result, which
is an exceptional finding even in the nanocrystalline state, can be attributed to pronounced spin disorder in the
vicinity of the Gd grain boundaries, the second anisotropy is related to spin misalignment due to the random
magnetocrystalline anisotropy within the individual crystallites. Furthermore, we have calculated the correlation
function of the spin misalignment from the radially averaged data, which gives access to the characteristic
length scales on which the magnetization is perturbed by crystal defects. The results of this real-space analysis
independently support the findings from magnetometry and field-dependent SANS. Wide-angle x-ray diffraction
data indicate that stacking faults may limit the range of spin-misalignment fluctuations due to random anisotropy
in this material.
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I. INTRODUCTION

Nanostructured ferromagnetic solids receive strong interest
in fundamental and applied science due to the fact that reducing
the size of the microscopic building blocks of such systems
strongly influences their macroscopic magnetic behavior. The
impact of structural details, such as the shape of individual
particles or the character of interfaces on the overall materials
properties, is found to be equally high.1–3 In bulk magnetic
nanomaterials, microstructural defects are largely present
in the form of internal interfaces, such as phase or grain
boundaries. The core region of these defects is characterized
by lattice distortions and reduced crystal symmetry, which
may lead to a local variation of the materials parameters. In
this study, we focus on the role of such lattice imperfections
for the magnetic behavior of the rare-earth element Gd.

The magnetism of Gd originates from the strongly localized
electronic spins of the 4f shell, which are indirectly coupled
via the Ruderman-Kittel-Kasuya-Yosida interaction.4 Due to
the absence of a 4f angular momentum, Gd exhibits a
comparatively low magnetocrystalline anisotropy and thus
takes a prominent position among the rare-earth elements.5

As opposed to most other heavy rare-earth elements, Gd
does not possess a helical antiferromagnetic phase and orders
ferromagnetically below 293 K.6 Despite a long tradition of
research on Gd, there is still a strong interest today not only in
the nature of the phase transition7–10 but also in questions
related, e.g., to the electronic band structure of Gd,11,12

the magnetothermal properties,13,14 and the origin of the
magnetocrystalline anisotropy.15 Furthermore, the importance
of microstructure, in particular, the impact of interfaces and/or
confinement on the magnetic properties of Gd, has been
explored with increasing intensity.16–23

In order to relate the overall magnetic properties of a sample
to its microstructure, it is vital to understand how lattice defects
such as grain boundaries affect magnetism on a microscopic
scale. Therefore, we have performed magnetic small-angle
neutron scattering (SANS) measurements on polycrystalline
Gd with an average crystallite size of about 20 nm in the
as-prepared state. Such specimens are characterized by a high
volume fraction of grain boundaries and a random orientation
of the crystallographic axes of the individual crystallites.18 Due
to the extraordinarily high absorption cross section of natural
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Gd for thermal and cold neutrons, only very few neutron
scattering studies on Gd exist,24–28 mostly on single crystalline
160Gd. This low-capturing isotope has also been employed for
the current SANS measurements. Despite the necessity to use
this rather expensive material, the SANS method is virtually
without alternative for obtaining the required information since
it is able to probe the magnetic structure in the bulk of a
sample (as opposed to surface-sensitive methods) and on the
highly relevant micromagnetic length scale between about
1 and 100 nm. The first results on a nanocrystalline 160Gd
sample with an average grain size of 21 nm have been reported
in Refs. 29 and 30. As it is of great interest to investigate
how changes in the atomic microstructure are reflected (i)
in the magnetic microstructure and (ii) in the macroscopic
magnetic properties, we provide here grain-size-dependent
SANS data on nanocrystalline Gd. The SANS measurements
are complemented by the results of classical magnetometry.

This paper is organized as follows: In Sec. II we briefly
summarize the experimental details of the present study.
Section III provides an introduction to basic theoretical aspects
of magnetic SANS as referred to in the following sections.
In particular, these relate to the differential scattering cross
section of a ferromagnetic solid and the correlation function of
the spin misalignment. In Sec. IV we present the experimental
results as obtained by the different methods, followed by
a discussion of the data. This includes a microstructural
characterization by x-ray diffraction, temperature-dependent
magnetometry, and substantial grain-size-dependent SANS
results. Section V summarizes the main findings of this study.

II. EXPERIMENT

The nanocrystalline Gd samples have been prepared by
the inert-gas condensation (igc) method, as described, e.g., in
Ref. 31. In the igc process, Gd metal is evaporated from a
tungsten boat under a He atmosphere (99.999% purity) at a
pressure of 2 mbar. The resulting nanoparticles are collected
on a cold finger and compacted in situ at 1.4 GPa, yielding
disk-shaped samples with a diameter of 8 mm, a thickness of
0.2–1.0 mm, and a mass density of 98%–99% (determined
by the Archimedes method) as compared to the single-crystal
value.6 Average grain size D and inhomogeneous microstrain
ε were estimated from wide-angle x-ray diffraction data by
means of Williamson-Hall analysis.32,33 Typical values of
these parameters in the as-prepared state are D = 15–25 nm
and ε = 0.3%–0.6%. Coarsening of the grain structure was
induced by annealing the specimens in a He-filled quartz tube.
Further details on sample preparation and characterization
can be found in Ref. 18. The magnetization measurements
were carried out on a Quantum Design Physical Properties
Measurement System (PPMS) extraction magnetometer.

The samples for the SANS experiments were prepared by
employing the low-capturing isotope 160Gd as starting mate-
rial. The residual absorption cross section of σa = 641 barns,
as estimated from the atomic concentration of the individual
isotopes (0.2 at. % 155Gd, 156Gd, and 157Gd; 0.8 at. % 158Gd;
and 98.6 at. % 160Gd),34 ensured a sufficiently high sample
transmission τ , which is a prerequisite for the application of
the SANS technique.35 Over most of the applied magnetic field

range, the experimentally determined transmission shows very
good agreement with the calculated values of τ = 18% and
τ = 14%, assuming a purely absorption-based transmission.
As may be expected, the measured τ decreases at low magnetic
fields, in accordance with an increased (magnetic) scattering
contribution to the total attenuation of the primary neutron
beam.36

The SANS experiments were performed at HZG Research
Center Geesthacht, Germany, and at Paul Scherrer Institut,
Switzerland, using an incident mean neutron wavelength of
λ = 6.0 Å with a wavelength broadening of �λ/λ = 10%
(FWHM). The data were corrected in the usual way for
background scattering, detector efficiency, and solid-angle
distortion and normalized to absolute units by means of a
vanadium standard sample.37,38

III. THEORETICAL BACKGROUND

A. SANS cross section

As a versatile and powerful bulk method for the investiga-
tion of structural inhomogeneities on the scale of a few to a
few hundred nanometers, the small-angle scattering technique
is used for a wide range of problems, and we refer the reader
to Refs. 39 and 40 for a general introduction. In this section,
we focus on special aspects of magnetic SANS, as discussed
in Ref. 41.

Using a Cartesian coordinate system with ex along the axis
of the incident neutron beam and ez along the external magnetic
field H, the elastic differential SANS cross section d�/d� of
a ferromagnet at scattering vector q reads41

d�

d�
(q) = 8π3

V
[|Ñ |2 + b2

H |M̃x |2 + b2
H |M̃y |2 cos2 θ

+ b2
H |M̃z|2 sin2 θ−b2

H (M̃yM̃
∗
z +M̃∗

y M̃z) sin θ cos θ ].

