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Spin-spin correlation function of the two-dimensional XY model with weak site or bond dilution
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The spin-spin correlation function of the two-dimensional (2D) XY model decays as a power law at all
temperatures below the Berezinskii-Kosterlitz-Thouless transition point with a temperature-dependent exponent
η = η(T/J ) (J is the ferromagnetic coupling strength). It is known from computer experiments that in the 2D
XY model with site or bond dilution this exponent depends on the concentration p of removed sites or bonds
as well. Knowing the slope ∂η/∂p at point p = 0, one can predict the value of the exponent for small dilution
concentrations: η(p) � η(0) + p(∂η/∂p)|p=0. As shown in this paper, the spin-wave Hamiltonian allows one to
obtain exact results for this slope: (∂η/∂p)|p=0 = T/(2J ) + O((T/J )2) and T/(πJ ) + O((T/J )2) for site and
for bond dilution, respectively.
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I. INTRODUCTION

An effect produced by the introduction of structural ran-
domness is perhaps one of the first aspects one would be willing
to investigate once the properties of the model of interest
have been successfully studied on regular structures. While
computer experiment data keep accumulating for diverse
models with structural disorder, this problem is often a real
challenge to the theory.

We consider the two-dimensional (2D) XY model (some-
times referred to as the planar rotator model), whose Hamilto-
nian is traditionally written as

H = −J
∑
〈r,r′〉

cos(θr − θr′ ), (1)

with the sum spanning the pairs of nearest neighbors in a
square lattice of N sites, J > 0 being the coupling strength,
and the polar angle θr representing the only degree of freedom
which can be attributed to a spin of unit length rotating in a
plane.

The 2D XY model is remarkable for its critical properties,
as this particular combination of lattice dimensionality and
spin symmetry leads to the existence of a finite range
of temperatures in which the system exhibits critical-like
behavior [Berezinskii-Kosterlitz-Thouless (BKT) phase];1,2

most notably, the spin-spin correlation function decays as
a power law with a temperature-dependent exponent η =
η(T/J ) below the BKT transition point TBKT.

In the low-temperature limit, where the spin-wave approxi-
mation (SWA) is applicable, i.e., the cosine in the Hamiltonian
(1) can be replaced by a quadratic expression without signif-
icantly affecting the system properties, one arrives easily at
a power-law form of the spin-spin correlation function, R−η,
with an exponent linearly dependent on temperature:3,4

ηSWA = T/2πJ. (2)

It is known, however, that as the temperature increases, the
real exponent increases nonlinearly with temperature, so that
it assumes the exact value of 1/4 at TBKT.5

Given the two both theoretically and experimentally (com-
puter experiment is meant here) acknowledged facts that the
value of the exponent η at the BKT transition point cannot
be changed by structural dilution (see, for example, Ref. 6),

whereas the value of the BKT transition temperature is reduced
by dilution and depends on its concentration,6–8 one can
already make a conclusion that the value of η below the BKT
point should depend not only on temperature but on dilution
concentration as well. It is also clear that η should increase
with dilution concentration for T < TBKT. It can be interpreted
as the increase of effective temperature (decrease of effective
interaction) due to dilution.

A number of works have touched this question, mostly using
computer simulations. For site dilution, when some fraction of
sites is excluded from Hamiltonian (1), see Refs. 8–11; and for
bond dilution, when some fraction of bonds is removed from
(1), see Ref. 6.

The present study logically continues the theoretical part of
Ref. 10, making a significant advance12 and covering both the
site and bond dilution cases. The focus is on the behavior of
the spin-spin correlation function, and the searched quantity
is the dilution concentration p dependent exponent η of the
correlation function power-law decay. It is natural to assume
that the exponent η = η(T/J,p) is an analytic function with
respect to p, away from the percolation threshold. Below, p

will denote the fraction of removed bonds or sites, depending
on what dilution type is considered. Thus, η can be presented
as a power series

η(p) � η(0) + p(∂η/∂p)|p=0 + · · · . (3)

For small dilution concentrations p, it is enough to know the
slope (∂η/∂p)|p=0 to estimate the value of exponent η with
good precision. So, in our derivation we drop terms that lead
to higher order terms in p in Eq. (3).

