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We apply the plaquette renormalization scheme of tensor network states [Phys. Rev. E 83, 056703 (2011)] to
study the spin-1/2 frustrated Heisenberg J1-J2 model on an L × L square lattice with L = 8, 16, and 32. By
treating tensor elements as variational parameters, we obtain the ground states for different J2/J1 values, and
investigate staggered magnetizations, nearest-neighbor spin-spin correlations, and plaquette order parameters. In
addition to the well-known Néel order and collinear order at low and high J2/J1, we observe a plaquettelike order
at J2/J1 ≈ 0.5. A continuous transition between the Néel order and the plaquettelike order near J

c1
2 ≈ 0.40J1 is

observed. The collinear order emerges at J
c2
2 ≈ 0.62J1 through a first-order phase transition.
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I. INTRODUCTION

The search for exotic states in quantum magnets has been
the topic of intensive research for the past decades. An
extremely important question is when the conventional Néel
order is destroyed, what kind of states can emerge. Frustrated
antiferromagnetic spin systems, where the frustration from
either the lattice geometry, or the presence of competing
interactions, are candidate systems to study these states. It
is proposed that when the Néel order is destroyed by quantum
fluctuations, only short-range correlations will survive, and
the system enters a quantum paramagnetic state which can be
described as a resonant valence bond (RVB) state.1 The RVB
state can either be a valence bond solid (VBS) phase, where
some of the lattice symmetries are broken,2 or a featureless
spin liquid with strong short-range correlations without any
broken spin symmetry.3,4 One archetypical model to study
the effect of frustration from competing interactions is the
antiferromagnetic (AF) J1-J2 Heisenberg model on a square
lattice.3,5–15 The Hamiltonian is given by,

H = J1

∑
〈ij〉

Si · Sj + J2

∑
〈〈ij〉〉

Si · Sj , (1)

where J1 > 0 and J2 > 0 are the nearest-neighbor (NN) and
next-nearest-neighbor (NNN) couplings, and the sums 〈ij 〉
and 〈〈ij 〉〉 run over NN and NNN pairs, respectively. Recent
interests of this model have been revived by the discovery of
Fe-based superconducting materials16 where a weakened AF
order can be described by this model with S > 1/2.17–19

Properties of this model for S = 1/2 in two dimensions
have been studied extensively by a variety of methods, such
as spin wave theory,5 exact diagonalization (ED),6,7,14 series
expansion,12,20–23 large-N expansion,2 functional renormaliza-
tion group,15 Green’s function method,11 projected entangled
pair states,24 etc. It is generally believed that in the region
J2/J1 � 0.4, the ground state (GS) of the model is the Néel
phase with magnetic long-range order (LRO). In the region
J2/J1 � 0.65, spins in the GS are ordered at wave vector

(π,0) or (0,π ), showing so-called collinear magnetic LRO.
The GS in the intermediate region is proposed to be a quantum
paramagnet without magnetic LRO, but the properties of
this phase are still under intensive debate. There are several
proposals for the GS, such as a columnar dimer state,21,24 a
plaquette VBS order,8,13,25 or a spin liquid.3,4 In the meantime,
precise determination of the phase transition points is also
not conclusive. Earlier series expansion studies21 estimate
the quantum paramagnetic region is between 0.38 � J2/J1 �
0.62. A recent ED study14 using results of up to N = 40 to
perform finite-size extrapolation estimates the transition points
at J

c1
2 � 0.35J1 and J

c2
2 � 0.66J1. Meanwhile, studies by a

combination of random phase approximation and functional
renormalization group find this nonmagnetic phase begins near
J2/J1 ≈ 0.4 ∼ 0.45 and ends around 0.66 ∼ 0.68.15