(1)

In Eq. (1), V is the scattering volume, bH = 2.7 × 10−15m/μB

(μB is the Bohr magneton), and Ñ , M̃x , M̃y , and M̃z

denote, respectively, the Fourier transforms of the nuclear
scattering-length density and of the Cartesian components
of the magnetization. The asterisk (∗) refers to the complex
conjugated quantity, and θ is the angle between q and H.
Note that in addition to the intrinsically anisotropic nature
of magnetic neutron scattering, which enters the SANS cross
section via the trigonometric functions in Eq. (1), the Fourier
coefficients of the nuclear and magnetic scattering-length
densities depend explicitly on the scattering vector q, which
may also give rise to an anisotropic SANS signal.

B. Correlation function of the spin misalignment

The autocorrelation function of the spin misalignment can
be defined as42

C(r) = 1

M2
SV

∫ ∫ ∫
MP (x)MP (x + r)d3x, (2)

where MP (x) = M(x) − 〈M〉 is the difference between the
local magnetization vector M(x) and the macroscopic mean
magnetization 〈M〉. C(r) is related to the radially averaged
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spin-misalignment scattering cross section d�M/d� by42

C(r) = a

2π2b2
mρ2

ar

∫ ∞

0
q

d�M

d�
(q) sin(qr)dq. (3)

Here, a is a numerical factor involved in the orientation
average, ρa denotes the atomic density, and bm = bH μa (with
μa being the atomic magnetic moment) is the atomic magnetic
scattering length. As an approximation to d�M/d� at a
particular magnetic field, we have subtracted d�/d� at the
highest field of μ0Hmax = 5 T from the cross section at
H < Hmax. This procedure also allows one to estimate the
scattering contributions due to terms in Eq. (1) that contain
M̃x and M̃y .43 A measure for the characteristic length scale
over which perturbations in the spin structure decay is given
by the correlation length lC , which can be defined as the value
of r at which C(r) = C(0)/e. Here, C(0) denotes the value of
the correlation function at r = 0.44 Alternative approaches for
the extraction of a correlation length lC from C(r) data can be
found, e.g., in Refs. 30 and 45.

The accessible range of scattering vectors in the SANS
experiments was limited to 0.02 nm−1 � q � 1.5 nm−1. It is
a well-known result of the theory of Fourier transformation
that the maximum value of the momentum transfer qmax

limits the resolution in real space to �r � π/qmax
∼= 2 nm

and that the size of the largest structure in the system is
roughly given by rmax � π/qmin

∼= 150 nm.39 The correlation
function C(r), Eq. (3), was obtained by means of direct
Fourier transformation within rmin = 2π/qmax

∼= 4 nm and
rmax. For the numerical computation of C(r) (in order to
reduce termination effects), the experimental scattering data
beyond qmax were extrapolated to infinity using Porod‘s law,
d�M/d� ∝ q−4, and the extrapolation from qmin to q = 0
was carried out using different schemes (linear and constant).
Likewise, in order to estimate the uncertainties in the values
of the correlation lengths, we have tested different procedures
(limiting cases) for subtracting the SANS data at the highest
experimental magnetic field of 5 T from the measurements at
lower fields.

In principle, one may use Glatter’s indirect Fourier-
transformation method39 for the computation of C(r). How-
ever, this technique, which has been originally developed
for particle scattering, requires the rather precise knowledge
of the maximum particle size.39 Since the magnetic SANS
investigated in this study has its origin in continuously
varying magnetic-field-dependent magnetization profiles (no
sharp boundaries), we have employed the direct Fourier
transformation technique for obtaining rough information on
the characteristic real-space length scales.

IV. RESULTS AND DISCUSSION

While the measurement of the macroscopic magnetization
reduces the information contained in the magnetic microstruc-
ture of a sample to a single volume-averaged scalar value, the
SANS method gives access to a vastly richer set of data, i.e.,
to the Fourier spectrum of correlated spatial magnetization
fluctuations. However, due to the experimental limitations of
a SANS instrument, the real-space information that can be
obtained is restricted to a range between a few and a few
hundred nanometers. Consequently, classical magnetization

FIG. 1. X-ray diffraction scan of nanocrystalline 160Gd (average
grain size D = 21 nm).

measurements that complement the SANS data have been
performed (see Sec. IV B). The results of the microstructural
characterization by means of x-ray diffraction are summarized
in the following section.

A. X-ray diffraction

As a standard method for the characterization of fine-
grained materials with respect to crystallite size, inhomoge-
neous microstrain, or stacking-fault densities, x-ray diffraction
(XRD) is widely used since it allows both fast and nondestruc-
tive measurements.33,46 Figure 1 shows the XRD scan of an
as-prepared nanocrystalline 160Gd sample. All peak positions
are found to be consistent with hcp Gd. Furthermore, the
relative intensities agree well with the fact that these samples
are isotropic polycrystals, as was previously found from
texture measurements.47 Details of the sample characterization
regarding grain size and microstrain can be found in Refs. 18
and 32. In the case of nanocrystalline Gd, stacking-fault
densities are difficult to access from a conventional XRD scan,
as data evaluation of the Warren-Averbach type is hindered by
a considerable background and tight peak positions. Therefore,
in order to be able to estimate values for the stacking-
fault densities α and β, corresponding to deformation faults
and growth faults, respectively, we have adapted a method
described by Warren46 based on the FWHM breadth of selected
peaks (see Appendix B). The results of the XRD analysis for
the two 160Gd samples employed in the SANS measurements
are summarized in Table I. A significant stacking-fault density
with respect to the experimental uncertainty was only detected
in sample B. Furthermore, large values for the inhomogeneous
microstrain ε are found in both samples.

B. Magnetometry

Grain-size-dependent magnetization isotherms of Gd at
T = 5 K are displayed in Fig. 2(a). It is seen that a reduction
of the grain size D results in a considerable decrease of
the macroscopic mean magnetization with respect to the
coarse-grained state; e.g., at μ0H = 1 T, we find a relative
reduction of about 20% for the smallest grain size of 14 nm.
Even at fields as high as 9 T, the effect of nanocrystallinity on
the macroscopic magnetization is still significant. By stepwise
annealing the nanocrystalline samples to the coarse-grained
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TABLE I. Results of the XRD analysis of the nanocrystalline
160Gd samples A and B used for the neutron experiments. Coarsening
of the grain microstructure of sample B was induced by annealing
at temperatures Ta = 150◦C (sample denoted as B’) and 200◦C
(B”). The quantities α and β denote deformation and growth faults,
respectively.46 The average distance between two faults (in nm) has
been estimated as Lα = d002/α and Lβ = d002/β, respectively, where
d002 is the distance of adjacent atomic layers in the c direction.6,48 In
the last two columns, the results for the average grain size D and the
microstrain ε are listed.

α (%) β (%) Lα Lβ D (nm) ε (%)

A 2.1 ± 2.7 1.5 ± 3.8 14 19 21 0.45 ± 0.22
B 0.9 ± 0.9 3.7 ± 1.4 32 8 25 0.35 ± 0.08
B’ 1.2 ± 1.4 1.9 ± 1.9 24 15 35 0.09 ± 0.01
B” −0.2 ± 0.3 1.2 ± 0.5 24 95 0.06 ± 0.01

state, we “recover” the single-crystal saturation magnetization
value of μ0MS = 2.69 T, and a scaling law for the relative
magnetization reduction �M/M ∝ D−1 is found (see Fig. 3).
This is particularly remarkable since the volume fraction of
grain boundaries follows approximately the same grain-size
dependence.49 In Appendix A we give an estimation for
�M/M based on the assumption of a reduced magnetization
within the grain-boundary phase, which yields the above D−1

(a)

(b)

FIG. 2. (Color online) (a) Grain-size-dependent magnetization
isotherms of Gd at T = 5 K. The coarse-grained reference sample
was obtained by annealing from the nanocrystalline as-prepared state.
(b) Hysteresis loops of the D = 33 nm sample for temperatures of
T = 5, 100, 200, and 300 K. Lines are guides to the eyes.