Being more simple and transparent from the technical
point of view case, bond dilution is considered first in
Sec. II, where the spin-spin correlation function is calculated
up to the contributions linear in dilution concentration p

and temperature T/J . The analogous but more technically
involved derivation for the correlation function of a system
with site dilution can be found in Sec. III. The final results
for the exponent of the spin-spin correlation function of the
systems with site and bond dilution are given, respectively, by
Eqs. (39) and (27) (see Fig. 2).
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II. 2D XY MODEL WITH BOND DILUTION

In this section the case of bond dilution in the 2D
XY model is considered. First, in Sec. II A, the bond
diluted spin-wave Hamiltonian and the procedure of con-
figurational averaging are defined. Then, in Sec. II B,
the spin-spin correlation function is calculated up to
the contributions linear in dilution concentration p and
temperature.

A. Bond diluted Hamiltonian and configurational averaging

Hamiltonian (1) in the SWA and with bond dilution can be
written as

Hb.d. = J

2

∑
r

∑
α=x,y

(
θr − θr+uα

)2
(1 − pr,α), (4)

where ux = (a,0), uy = (0,a) (a is the lattice spacing), and
pr,α = 1 if bond (r,uα) is removed and 0 otherwise (see Fig. 1).
Then, any thermodynamic quantity characterizing the system
will depend on the particular choice of configuration {pr,α} of
the discrete variables.

One is willing to consider here what is often referred to
as quenched dilution, i.e., when there is a fixed fraction p

of removed bonds distributed randomly in the system and
frozen at their position.13 Meaningful physical quantities can
be obtained averaging them over the configurations with a fixed
fraction of removed bonds p. For a large system one might as
well allow all configurations, ascribing them a probabilistic
weight

P ({pr,α}) =
∏
r,α

[(1 − p)(1 − pr,α) + ppr,α]

= (1 − p)
∑

r,α (1−pr,α )p
∑

r,α pr,α , (5)

meaning that a bond is removed with probability p, which
will lead to the fact that only realizations with fraction∑

r,α pr,α/(2N ) � p (2N is the number of bonds in the initial
lattice) of removed bonds will make essential contribution to
the averaged quantities, when N → ∞. It immediately follows
that

pi
r,α = p, pr1,α1 · · · pri ,αi

= pi (6)

[all pairs (r1,α1), . . . ,(ri ,αi) are different], where (. . .) means
averaging with respect to disorder configurations,

(. . .) =
⎛
⎝∏

r,α

∑
pr,α=0,1

⎞
⎠P ({pr,α}) . . . ,

hereafter referred to as configurational averaging.
It is convenient to rewrite Hamiltonian (4) in the Fourier-

transformed variables θk = 1√
N

∑
r eikrθr as

Hb.d. = H0 + H ({pr,α}), H ({pr,α}) ≡
∑
r,α

pr,αHα(r), (7)

where

H0 = −J
∑

k

γkθkθ−k, (8)

with

γk = 2

(
sin2 kxa

2
+ sin2 kxa

2

)
, (9)

is the Hamiltonian of the undiluted system, and

Hα(r) = − J

2N

[∑
k

e−ikr(1 − e−ikαa)θk

]2

. (10)

The sums over k in Eqs. (8) and (10) span the first Brillouin
zone.

The thermodynamic average of some physical quantity A

can be written as

〈A〉 = TrθAe−βHb.d. /Trθ e
−βHb.d. . (11)

Since θk is a complex variable (for k 
= 0), i.e., θk = θc
k + iθ s

k ,
Trθ above means

Trθ =
∫

dθ0

∏
k∈B/2

∫ ∞

−∞
dθc

k

∫ ∞

−∞
dθs

k , (12)

where B/2 stands for a half of the first Brillouin zone excluding
k = 0 (θc

k and θs
k in the other half are not independent due to

the relations θc
−k = θc

k and θs
−k = −θs

k). Note that it is possible
to extend the bounds of integration in Eq. (12) to infinity,
since the functions that stand after the trace are always rapidly
decaying at βJ → ∞.