Numerical studies of frustrated quantum spin systems
present great challenges in dimensions greater than one. The
ED method is hampered by the limitation of system size
one can simulate. At present, the largest system size on the
square lattice that can be simulated is N = 40.14,26 Due to
the minus sign problem,27 the powerful quantum Monte Carlo
(QMC) method is not applicable to highly frustrated systems.
In one dimension, the density matrix renormalization group
(DMRG)28 algorithm, which generates matrix product states
(MPS), can reach very high accuracy even for frustrated spin
systems; however, direct extension of the algorithm to higher
dimensions remains difficult. One promising proposal is to
generalize the MPS to higher dimensions, the tensor network
states (TNS),29–31 which can serve as potential candidates for
studying these systems. In the TNSs, the matrices are replaced
by tensors of rank corresponding to the coordination number
of the lattice. On a two-dimensional (2D) square lattice, the
tensor T s

ijkl(σs) on site s has four indices, in addition to
the physical index, which in the current case corresponds to
the z-component σs of a spin. Although there are both NN
and NNN interactions in the Hamiltonian [Eq. (1)], we should
mention that the rank of tensors in a TNS is chosen according
to the coordination number of each physical lattice site.29 In
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this way, the area law of entanglement entropy is satisfied
by construction. If the bond dimension D is large enough,
the many-body wave function represented by a TNS should
capture the entanglement in the ground state and thus gives a
good approximation of the ground state.

Contracting over all bond indices gives the wave function
coefficient for a given spin state σ1, . . . ,σN .32–34 In these tensor
network-based methods, one of the major obstacles is the
computational complexity involved in the tensor contraction,
then usually some type of approximation is required to
make the computation manageable. Several schemes have
been proposed to facilitate the contraction of the tensor
networks.32–36 In particular, a contraction scheme based on the
plaquette renormalization with auxiliary tensors is proposed
to retain the variational nature of the method, and it is shown
that for the transverse Ising model, even with the smallest
possible bond dimension (D = 2), non-mean-field results can
be obtained.34

In this paper, we use the TNS with the plaquette renor-
malization scheme to study the J1-J2 Heisenberg model on a
square lattice. We find that even with a small bond dimension
D = 2, it already provides a useful way to study the nature of
the transition and estimate the value of the transition points.
The rest of this paper is organized as follows. In the following
section, we review the plaquette renormalization scheme of
TNS, and how to apply the scheme to the current model.
Main results will be presented in Sec. III, as well as some
discussions. Sec. IV will give a brief summary.

II. METHOD

We investigate the ground state of frustrated Heisenberg J1-
J2 model on a square lattice, using the plaquette renormalized
tensor network.34 The trial wave function is written as

|�〉 =
∑
{σ }

tTr
(
T

σ1
1 ⊗ T

σ2
2 · · · )|σ1σ2 · · ·〉, (2)

where tTr indicates the tensor trace that all the tensor indices
are summed over. Ts is rank-4 tensor on site s, with bond
dimension D for each rank and σs =↑ or ↓ is the physical
spin state.

Explicit contraction of the tensor network is computa-
tionally intensive. To keep the computational complexity
from growing exponentially, auxiliary rank-3 tensors An

ijk are
added to each level of the contraction process (Fig. 1); each
transforms and truncates a pair of indices. A sequence of
plaquette renormalizations, n = 1,2, . . ., is carried out and
the bond dimension of each rank is thus kept constant after
every plaquette contraction.34 In order to compute physical
expectation values based on a TNS, one has to contract the
tensors of a bra and ket state over their physical (e.g., spin)
indices in addition to the bond indices of the tensors. Normally,
one would first construct the double tensors by performing the
sum over the physical indices,

T s
abcd =

∑
σs ,σ ′

s=↑,↓
T s∗

i2j2k2l2
(σ ′

s)T
s
i1j1k1l1

(σs), (3)

where the labels a,b,c,d is a suitable combination of the
indices of the bra (T s∗) and ket (T s) tensors [i.e., a =
i1 + D(i2 − 1), etc.] In the calculation of the matrix element

(a)

(b)

FIG. 1. (a) Direct contraction of four connecting rank-4 tensors
T with bond dimensions D results in a new tensor T ′ with bond
dimensions D2. (b) Plaquette renormalized tensor contraction via
additional auxiliary rank-3 tensors A with bond dimensions D. The
resulting tensor T ′ has the same bond dimension D as the original
tensor T .