FIG. 3. Relative reduction �M/M := (Mcg − Mnc)/Mcg (dots)
of the macroscopic magnetization as a function of the average grain
size D at μ0H = 9 T and T = 5 K (data taken from Ref. 30). Note
that D is displayed on a reciprocal scale.

law. Note that density fluctuations are (i) too small to provide
a quantitative explanation and (ii) do not contribute to �M/M

as shown in Fig. 3 since the mass magnetization was used
(see Appendix A). Therefore, we suggest that incomplete
saturation due to spin disorder within the grain-boundary
region may be responsible for the observed D−1 behavior. In
other words, these results indicate the presence of a reduced
effective magnetization in the grain-boundary phase, which
may, e.g., be a consequence of competing or frustrated
interactions between the 4f moments. The estimated value
for the relative reduction of the grain-boundary magnetization
(at 9 T) with respect to the bulk of the grains amounts to 26%.

The effect of temperature on the hysteresis loop is displayed
in Fig. 2(b) for a grain size of D = 33 nm. The data exhibit the
usual reduction of remanence and coercivity with increasing
temperature. As may be expected from the single-crystal
value TC = 293 K for the Curie temperature of Gd,6 the data
measured at the highest temperature T = 300 K do not show
a hysteresis. Note also that TC is additionally shifted toward
lower T in the nanocrystalline material.18

A detailed measurement of the coercive field HC as a
function of temperature (see Fig. 4) shows a local minimum
between 10 and 20 K for grain sizes of 14 and 33 nm, which

FIG. 4. Grain-size and temperature dependence of the coercive
field HC of Gd. Lines are guides to the eyes.
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is seen to vanish with coarsening of the grain microstructure.
Regarding the grain-size dependence of HC , it is seen that,
below about 175 K, the coercivity is strongly reduced with
increasing grain size. At higher temperatures (e.g., at 250 K),
HC initially increases with increasing grain size, goes through
a maximum, and then decreases again when the sample is
further annealed to the coarse-grained state.

The results of magnetometry presented in this section show,
first of all, that nanocrystallinity has a strong impact on the
magnetization isotherm of Gd. This becomes particularly clear
from the observed dependence of the coercive field and the
macroscopic magnetization on the average crystallite size.
The variation of HC with temperature essentially reflects
the characteristics of the magnetocrystalline anisotropy. An
averaging of the anisotropy of the individual grains caused
by exchange coupling, as reported in some nanocrystalline
soft magnetic materials,50 may be present in nanocrystalline
Gd at small grain sizes and temperatures between 200 K and
TC , as one can conjecture from the grain-size dependence
of coercivity (see Fig. 4). However, the well-known TC shift
in nanocrystalline Gd with grain size may also account for
this effect.18 The reduction of the macroscopic magnetization
in the nanocrystalline material at magnetic fields up to 9 T
and low temperature and, in particular, its variation according
to �M/M ∝ D−1 indicate the special role of the grain
boundaries as a dominant source of spin disorder since this
scaling law is characteristic for the volume fraction of atoms
located in the core regions of grain boundaries. The notion of
grain-boundary-induced spin disorder is supported by recent
experimental51 and theoretical52 studies.

The question of how the presence of grain boundaries or
other lattice imperfections affects the spin structure of Gd
on a microscopic scale is discussed in the next section in the
context of the SANS results. The major advantage of such data
is the sensitivity of the SANS method to the magnetic-field-
dependent arrangement and spatial extension of perturbations
of the magnetization caused by the individual microstructural
defects.

C. Small-angle neutron scattering

While the nuclear scattering of a texture-free polycrys-
talline solid only depends on the magnitude and not on the
direction of the scattering vector q, the macroscopic scattering
cross section d�/d� of a magnetic material generally contains
both isotropic and anisotropic terms [see Eq. (1)]. The two-
dimensional (2D) detector pattern reflects the superposition
of these usually field-dependent contributions. Therefore, as
shown in the following section, some characteristics of the
underlying spin structure can be inferred immediately from a
visual inspection of the 2D data.

1. Anisotropy of the SANS pattern

Figure 5 shows the 2D SANS cross section at T = 5 K for
several applied magnetic field values. At 5 T, intensity maxima
perpendicular to the field direction are found [Fig. 5(a)], which
is a common result for the SANS of ferromagnetic materials
near the saturated state.40,41 The distinctiveness of this feature
is related to the ratio of magnetic to nuclear scattering,
which turns out to be comparatively high in nanocrystalline

(b) (c)(a)

FIG. 5. (Color online) Total SANS cross section of nanocrys-
talline 160Gd at T = 5 K and at applied magnetic field values as
indicated (logarithmic scale). H is oriented vertically in the detector
plane; pixels in the corners correspond to q values of 1.0 nm−1 in (a)
and (b) and 0.2 nm−1 in (c). The central part of the detector with the
beam stop has been masked.

160Gd, in agreement with the large atomic magnetic moment
μa = 7.63μB, the moderate nuclear scattering length (see
Sec. IV C 2), and the low residual porosity of the samples
(see Sec. II).

At low fields, the scattering pattern is elongated along the
field direction [see Fig. 5(c)]. Such a result is not only less
usual than the above, but it also deserves particular attention
as this type of anisotropy has been observed previously in the
SANS of other nanocrystalline ferromagnets at quite different
magnetic fields.41,42,53 In zero field, the scattering is essentially
isotropic [see Fig. 5(b)]. Note that the anisotropy of the SANS
cross section may also depend on q, as will be discussed later
in this section.

Particularly remarkable results for the 2D SANS cross
section are found at intermediate fields. As shown in Fig. 6 for
an applied field of μ0H = 300 mT (measured at T = 78 K), a
cloverleaf-shaped anisotropy with intensity maxima roughly
along the detector diagonals is superimposed on the other
scattering contributions. This feature can be seen even more
clearly in the difference pattern, when the scattering at the
highest field is subtracted.29

These results can be understood in terms of the theoretical
expression for the SANS cross section of a ferromagnet given
by Eq. (1). Comparing the experimental cross section at
5 T with Eq. (1) shows that the so-called residual scattering
d�/d� ∝ Ñ2 + M̃2

z sin2 θ dominates in this field range [see
Fig. 5(a)]. In particular, the term ∝ sin2 θ dominates the
visible anisotropy, which is related to spatial fluctuations of the
magnetization component parallel to the field direction via the
Fourier coefficient M̃z. For low fields, the spin-misalignment
scattering becomes more important, and the term ∝ cos2 θ

provides a major contribution to the scattering pattern, which

FIG. 6. (Color online) Total SANS cross section (logarithmic
scale) at T = 78 K for an applied magnetic field of μ0H = 0.3 T
(vertical in the detector plane). Pixels in the corners correspond to a
q value of 0.3 nm−1.
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(a) (b)

(c) (d)