The configurationally averaged value of 〈A〉 can be obtained
using the Taylor series representations of the exponential and
(1 + x)−1 functions with respect to powers of H ({pr,α}). The
equalities in Eq. (6) easily lead to

Hi({pr,α}) = p
∑
r,α

H i
α(r) + p2

[∑
r,α

∑
r′,α′

]′
i!

2

i−1∑
i ′=1

Hi−i ′
α (r)Hi ′

α′(r′)
(i − i ′)!i ′!

+ · · ·

+pn

[∑
r1,α1

· · ·
∑
rn,αn

]′
i!

n!

i−1∑
i1=1

i1−1∑
i2=1

· · ·
in−2−1∑
in−1=1

Hi−i1
α1

(r1)Hi1−i2
α2

(r2) · · ·Hin−2−in−1
αn−1 (rn−1)Hin−1

αn
(rn)

(i − i1)!(i1 − i2)! · · · (in−2 − in−1)!in−1!
+ · · · , (13)

where [...]′ means that the terms having any coinciding pairs of indexes, ri = rj ,αi = αj , are excluded from the sums enclosed
in brackets. This result will be applied in the next section to calculate the spin-spin correlation function.
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B. Spin-spin correlation function of the bond diluted
2D XY model

The spin-spin correlation function of the XY model
described by Hamiltonian H can be written as

G(R) = Re〈ei(θR−θ0)〉 = Re
Trθ e−βH+i

∑
k ηk(R)θk

Trθ e−βH
, (14)

with

ηk(R) = (e−ikR − 1)/
√

N. (15)

For the undiluted system, Eq. (8), one can write, since θc
−k = θc

k
and θs

−k = −θs
k , using the notations of Eq. (12),

G0(R) = Re Trθ e−2βJ
∑

k∈B/2 γk[(θc
k )2+(θs

k)2]e2i
∑

k∈B/2(ηc
kθc

k−ηs
kθs

k)/

Trθ e−2βJ
∑

k∈B/2 γk[(θc
k )2+(θs

k)2], (16)

where ηc
k and ηs

k denote the real and imaginary parts of ηk(R).
It is straightforward to obtain from the Gaussian integration

G0(R) = exp

⎡
⎣− 1

4βJ

∑
k 
=0

ηk(R)η−k(R)/γk

⎤
⎦ , (17)

here and below sums over k span the entire first Brillouin zone
except the point k = 0.

To obtain the asymptotic behavior of Eq. (17) at R → ∞,
one should use the fact that ηkη−k = 4

N
sin2 kR

2 oscillates
very fast compared to 1/γk and, thus, can be replaced by
its average value 2/N everywhere expect the region close to
the singularity point k = 0. In this region, replacing in the
thermodynamic limit N → ∞ the sum with an integral and
taking the leading terms of the Taylor expansion of sin2 kR

2
and γk, one gets an integrable expression. One arrives at (see,
for example, Refs. 4 and 10 for details)

∑
k 
=0

ηk(R)η−k(R)/γk →
R→∞

2

π
ln

R

a
+ const. (18)

It is easy to see that this asymptotic expression leads to a
power-law decay of the spin-spin correlation function, R−η,
with an exponent given by Eq. (2).

For a system with bond dilution the spin-spin correlation
function is given by Eq. (14) with H = Hb.d., Eqs. (7)–(10).
Applying the scheme of configurational averaging described
in Sec. II A to the correlation function, one is able to collect
the resulting series into the following expression:

G(R) = G0(R)

{
1 + p

∑
r,α

(〈ei
∑

k ηkθke−βHα (r)〉0

× G−1
0 (R)〈e−βHα (r)〉−1

0 − 1
)+ O(p2)

}
, (19)

where the terms of higher order in p are dropped and 〈. . .〉0

denotes thermodynamic averaging with Hamiltonian (8) of the
undiluted system:

〈. . .〉0 = Trθ e
−βH0 . . . /Trθ e

−βH0 . (20)

Now, using the Taylor series representation of an exponen-
tial and the results of Appendix A [Eqs. (A5) and (A4)], one
obtains for Hα(r) given by Eq. (10)

〈e−βHα (r)〉0 = 1 +
∞∑

n=1

(2n − 1)!!