〈�|Ô|�〉 of some operator involving one or several sites,
similar tensors are constructed for the sites at which operators
act weighted with a local expectation value 〈σ ′

s |Ôs |σs〉. In
addition, the renormalization double tensors can be also
formed,

An
abc = An∗

i2j2k2
An

i1j1k1
. (4)

The bond dimension of each rank in the resulting double tensor
becomes D = D2. This renormalization scheme reduces the
maximum computational complexity34 to D8 = D16 for a
double tensor network.

The ground-state wave function can be obtained by op-
timizing the elements of tensors T ,A for the ground–state
energy. Since the plaquette renormalization is introduced at the
wave-function level, instead of the constructed double tensor
network, the method remains variational and the final energy
will give an upper bound for the true ground-state energy. We
optimize the wave function using the derivative-free Brent’s
method.37 Compared to previous methods involving singular
value decomposition (SVD),32,33 the environment of a given
tensor is fully taken into account in the current scheme.
However, the introduction of the renormalization A tensors
at the wave-function level effectively reduces the maximum
support of the entanglement entropy area law in this tensor
network. To reduce the number of free parameters, we impose
symmetries on the trial wave function. We use a single
plaquette (i.e., 2 × 2 = 4 sites as a unit cell) (Fig. 1), wherein
tensors T on each site and auxilliary tensors A0 are assumed to
be different. This unit is translated to generate a 4 × 4 unit and
another set of auxilliary tensors A1 are added. This procedure is
repeated until the full lattice is generated. Finally, the periodic
boundary condition is applied.34

III. RESULTS AND DISCUSSIONS

We obtain the ground-state wave function by varying the
elements in the tensors T and A with D = 2, which describes
a slightly entangled state beyond the product (mean-field)
state (D = 1). Figure 2(a) shows the ground-state energy
with system sizes L = 8,16, and 32. A clear cusp near

094407-2



SPIN- 1
2 J1-J2 HEISENBERG . . . PHYSICAL REVIEW B 85, 094407 (2012)

(a)

(b)

FIG. 2. (Color online) (a) The ground-state energy per site as a
function of J2/J1. The curves for L = 8 and 16 are shifted up by 0.05
and 0.10 for clarity. (b) The square of staggered magnetization as a
function of J2/J1.

J2/J1 = 0.62 is observed, signaling a first-order phase transi-
tion. A continuous change of the slope is found near J2/J1 =
0.4, probably indicating a continuous phase transition there.

To study the details of the magnetic orders and the transition
points, we compute the magnetic structure factor, or the square
of staggered magnetization at wave vector q, defined as

M2(q) = 1

N2

∑
ij

eiq·(ri−rj )〈Si · Sj 〉, (5)

where ri = (xi,yi), and q = (π,π ) for the Néel order, and
(0,π ) or (π,0) for the collinear order. M2(q) tends to the square
of the order parameter in the thermodynamic limit if there is
magnetic ordering at wave vector q, and scales like 1/N in a
magnetically disordered phase.

Figure 2(b) shows the results of the square of staggered
magnetizations M2(π,π ) and M2(π,0). From the small J2/J1

side, the Néel order is smoothly suppressed as J2 increases,
until J2/J1 � 0.40, where a discontinuous jump of the Néel
order is observed for L = 8, and the jumps become less
pronounced as the system size increases. This strong size
dependence of the jump is another example that in a finite-size
tensor network state with finite bond dimensions, there exists
two energy minima near the transition, rendering the transition

first-order at small N . For a putative continuous transition,
these two minima move closer to each other with increasing
N and the transition becomes continuous at N → ∞.38

From the large J2/J1 side, the collinear order also decreases
smoothly, until J2/J1 � 0.6 where a clear first-order transition
occurs. Unlike the previous case, the jumps in M2(π,0)
remain robust upon increasing N , strongly suggesting against a
continuous transition here. This transition to the collinear order
is consistent with previous numerical calculations.12,14,20–23