FIG. 7. Normalized total scattering intensity I/I0 at T = 78 K as a function of the angle θ between the scattering vector and the applied
magnetic field (μ0H = 300 mT), where I0 denotes the maximum intensity. I/I0 is shown at q = 0.2 nm−1 for grain sizes of (a) D = 21 nm,
(b) D = 35 nm, and (c) D = 95 nm, as well as for (d) a coarse-grained reference. Solid lines are a fit to spherical harmonics Yl,0(θ ) with
l ∈ {0,2,4,6}.

is associated with the presence of My fluctuations [see
Fig. 5(c)]. A comparable magnitude of M̃x and M̃y is
expected due to the statistical isotropy of the samples. In
zero field, the superposition of all contributions adds up
to an essentially isotropic scattering cross section over the
displayed q range [see Fig. 5(b)]. Relating the cloverleaf-type
scattering contribution observed at intermediate fields to the
term ∝ sin θ cos θ seems rather obvious, as this term possesses
the appropriate zeros. As discussed below, this conclusion is
not entirely straightforward, but nevertheless, the observation
of the cloverleaf indicates the presence of a dipole field (e.g.,
due to a jump in the magnetization43), which gives rise to
correlated fluctuations in My and Mz.

In the following it is argued that the cloverleaf pattern
for nanocrystalline Gd can be understood in analogy to the
case of the nanocrystalline two-phase alloy Nanoperm, where
the jump of the magnetization value between the crystalline
Fe particles (volume fraction of 40%) and the surrounding
amorphous matrix gives rise to a dipolar stray field HD , which
was identified as the origin of the unusual cloverleaf-shaped
contribution to the scattering cross section.43 In particular, the
transversal component of the stray field H⊥

D imposes a torque
on the magnetization of the surrounding material, thereby
giving rise to correlated nanoscale spin disorder. Furthermore,
at large applied fields, the response of the magnetization to H⊥

D

is approximately linear and reflects its angular dependency.
The situation in nanocrystalline Gd appears to be somewhat
similar, assuming that strongly localized spin disorder exists
in the grain-boundary regions, leading to a reduced effective
magnetization, which is in line with the magnetometry data.

The grain-boundary volume fraction of about 20% may
therefore play a role similar to the amorphous matrix of
reduced magnetization in Nanoperm, causing the cloverleaf
feature in the SANS cross section. Furthermore, due to the
low residual porosity of the samples under study (see Sec. II),
we do not expect porosity to play a quantitative role for the
cloverleaf pattern here.54

It should be noted that, according to the above argu-
ment, both terms |M̃y |2 cos2 θ and M̃yM̃z sin θ cos θ can be
expected to contribute to the cloverleaf, i.e., giving signals
∝ sin2 θ cos4 θ and ∝ sin2 θ cos2 θ , respectively.43 However,
since it is rather difficult to distinguish these two cases based
on the experimental data and, in the case of nanocrystalline
Gd, not much insight concerning the magnetic microstructure
is expected from doing so, we prefer not to discuss this point
in more detail.

Subsequent to the above qualitative view on the different
anisotropies found in the 2D detector patterns, we focus on
a more quantitative evaluation of the data in the following
paragraph. This allows us, e.g., to verify the presence of
the cloverleaf in the total scattering cross section and to
investigate the grain-size dependence of this unusual scattering
contribution.

Figure 7 shows the evolution of the cloverleaf anisotropy
at μ0H = 300 mT with increasing crystallite size D. The
normalized background-corrected total scattering intensity is
displayed at q = 0.2 nm−1 for D = 21 nm [Fig. 7(a)], D =
35 nm [Fig. 7(b)], D = 95 nm [Fig. 7(c)], and a coarse-grained
reference sample [Fig. 7(d)]. The solid lines are obtained by a
fit using spherical harmonics (guides to the eyes). In Figs. 7(a)
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and 7(b) the cloverleaf is clearly visible, with maxima at about
θ = 35◦, 145◦, 215◦, and 325◦. In Fig. 7(b), additional side
maxima are found at 90◦ and 270◦, indicating that the sin2 θ

contribution is slightly stronger than the cos2 θ term (expected
maxima at 0◦ and 180◦). However, the nuclear and magnetic
scattering that is not related to the cloverleaf adds up to a
mainly isotropic background signal in Figs. 7(a) and 7(b). A
further increase of the grain size results in an overall isotropic
scattering at the displayed values of momentum transfer and
magnetic field. Note that the scatter in the data in Figs. 7(c)
and 7(d) may be related in part to the normalization but is,
in particular, due to the fact that a lower total scattering
intensity is detected at a fixed q value when the grain size
is increased, which reduces the difference between sample
signal and background. However, as the data were recorded
with a good overall statistics (≈106 total detector counts), we
conclude that the cloverleaf cannot constitute a large scattering
contribution at q = 0.2 nm−1 for grain sizes larger than or
equal to 95 nm.

Closer inspection of the data at the same temperature
and field but at q = 0.07 nm−1 reveals that the cloverleaf
is, however, significant at low momentum transfer also for
D = 95 nm (data not shown). Furthermore, the cloverleaf
anisotropy vanishes for D = 35 nm at q � 0.3 nm−1 and
for D = 21 nm slightly above this q value. This suggests
that the respective scattering contribution is significant in the
q range below the reciprocal grain size, i.e., at q � 2π/D.
Consequently, the underlying spin structure appears to be
present on a real-space length scale larger than or equal to
the average grain size. This result, together with the fact that
the cloverleaf was only found in the nanocrystalline state (at
all investigated temperatures of T = 5, 78, and 250 K), is in
line with the above view of strongly localized spin disorder in
the core regions of the grain boundaries as possible origin of
the cloverleaf in nanocrystalline Gd.

In contrast to the cloverleaf anisotropy, the enhancement
of the scattering in the direction of the applied field can be
conveniently characterized by the aspect ratio of the 2D SANS
pattern. As previously mentioned, this sort of anisotropy is a
typical feature of nanocrystalline bulk magnetic materials42,53

and may therefore provide useful information regarding the
magnetic microstructure and the characteristic length scale of
the spin misalignment. Figure 8(a) displays the ratio IP /IS of
the background-corrected SANS signal of nanocrystalline Gd
parallel and perpendicular to the magnetic-field direction at
a fixed value of q = 0.15 nm−1 and T = 78 K, plotted as a
function of the applied field for different grain sizes. Above
300 mT, the intensity ratio lies between 0.2 and 1.0, while
at lower fields values between 1 and 1.4 are found. In this
field range, a considerable grain-size dependence is observed,
where IP /IS is reduced with increasing grain size and becomes
more and more isotropic. At q > 0.5 nm−1, the intensity ratio
takes on values � 1 only, which is shown in Fig. 8(b) for
the example of q = 1.0 nm−1. Furthermore, no significant
grain-size dependence is detected. In Figs. 8(c) and 8(d), the
ratio IP /IS is displayed for D = 21 nm at temperatures of
T = 5, 78, and 250 K. A reduction of the intensity ratio with
increasing temperature is seen in Fig. 8(c) for q = 0.15 nm−1,
in particular, at low and intermediate fields. However, at q =
1.0 nm−1 this is predominantly the case at the highest fields,

while at lower fields the scattering is mainly isotropic for all
temperatures.