(2n)!!

(
1

2

)n

=
√

2. (21)

[Here and below, (2m)!! ≡ ∏m
i=1 2i, (2m − 1)!! ≡ ∏m

i=1(2i −
1), m = 1,2, . . . , and 0!! ≡ 1.]

In a similar way, using Eqs. (A3) and (A4), and the notation

Iα(r) ≡ 1√
N

∑
k

e−ikr(1 − e−ikαa)η−k/γk, (22)

one arrives at

〈ei
∑

k ηkθke−βHα (r)〉0 = G0(R)

{
1 +

∞∑
n=1

n∑
l=0

(−1)n−l

(2βJ )n−l

× (2n − 1)!!

(2l)!!(2n − 2l)!

(
1

2

)n

I 2(n−l)
α (r)

}
.

(23)

The unity and the term with l = n in Eq. (23) give
√

2 [see
Eq. (21)]. Changing the index n → i = n − l and rearranging
the terms of the infinite series, one has

〈ei
∑

k ηkθke−βHα (r)〉0 = G0(R)

{√
2 +

∞∑
i=1

(−1)i

(4βJ )i
I 2i
α (r)

(2i)!

∞∑
l=0

× (2(l + i) − 1)!!

(2l)!!2l

}
=G0(R)

√
2e

− I2
α (r)
4βJ .

(24)

The Taylor series representation of (1 − x)−n/2,

(1 − x)−n/2 = 1 +
∞∑
l=1

(2l − 2 + n)!!

(2l)!!

n

n!!
xl, (25)

with x = 1/2 and n = 1 and 2i + 1 was used in Eqs. (21) and
(24), respectively.

Now, having Eqs. (21) and (24), one can write the spin-spin
correlation function in the low-temperature limit as

G(R) = G0(R)

{
1 − p

4βJ

∑
r,α

I 2
α (r)

}

� G0(R)e− p

4βJ

∑
r,α I 2

α (r)
. (26)

Noticing that
∑

r,α I 2
α (r) = 2

∑
k ηkη−k/γk, from Eq. (18)

immediately follows a power-law decay of the correlation
function, R−η, with a dilution concentration dependent ex-
ponent

ηb.d.(p) = η(0) + p
T

πJ
+ O(p2) + O((T/J )2)

� η(0) (1 + 2p) , (27)

where η(0) is the exponent of the pure system, Eq. (2).

III. 2D XY MODEL WITH SITE DILUTION

In this section the case of site dilution in the 2D XY

model is considered. In Sec. III A, the site diluted spin-wave
Hamiltonian is defined; then, in Sec. III B, the spin-spin
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correlation function is calculated up to the contributions linear
in dilution concentration p and temperature.

A. Hamiltonian of the 2D XY model with spin vacancies

The spin-wave Hamiltonian of a system with site dilution
differs from that of bond dilution, Eq. (4), in the way that the
four bonds adjacent to each spinless site must be removed, so
the occupation number

pr =
{ 1, if there is no spin on site r,

0, otherwise, (28)

has to be introduced; then,

Hs.d. = H0 + H ({pr}), H ({pr}) =
∑

r

prH1(r), (29)

where H0 is the Hamiltonian of the pure model, Eq. (8), and

H1(r) = −J

2

∑
u

(θr − θr+u)2, (30)

with u = (±a,0),(0,±a), which in the Fourier variables reads
as

H1(r) = J

N

∑
k,k′

e−i(k+k′)rgk,k′θkθk′ , (31)

with gk,k′ = γk,k′ − γk − γk′ [γk was defined in Eq. (9)].
One can notice that expression (29) is not precise when

there are neighboring spin vacancies; in this case, the common
bond between the vacant sites is subtracted from the “pure”
Hamiltonian twice, so it is, in fact, brought back with an
opposite sign. The precise form of H ({pr}) would be

H ({pr}) =
∑

r

prH1(r) +
∑
〈r,r′〉

prpr′H2(r,r′), (32)

where H2(r,r′) = J
2 (θr − θr′ )2. However, it is not only that

the second term in Eq. (32) gives contributions of order of
p2 and higher, after configurational averaging, but it can be
always dropped when considering the spin-spin correlation
function, since any nonphysical extra bonds corresponding to
neighboring spinless sites in Eq. (29) are isolated from the rest
of the system.