We now use our data from different sizes to extract the
order parameters in the thermodynamic limit. This allows us
to estimate the transition points between the Néel/collinear
state and the nonmagnetic (disordered) phase. The finite-
size extrapolation rules for the two-dimensional antiferro-
magnetic Heisenberg model are well known.39–41 Following
Refs. 14 and 41, we define the Néel-order parameter as
m0 = 2 limN→∞ M(π,π ). This normalization is chosen so that
m0 = 1 in a perfect Néel state. The finite-size behavior of
M2(π,π ) is given by14,41

M2(π,π ) = m2
0

4

(
1 + 0.62075 c

ρL
+ · · ·

)
, (6)

where c is the spin-wave velocity and ρ is the spin stiffness.
The order parameter for the collinear order is defined as m1 =√

8 limN→∞ M(π,0). The finite-size behavior of M(π,0) is
given by14,41

M2(π,0) = 1

8
m2

1 + const.

L
+ · · · (7)

The extra 1/2 factor comes from the fact that the ground state
has an extra twofold degeneracy q = (π,0),(0,π ), and this
symmetry is broken in the thermodynamic limit. Figure 3(a)
shows the extrapolated results for m0 and m1 as a function of
J2/J1. We find that the GS near J2/J1 = 0.5 is magnetically
disordered (i.e., both m0 and m1 vanish). Figure 3(b) shows the
finite-size scaling of M2(π,π ) and M2(π,0) at J2/J1 = 0.5,
which both shows a 1/N scaling with the zero intercept as
N → ∞. The transition points are estimated to be J

c1
2 =

0.40J1 and J
c2
2 = 0.62J1, consistent with estimates from series

expansion12,20–23,42 where J
c1
2 ≈ 0.38J1 and J

c2
2 ≈ 0.62J1,

and slightly different from ED results J
c1
2 ≈ 0.35J1 and J

c2
2 ≈

0.66J1.14 Near J
c1
2 , we fit the Néel-order parameter m0 to a

power law m0 ∼ (J2 − J
c1
2 )β , and an asymptotic mean-field

behavior consistent with β = 1/2 is also observed.38 For
J2 = 0, we obtain m0 = 0.592 which is slightly lower than the
best estimate from the quantum Monte Carlo (m0 = 0.6140).43

Although it is also possible to extract c and ρ from our data
based on Eq. (6), it is argued that determination of these
quantities by fitting the prefactors of the leading finite-size
corrections (O(1/L)) cannot reach the same accuracy as the
magnetic order parameters.14

Analogous to how mean-field theory produces symmetry-
broken states, this method can produce solutions which break
spin-rotation symmetry on a finite lattice.34,38 We examine the
spin-rotation symmetry of the ground state, with the focus in
the nonmagnetic phase. Figure 4 shows z and xy components
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FIG. 3. (Color online) (a) Extrapolated order parameters m0 and
m1 as a function of J2/J1. (b) Finite-size scaling of M2(π,π ) and
M2(π,0) at J2/J1 = 0.5, where both order parameters m0 and m1

scale to zero in the thermodynamic limit.

of the square of staggered magnetization at q = (π,π ) for
L = 32, defined as

M2
z (π,π ) = 1

N2

∑
ij

eiπ[(xi−xj )+(yi−yj )]
〈
Sz

i S
z
j

〉
,

M2
xy(π,π ) = 1

N2

∑
ij

eiπ[(xi−xj )+(yi−yj )]〈Sx
i Sx

j + S
y

i S
y

j

〉
.

For reference, the sum of the two is also included. In the Néel
phase, spin-rotation symmetry is clearly broken.34 Increasing
J2 through a phase transition to the strongly frustrated regime
(i.e., 0.45 � J2/J1 � 0.60), the spin-rotation symmetry is
restored with M2

z = 1
2M2

xy = 1
3M2, as expected.