Similar to the previously shown 2D data, these results can
be interpreted on the basis of Eq. (1). While at high fields the
dominant scattering is expected to be perpendicular to the field
direction, the situation changes at intermediate and low fields,
and the spin-misalignment scattering becomes important. In
particular, the latter is related to terms proportional to |M̃x |2,
M̃yM̃z sin θ cos θ and |M̃y |2 cos2 θ . Note that the cloverleaf
does not contribute to the data as displayed in Fig. 8. The
existence of correlated magnetization fluctuations in the y

direction is therefore responsible for the enhanced intensity
along H below 300 mT. Such fluctuations are present on a
length scale of about 2π/0.15 nm−1 ≈ 40 nm.

2. Radially averaged data

In order to assess the explicit q dependence of experimen-
tal SANS data, a radial-averaging procedure is commonly
applied.37 The respective scattering curves at zero field and
5 T are shown in Fig. 9 for grain sizes of D = 21, D = 35,
and D = 95 nm [T = 78 K; Fig. 9(a)] and temperature
values of T = 5, T = 78, and T = 250 K [D = 21 nm;
Fig. 9(b)]; it is seen that d�/d� is strongly field dependent
at all grain sizes (e.g., a factor of 23 at D = 21 nm and
q = 0.1 nm−1). The point of the strongest field dependence
shifts toward lower q with increasing D, and the scattering
cross section is enhanced in the low-q regime, while a
decrease is found at large q. The asymptotic exponent z

with d�/d� ∝ q−z ranges from 3.25 (21 nm) over 3.45
(35 nm) to 3.65 (95 nm) in zero field and from 1.9 over
1.8 to 1.5 at 5 T . Comparing the SANS curves at different
temperatures for a grain size of 21 nm [see Fig. 9(b)], little
difference is found between 5 and 78 K. Further temperature
increase to 250 K leads to a reduction of d�/d� by almost
one order of magnitude in zero field. At 5 T the decrease is less
pronounced and takes place predominantly at higher q values.

The observed magnetic field dependence of the SANS cross
section provides further strong evidence for the presence of
nanoscale spin disorder in nanocrystalline Gd, which can
be suppressed by an applied field. The fact that a field
dependence is seen up to the highest available momentum
transfers indicates that perturbations in the magnetization exist
down to a length scale of only a few nanometers, which, as
already discussed in the previous section in conjunction with
the cloverleaf anisotropy, may be related to microstructural
disorder in the vicinity of the grain boundaries.

The radially averaged SANS data at the intermediate
fields as shown in Figs. 9(c) and 9(d) reveal the individual
magnetic field response of spin disorder on different length
scales. It is seen that for both nanocrystalline Gd samples
long-range magnetic disorder is suppressed more effectively
by an applied field than spin disorder on the shorter length
scales. Furthermore, a significant magnetic field effect on the
spin structure on the length scale of a few nanometers (i.e.,
at the largest q) is observed over the entire field range. This
finding is particularly remarkable since basic micromagnetic
considerations suggest that short-range spin disorder is essen-
tially suppressed due to the exchange interaction when uniform
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(a) (b)

(c) (d)

FIG. 8. Applied-field dependence of the ratio IP /IS of the total SANS intensity parallel and perpendicular to H at various combinations of
momentum transfer q, grain size D, and temperature T . Dashed lines show IP /IS = 1 (isotropic scattering). Solid lines are guides to the eyes.

materials parameters are assumed and the influence of grain
boundaries is neglected.41

When comparing the magnetic field effect on the scattering
curve of nanocrystalline Gd with the results of SANS studies
on other nanocrystalline ferromagnets such as Fe, Co, Ni,
and Tb,41,42,54,55 not only the sensitivity of the magnetic
microstructure to the applied field but also the ratio of the
magnetic and nuclear scattering lengths is of importance.
These two quantities have been estimated as bm = 20.6 fm and
bn = (9.12 − i0.18) fm, with the latter based on the isotope
composition of the present samples.34,56 The ratio bm/bn is
comparable to the respective values for Fe, Co, and Tb,34,42,57

while Ni possesses a lower relative magnetic scattering length
than 160Gd. However, the SANS signal of nanocrystalline
inert-gas-condensed Fe, Co, and Ni was found to depend much
less on the applied magnetic field than the data shown in Fig. 9
(see Refs. 54 and 55), while the field effect on nanocrystalline

electrodeposited Co and Ni was significantly larger.48 These
results have been discussed in the context of the significant
porosity of inert-gas-condensed Fe, Co, and Ni samples,
leading to a strong nuclear, i.e., field-independent, scattering
contribution,54 which was not the case for the electrodeposited
samples. Therefore, the strong field effect on d�/d� that is
found for the present 160Gd samples is in line with the low
porosity as determined by the Archimedes method (compare
Sec. II).

Furthermore, the results on the aforementioned Fe, Co, and
Ni samples do not show any magnetic field response for q �
0.3 nm−1 (irrespective of the preparation method), in contrast
to nanocrystalline Tb, for which a variation of d�/d� with
the magnetic field was still detected above q = 1.0 nm−1 (see
Ref. 42). This indicates a general difference regarding the
impact of structural defects induced by nanocrystallinity on the
magnetic microstructure of rare-earth magnets as compared to
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(a) (b)

(c) (d)

FIG. 9. (Color online) (a) Radially averaged total SANS cross section d�/d� of Gd at T = 78 K for different grain sizes D as indicated.
(b) d�/d� for D = 21 nm and at several temperatures. (c) and (d) Magnetic field dependence of d�/d� for D = 21 and 95 nm, respectively,
at temperatures as specified. Solid and open symbols in (a) and (b) correspond to field values of 0 and 5 T, respectively.

the 3d transition metals. While in the latter defect-induced
perturbations of the magnetization decay on comparatively
large length scales, in the former materials strongly localized
spin disorder is found.

In accordance with the above view, the asymptotic behavior
of the scattering cross section in Fig. 9 does not give an indica-
tion for pore scattering, which is usually characterized by a q−4

power law at large momentum transfers q (see Refs. 39 and 54).
This so-called Porod law is generally expected in small-angle
scattering from particle-matrix systems whenever a sharp
interface exists between objects embedded in a matrix with
a different scattering-length density. Furthermore, in classical
small-angle scattering from a scalar scattering-length density
distribution ρ(x), exponents with absolute values smaller than
4 are often associated with continuous or fractal transitions
between regions of different scattering-length densities. On
the other hand, in magnetic SANS from a nanocrystalline

random-anisotropy ferromagnet, one may expect exponents
with an absolute value larger than 4, as was observed, e.g., for
nanocrystalline Ni and Co.41 It should, however, be noted that
the model described in Ref. 41 is based on the assumptions
that (i) the magnetocrystalline anisotropy of the individual
crystallites is the only source of spin disorder and (ii) the
material parameters remain unaltered in the grain-boundary
region. Apparently, this is not a good approximation for the
case of Gd. Moreover, it may be conjectured that the approach
of using micromagnetics theory, which regards the magnetiza-
tion M(x) as a continuous function of position x and assumes
only small deviations of the spin orientation from atom to atom,
reaches its limits for spin disorder on length scales below a few
nanometers (see Refs. 58 and 59). Nevertheless, a quantitative
analysis of the radially averaged SANS data is possible based
on the correlation function of the spin misalignment.42 The
respective results are presented in the following section.
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(a) (b)

FIG. 10. (a) Correlation function C(r) of the spin misalignment of nanocrystalline Gd at T = 5 K. Values of the applied magnetic field are,
from top to bottom (in mT), 0, 10, 30, 100, 300, and 1000. (b) C(r) from (a) on a log-linear scale at 0 mT (open circles) and 100 mT (open
squares). It is seen that the data contain two characteristic lengths scales, as indicated by the dashed lines. Solid lines are a fit to Eq. (4).

3. Correlation function of the spin misalignment

The information on the magnetic microstructure of a sample
in real space that is contained in experimental SANS data can
be accessed in a convenient way by computing the correlation
function of the spin misalignment C(r) based on the radially
averaged scattering cross section [see Eq. (3)]. As shown in
Fig. 10(a) for the case of nanocrystalline Gd, the function
C(r) decays monotonically with increasing distance r . The
numerical value of the correlation function at a given r is
reduced with increasing magnetic field, as correlated spin
misalignment (with respect to the macroscopic magnetization
direction) is progressively suppressed. Two basic parameters
characterizing the spin structure are readily extracted, i.e., the
correlation length lC and the value C(0) (see Sec. III), where
the latter is determined by extrapolation of the C(r) data to
r = 0. In particular, lC is a measure for the distance over
which perturbations in the magnetization decay, and C(0)
represents the volume-averaged mean-square magnetization
fluctuation.42

In Fig. 11(a) the magnetic field dependence of lC is shown
for different grain sizes D. It is seen that at T = 78 K the
correlation length is reduced with increasing field for all grain
sizes. In particular at small field values, lC is increased with
coarsening of the grain microstructure. All values, ranging
from approximately 7 to 17 nm at zero field and from 4 to
6 nm at 1 T, are significantly smaller than the respective grain
size. The lC results at different temperatures are compared in
Fig. 11(b) for D = 21 nm. Between 5 and 78 K no major
changes are found, while at 250 K, after an initial reduction,
the correlation length slightly increases at higher fields.

It is found that the magnetic field dependence of lC
at low and intermediate temperatures (with respect to TC)
qualitatively agrees with the micromagnetic perception that
local microstructural defects give rise to gradients in the
magnetization, which are “transmitted” into the lattice on the
nanometer scale via the exchange interaction.60 Such static

magnetization fluctuations are (with increasing magnetic field)
more and more suppressed, as the Zeeman energy contribution
to the total energy of the system becomes increasingly
important with respect to other terms, such as the exchange
energy or the magnetocrystalline anisotropy energy.58 For
a strongly localized defect, the characteristic range of the
perturbation is given by the exchange length of the field, i.e.,
lC = lH ∝ H

−1/2
i , where Hi denotes the internal field. While

this is a reasonable assumption for some types of defects,
the magnetocrystalline anisotropy of a material is typically
associated with a spatially extended anisotropy field, and in
this case the size L of the defect can be regarded as the average
size of regions with a homogeneous anisotropy field.45 This
view is supported by magnetic-field-dependent SANS data on
nanocrystalline Co and Ni, which showed that the size of the
dominating defect is related to the grain size and to the average
distance between adjacent stacking faults, respectively; in
other words, L corresponds to the size of crystallographically
homogeneous regions in these samples.44 In fact, it was found
that the field dependence of lC obeys the relation lC = L + lH .

A closer inspection of the lC(H ) data in Fig. 11 suggests that
the situation in nanocrystalline Gd is somewhat more complex;
e.g., the functional dependence of lC(H ) at temperatures of
5 and 78 K does not yield quantitative agreement with the
modified micromagnetic model proposed in Refs. 44 and 45
(not displayed), and at 250 K an apparent qualitative deviation
from the expected behavior is found. Similar results have been
observed in nanocrystalline Tb at 200 K (see Ref. 42). In this
context, the existence of two characteristic length scales was
conjectured. As discussed later in this section, the present C(r)
data also suggest the existence of two characteristic length
scales in the spin structure of nanocrystalline Gd.

The results for the parameter C(0) show a monotonic
decrease with increasing field for all data sets (see Fig. 12). In
Fig. 12(a) the grain-size dependence of the total mean-square
magnetization fluctuation at T = 78 K is displayed. At low
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(a) (b)

FIG. 11. Correlation length lC of the spin misalignment in nanocrystalline Gd as a function of the applied field H : change of lC (a) with
grain size at T = 78 K and (b) with temperature at D = 21 nm. Lines are guides to the eyes.

fields C(0) is slightly enhanced with increasing grain size,
while apparently at higher fields this trend is reversed. The data
measured at different temperatures show little change between
T = 5 and 78 K [see Fig. 12(b)], while considerably reduced
values are obtained at T = 250 K. Note that the calculation of
the correlation function via Eq. (3) involves the magnetic scat-
tering length bm, which contains the temperature-independent
value of the atomic magnetic moment μa = 7.63μB of Gd.
By contrast, the SANS cross section of a ferromagnet depends
on the (temperature-dependent) magnetization. Therefore, the
C(0) values have been scaled with the factor [MS(0)/MS(T )]2

in Fig. 12 in order to facilitate the comparison of the
temperature-dependent results for the total correlated spin
misalignment.

Figure 13 displays the values of the macroscopic magne-
tization of nanocrystalline Gd at T = 5 K calculated from
C(0), together with data obtained by classical magnetometry,
for grain sizes as indicated. It is seen that the values derived
from SANS are considerably larger than the directly measured
volume-averaged magnetization |〈M〉| over the whole field
range, despite the slightly smaller grain size. Since the quantity
C(0) is identical to the mean-square deviation of M from
the macroscopic average magnetization, this discrepancy can
contribute to an understanding of the nature of the spin disorder
in nanocrystalline Gd.

When comparing the two “magnetization curves” in Fig. 13,
it is important to keep in mind the experimental resolution of
the SANS technique. In particular, the real-space range of

(a) (b)

FIG. 12. Extrapolated values C(0) of the correlation function C(r) for r → 0 as a function of H at (a) fixed temperature T = 78 K for
variable grain size D and (b) at fixed grain size D = 21 nm and temperatures as indicated. Lines are guides to the eyes.
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FIG. 13. Normalized magnetization M/MS of nanocrystalline Gd
at T = 5 K as a function of the internal field Hi (using μ0MS = 2.69 T
from Ref. 6). The solid line shows PPMS data for a grain size of
D = 33 nm. Dots show magnetization values calculated from the
correlation function (D = 21 nm) according to M/MS = √

1 − C(0)
(see Ref. 42).

static spin fluctuations that is probed in our SANS experiment
is limited by approximately [2πq−1

max − 2πq−1
min] (i.e., 4–200

nm in the present setup). Therefore, a significant fraction of
the total spin misalignment may not be reflected in the SANS
data. While long-range magnetization fluctuations, at least at
the higher fields, are not likely to contribute much to the total
magnetization reduction, it seems plausible that spin disorder
on a length scale below 4 nm accounts for a major part of the
reduction of the macroscopic magnetization in this material,
in accordance with the considerable field dependence of the
radially averaged scattering cross section at the highest q and
the highest fields (see Sec. IV C 2).

Possible reasons for the observed reduction of C(0) at
T = 250 K are the reduction of TC in the nanocrystalline

state,18 the temperature dependence of the magnetocrystalline
anisotropy,5 or a combination thereof. The grain-size depen-
dence of C(0) is discussed in the following paragraphs.