In order to clarify the possible new phase in the highly
frustrated region around J2/J1 = 0.5, we calculate the nearest-
neighbor spin-spin correlations for L = 32. Figure 5 shows the
results for J2/J1 = 0.10, which is deep inside the Néel phase,
and J2/J1 = 0.50, which is in the magnetically disordered
phase. The numbers in black near the bond are the NN spin-
spin correlation, and the thickness of the bond is proportional to
its magnitude. For J2/J1 = 0.50 [Fig. 5(b)], the NN spin-spin
correlations within a single plaquette are much stronger than
those between plaquettes. On the other hand, deep inside

FIG. 4. (Color online) The z(black), xy(red) components of the
square of staggered magnetization and the sum of the two (green) as
a function of J2/J1. (Inset) Same quantities in the region of J2/J1 =
0.45 ∼ 0.65.

the Néel phase J2/J1 = 0.10 [Fig. 5(a)], the NN spin-spin
correlations show a more uniform pattern, although weaker
correlations are present in some bonds between plaquettes.
Overall, it is clear that the correlations inside a 2 × 2 plaquette
become stronger upon increasing J2/J1, which indicates
a possible plaquette order in the magnetically disordered
phase.

We also investigate the plaquette order parameter, which
distinguishes clearly a Néel-ordered phase from a plaquette
order, defined as24

Qαβγ δ = 1
2

(
Pαβγ δ + P −1

αβγ δ

)
= 2[(Sα · Sβ)(Sγ · Sδ) + (Sα · Sδ)(Sβ · Sγ )

− (Sα · Sγ )(Sβ · Sδ)] + 1
2 (Sα · Sβ + Sγ · Sδ + Sα · Sδ

+ Sβ · Sγ ) + 1
2

(
Sα · Sγ + Sβ · Sδ + 1

4

)
. (8)

The results of the plaquette order parameter are shown also in
Fig. 5 (numbers in red italic) for J2/J1 = 0.10 and 0.50. In the
most frustrated region, we observe signature of the plaquette
order. For J2/J1 = 0.50, the plaquette-order parameter is
much stronger within a plaquette, consistent with observation

FIG. 5. (Color online) The NN spin-spin correlations 〈Si · Sj 〉
(black numbers near bond) and the plaquette order parameter (red
numbers in italic) for J2/J1 = (a) 0.10 and (b) 0.50, with system size
L = 32. We show only one corner (4 × 4) of the entire lattice as the
pattern is repeated periodically.
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from the spin-spin correlations. This order parameter is small
in the Néel phase (J2/J1 = 0.10), although some traces of
the plaquette order are still present. This might be due to
the inherent structure of the renormalization scheme, which
explicitly breaks the translational invariance, or possibly the
plaquette correlations already start to build up in this regime.
It remains to further explore whether this plaquette order is
favored due to our renormalization scheme. The plaquette
renormalization scheme reduces the amount of entanglement
support between plaquettes by a factor of D compared with
the exact contraction. This may bias toward those correlations
compatible with the plaquette structure.

IV. CONCLUSION

We use the plaquette renormalization scheme to study
spin-1/2 frustrated Heisenberg J1-J2 model on a square lattice
with different sizes of L = 8,16, and 32. Using the smallest
possible bond dimension D = 2 for the underlying tensors, we
are already able to obtain results beyond the mean-field theory.
Since our method is variational, and the calculations are done
on finite lattices, we are able to perform finite-size scaling to
extrapolate the order parameters in the thermodynamic limit.
We observe signatures of a continuous transition at J

c1
2 �

0.40J1, and a first-order phase transition at J
c2
2 � 0.62J1,

consistent with previous numerical calculations.14,21 Our

calculations on the NN spin-spin correlation and the plaquette-
order parameter indicates a possible plaquette VBS order for
J

c1
2 < J2 < J

c2
2 . The effects of the plaquette renormalization

scheme and the bond dimension D dependence of the physical
observables require further studies and will be presented in a
future work.44,45

Note added. After submitting this manuscript, we recently
learned of the DMRG work by Jiang et al.46 and the tensor
product state approach by Wang et al.47 on the same model,
which argue that the ground state in the nonmagnetic regime
near J2/J1 ∼ 0.5 could be a Z2 spin liquid.
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