Although the above data analysis already allows one
to estimate the average range and strength of nanoscale
perturbations of the magnetization, the question needs to be
addressed as to whether these are indeed caused by more than
one type of defect, as previously discussed, and if this is the
case, what is the range and strength of the perturbations caused
by the individual defects. As can be seen in Fig. 10(b), a closer
inspection of the correlation function on a semilogarithmic
scale implies the presence of two characteristic length scales
of the spin misalignment in nanocrystalline Gd with a grain
size of D = 21 nm (see also Fig. 1 in Ref. 30). It also becomes
clear that the above-mentioned value of lC contains both
contributions with individual weights. In order to extract the
two correlation lengths L1 and L2 we have performed a fit of
the C(r) data to the sum of two exponentials,

C(r) = C1 exp (−r/L1) + C2 exp (−r/L2), (4)

subject to the constraint C1 + C2 = C(0). Here, C(0) again
denotes the total mean-square magnetization fluctuation deter-
mined by extrapolation, as described above. Note that choosing
the exponential, although reasonable from micromagnetics
theory,60 is somewhat arbitrary and merely provides a self-
consistent approach to access the desired parameters. How-
ever, it is found that Eq. (4) allows an excellent quantitative
description of the data. In the following, the recent grain-size-
dependent results are presented together with those previously
reported on the nanocrystalline (D = 21 nm) as-prepared
160Gd sample.30

Figure 14 displays the magnetic-field dependence of the
parameters L1 and L2 at T = 78 K for three different grain
sizes. It is seen that the first correlation length L1 is always

(a) (b)

FIG. 14. (Color online) Applied-field dependence of the correlation lengths (a) L1 and (b) L2 for grain sizes as indicated in the legends. L1

and L2 were obtained from a fit of the correlation function C(r) using Eq. (4). Solid lines are guides to the eyes. The dashed line in (b) is the
average distance between stacking faults.
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(a) (b)

FIG. 15. (Color online) Magnetic field dependence of the parameters (a) C1 and (b) C2 at T = 78 K for grain sizes as indicated. In the fit
of the model function [see Eq. (4)] to the C(r) data, C1 and C2 represent the respective weights associated with the correlation lengths L1 and
L2. The two parameters are related by the condition C1 + C2 = C(0). Lines are guides to the eyes.

smaller than L2 and decreases monotonically with increasing
field for all grain sizes. The numerical values in zero field are,
respectively, 6, 7, and 11 nm, whereas at 600 mT all L1 values
are equal to 4 nm within the experimental uncertainty of ±1
nm. The results for L2 do not show a clear trend. Taking into
account the experimental error of ±5 nm, however, a minor
increase with the applied magnetic field is seen, and for larger
grain sizes this correlation length is slightly reduced. Overall,
L2 values between 20 and 35 nm are found.

The results for the respective weights C1 and C2 displayed
in Fig. 15 show a reduction of magnetization fluctuations on
both length scales with increasing field. Furthermore, it is
worth noting that with increasing grain size spin misalignment
with the characteristic length L2 gains importance relative to
fluctuations on the length scale L1, coupled to the weight
C1. This is particularly relevant at the smaller fields, and the
increase of the total mean-square magnetization fluctuation
C(0) with grain size found in that field range (see Fig. 12)
can be attributed to the contribution C2. The errors in C1 and
C2 were estimated as ±0.04 and ±0.006, respectively. Note
that, in accordance with Ref. 30, the data displayed in Fig. 15
have not been scaled to MS(T ). The results at 21-nm grain size
and 5 K are very similar to those at 78 K, apart from a slight
increase in L2 and C2. At 250 K a nonvanishing value for C2

was only found above 300 mT, in agreement with the observed
increase of the overall correlation length lC [see Fig. 11(b)].
The quantities L1 and L2 take on values of 4 and 20–35 nm at
this temperature, respectively.

Neither L1 nor L2 can be described by means of a
micromagnetic model function as proposed in Refs. 44 and 45.
In fact, basic micromagnetic models may not be adequate
for the description of the spin structure of nanocrystalline
Gd since local variations of the spin orientation on a length
scale of about ten times the interatomic distance61 or below
reach the limit of a continuous magnetization vector field
description.59 Furthermore, a deviation from the behavior

described in Refs. 44 and 45 is not surprising since strong
internal magnetostatic stray fields are generally coupled to
such an inhomogeneous nanoscale magnetic microstructure.62

In accordance with the previous results and in view of
the measured numerical values it seems plausible to relate
the characteristic lengths L1 and L2 with the two basic mi-
crostructural defects present in nanocrystalline solids, namely,
the atomic-site disorder associated with the grain boundaries
and the variation of the crystallographic orientation on the
length scale of the grain size, where the latter is associated
with a statistic orientation of the magnetocrystalline anisotropy
(“random anisotropy”). In the case of the grain boundaries, this
notion is immediately consistent with the data. In particular,
the asymptotic value of L1 = 4 nm, which is independent
of the grain size, and the reduction of the contribution C1

to the total spin misalignment with larger crystallite size are
in excellent agreement with this view. The finding that C2

decays much faster than C1 upon application of a magnetic
field and that the latter takes on nonvanishing values for the
higher fields is consistent with the results from magnetometry
shown in Sec. IV B, which also suggest that grain-boundary-
induced spin disorder in nanocrystalline Gd allows only partial
saturation of this material at field values typically available in
a laboratory.

The results for L2, however, do not seem to be in line with
the above picture at first glance. In fact, the values of the second
correlation length of 20–35 nm measured for the annealed
Gd sample are considerably smaller than one can expect for
crystallite sizes of 35 and 95 nm since, according to the
above-mentioned relation lC = lH + L, values larger than or
equal to the average crystallite size should be found. However,
the situation appears to be similar to that in nanocrystalline
Ni, where a correlation length smaller than the crystallite
size was measured, which could be related to the distance be-
tween neighboring stacking faults.48 The stacking-fault density
present in the nanocrystalline 160Gd samples used for SANS
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has been estimated via XRD (for details see Sec. IV A and
Appendix B). A significant growth-fault density β was found
in sample B, which was stepwise annealed. The numerical
values are β = 3.7% in the as-prepared state (no SANS data
available), 1.9% (D = 35 nm), and 1.2% (D = 95 nm). The
respective average distances between neighboring stacking
faults of 15 and 24 nm show reasonable agreement with the
characteristic length L2. In sample A with an as-prepared grain
size of 21 nm, no stacking faults were found within the experi-
mental uncertainty. The results for L2 may therefore be seen as
an indication that in Gd the perturbation of the magnetization
due to the magnetocrystalline anisotropy field is limited to
the range between adjacent stacking faults. Furthermore, an
additional contribution from magnetoelastic coupling to the
total magnetic anisotropy present in a crystalline subdomain
may be conjectured due to the considerable microstrain ε found
in the samples.19,63,64

V. SUMMARY AND CONCLUSIONS

We have investigated nanocrystalline Gd samples of several
grain sizes by means of magnetometry and magnetic small-
angle neutron scattering, where the latter has been facilitated
by the use of the low-capturing isotope 160Gd. As a result of
our study, the grain boundaries have been identified as the
dominant source of spin disorder in nanocrystalline Gd. The
observed difference between the magnetometry data and the
magnetization curve calculated from the SANS cross section
(Fig. 13) suggests strongly localized magnetic disorder on
the atomic scale, a finding that is supported by the grain-
size dependence of the high-field magnetization curves, the
reduction of M being proportional to D−1 (Fig. 3). The
magnetostatic stray field that is associated with the spin
disorder due to the grain-boundary component provides an
explanation for the existence of the cloverleaf anisotropy that is
observed in the SANS pattern at intermediate fields. Our results
indicate that, in the immediate vicinity of the grain boundaries,
correlated spin misorientation on a characteristic length scale
L1 ∼ 4–10 nm exists. Furthermore, a second correlation length
L2 ∼ 20–35 nm was found, characterizing spin misalignment
that is caused by the magnetocrystalline anisotropy within
the individual crystallites (or coherently ordered crystalline
regions), giving rise to an anisotropy of the cos2 θ type in
the SANS cross section. In particular, this becomes relevant
at applied fields below 300 mT. At low fields and for grain
sizes larger than 35 nm the magnetocrystalline anisotropy
accounts for the major part of the correlated spin disorder
in nanocrystalline Gd.
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APPENDIX A: ESTIMATION OF THE CONTRIBUTION
OF A LARGE VOLUME FRACTION OF GRAIN

BOUNDARIES TO THE MAGNETIZATION OF A
POLYCRYSTALLINE FERROMAGNET

In this section we provide an estimate for the relative
reduction of the magnetization �M/M := (Mcg − Mnc)/Mcg

of a polycrystal as a function of the average crystallite
size D. In particular, we consider the case of a lowered
magnetization MGB within the grain boundaries, as compared
to the bulk of the grains.65 The quantities Mcg and Mnc

represent, respectively, the volume-averaged magnetizations
of the coarse-grained and the nanocrystalline material. We
start out by assuming that the total magnetic moment m of
the saturated sample is composed of a contribution mX due
to the bulk of the crystallites and of a part mGB due to the
grain-boundary component, i.e., m = mX + mGB. The vector
character of the magnetic moment is not considered here,
as we focus on the saturated state.66 The total volume V is
written as the sum of VX and VGB, where the volume of the
grain-boundary “phase” is expressed as VGB = AGBδ, with
AGB being the total interface area and δ denoting an effective
grain-boundary thickness. By using the stereological identity
AGB/V = 2/LA,49,67 where LA denotes the area-weighted
mean column length of the crystallites, we obtain for the
grain-size-dependent magnetization

m

V
= MX

(
1 − 2δ

LA

)
+ MGB

2δ

LA

. (A1)

By identifying the grain-size-independent magnetization
Mcg with MX = mX/VX and Mnc with Eq. (A1), the final
expression for �M/M reads

�M/M = 2δ

LA

(
1 − MGB

MX

)
. (A2)

Both expressions yield the expected result for a vanishing
volume fraction of interfaces, i.e., for LA → ∞. Note also that
the influence of triple lines and quadruple-point junctions has
been neglected. This seems permissible since both defects are
expected to be relevant in nanocrystalline materials for LA �
5 nm.68 Furthermore, we do not take into account the effect
of grain-boundary excess volume since a constant volume is
used.69 However, it is readily verified by a similar derivation
that the expressions obtained here are equally valid for the
mass magnetization (i.e., the magnetic moment of a sample
normalized to its mass). In particular, since the mass of a
sample is invariant with respect to the grain size, changes in
density, e.g., due to changes in grain-boundary excess volume,
do not contribute to the mass magnetization.

By further assuming that the shape of the crystallites is
spherical and that their sizes are lognormally distributed with
a typical width of σ = 1.7 (see Ref. 67), we can express LA =
2/3 exp(− ln σ 2)D ∼= 0.5D in terms of the (volume-averaged)
mean grain size D, which is obtained from the analysis of wide-
angle x-ray diffraction data. The ratio of the grain boundary to
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bulk magnetization is then obtained as

MGB

MX
= 1 − �M

M

D

4δ
. (A3)

Using D = 21 nm, δ = 1 nm, and �M/M = 5%, we obtain a
volume fraction of grain boundaries of roughly 20%, and the
relative reduction of the grain-boundary magnetization MGB

with respect to the bulk of the grains amounts to 26%.

APPENDIX B: ESTIMATING THE STACKING-FAULT
DENSITY OF NANOCRYSTALLINE HCP MATERIALS

FROM XRD USING FWHM DATA

In a hexagonal-closed-packed (hcp) lattice two different
types of stacking faults are generally distinguished, which
may be referred to as deformation and growth faults.46,70 In the
following, the respective stacking-fault densities are denoted
as α and β.

In contrast to the fcc crystal, the diffraction pattern of a hcp
structure does not show relative peak shifts due to stacking
faults. Furthermore, the analysis of general size broadening
(including the one caused by stacking faults) based on the
Warren-Averbach method, which is, in principle, applicable
to hcp diffraction data,71 requires a high accuracy in the foot
region of the peaks and is thus complicated by the strong peak
overlap in nanocrystalline hcp materials. Therefore, we have
chosen an alternative approach via the conveniently accessible
FWHM data.

The hcp peak broadening induced by stacking faults B0
2θ

can be related to the Miller indices (hkl) of the respective
lattice planes by

B0
2θ = (360/π2) tan θ |l|(d/c)2(3α + 3β), (B1)

B0
2θ = (360/π2) tan θ |l|(d/c)2(3α + β), (B2)

for even and odd l, respectively, if the condition h − k = 3N ±
1 is satisfied, where N ∈ {0,1,2, . . .} (see Ref. 46). In all other
cases, the respective peak is not affected by stacking faults.
In Eqs. (B1) and (B2), the quantities 2θ , d, and c denote the
scattering angle, the interplanar spacing, and the hcp lattice
parameter in the c direction, respectively. The value of d can,
e.g., be obtained by determination of the peak positions and
subsequent use of the Bragg equation.

A major obstacle for the direct use of Eqs. (B1) and (B2)
on XRD data from nanocrystalline materials is the fact that,
usually, a large fraction of the peak broadening is caused
by the small crystallite size D and in most cases also by a
large degree of inhomogeneous microstrain ε. However, the
respective contributions can be separated, as is illustrated in
the following.

For this purpose, the two parameters D and ε have been
determined by the method of Klug and Alexander,33 using the

FIG. 16. The dots represent the total broadening of the peaks
affected by stacking faults for nanocrystalline 160Gd (sample B,
as prepared). The solid line shows the calculated peak broadening
using Eq. (B3) based on crystallite size and microstrain only; the
employed values D = 25.4 nm and ε = 0.349% were calculated from
the FWHM data of the peaks that are not affected by stacking faults.
The difference between the displayed data points and Eq. (B3) is seen
to agree with the predictions of Eqs. (B1) and (B2) regarding both
sign and absolute value.

experimental data of the peaks that are not affected by stacking
faults, i.e., (100), (002), (110), (200), (112), and (004). Based
on the values for D and ε obtained in this way, the pure
broadening due to D and ε for the peaks affected by stacking
faults, i.e., (101), (102), (103), (201), (202), and (104), can be
calculated in reciprocal space via

δq = 4πK

3D
+

√(
4πK

3D

)2

+ 4ε2q2, (B3)

where q = 4π sin θ/λ denotes the scattering vector and
K = 0.83 is the Scherrer constant for FWHM data.32 The
computed values δq can be subtracted (assuming a Lorentzian
peak profile) from the measured widths of the respective
peaks, which have been previously corrected for instrumental
broadening (see Fig. 16). Note that this approach involves an
approximation insofar as the contribution of microstrain to
the peak shape is assumed to be Gaussian in the Klug and
Alexander analysis.

From the present XRD data on Gd three independent values
for each of the factors 3α + 3β and 3α + β in Eqs. (B1)
and (B2) were extracted, providing an overdetermined set of
equations for the stacking-fault densities α and β. The results
are summarized in Table I.
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