B. Spin-spin correlation function of the site diluted
2D XY model

Now, everything said in Sec. II A about the bond dilution
and configurational averaging can be applied to site dilution
as well, with the only difference being that here occupation
numbers pr are defined for each site r, and p = pr �∑

r pr/N is now the fraction (concentration) of removed sites.
Then, dropping the higher order terms with respect to

dilution concentration p, the configurationally averaged cor-
relation function can be written as

G(R) = G0(R)

{
1 + p

∑
r

(〈ei
∑

k ηkθke−βH1(r)〉0

× G−1
0 (R)〈e−βH1(r)〉−1

0 − 1
)+ O(p2)

}
(33)

with ηk given by Eq. (15).

The thermodynamic averages in Eq. (33) can be cal-
culated using the Taylor series expansion: e−βH1(r) =∑∞

n=0[−βH1(r)]n/n!. Then, the problem reduces to the
calculation of the quantity

〈
ei
∑

k ηkθkHn
1 (r)

〉
0 with ηk given

by Eq. (15) and ηk = 0, which is presented in Appendix B.
Looking at the results in Eqs. (B6) and (B8), it is easy to see
that〈

e−βH1(r)〉
0 =

∞∏
i=1

∞∑
l=0

1

l!

(
(−1)i

Ii

2i

)l

= exp
∞∑
i=1

(−1)i
Ii

2i
,

and similarly

〈ei
∑

k ηkθke−βH1(r)〉0 = G0(R) exp
∞∑
i=1

(−1)i
Ii

2i

× exp

⎡
⎣− 1

4βJ

∞∑
j=1

(−1)j I ∗
j

⎤
⎦ .

Explicit expressions for the quantities Ii and I ∗
i are given in

Eqs. (C1)–(C3).
Finally, from Eq. (33),

G(R) = G0(R)

{
1 + p

∑
r

(
e
− 1

4βJ

∑∞
j=1(−1)j I ∗

j − 1
)}

. (34)

Using the result of Appendix C, Eq. (C5), with ηk given by
Eq. (15), one has

G(R) = G0(R)

⎧⎨
⎩1 − 2p + p

∑
r
=0,R

(
e
− π

8βJ
F1(r,R)

× e
− π

8βJ (π−2) F2(r,R) − 1
)⎫⎬⎭ , (35)

where

Fi(r,R) = [Si(x − X,y − Y ) − Si(x,y)]2

+ [Si(y − Y,x − X) − Si(y,x)]2 (36)

(i = 1,2) with the functions S1, S2 defined in Eqs. (D1) and
(D2).

Now, one can expand the exponential function, retaining
only the term linear in 1/βJ :

G(R) = G0(R)

⎧⎨
⎩1 − 2p − p

∑
r
=0,R

(
π

8βJ
F1(r,R)

+ π

8βJ (π − 2)
F2(r,R)

)
+ O((βJ )−2)

⎫⎬
⎭ . (37)

Then, using the asymptotic forms (D4) and (D5), and replacing
the sum with an integral, one can show that when R =√

X2 + Y 2 → ∞, the leading term comes from the integral
which in polar coordinates reads as

1

a2

∫
r
=0,R

drF1(r,R)

= R2

π2

∫
r
=0,R

r dr dϕ

r2(r2 + R2 − 2rR cos ϕ)
+ · · · ,
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� �

�

� �

�

× ×
r                              r
pr,x = 1 pr,x = 0

pr,y = 0 pr,y = 1

FIG. 1. The occupation number pr,α (α = x,y) takes value 1 if
bond (r,uα) is removed and 0 otherwise.

where the integral spans the entire system excluding areas
close to r = 0 and r = R. This integration can be realized as
follows:∫

r
=0,R
dr dϕ →

∫ R−a

a

dr

∫ 2π

0
dϕ +

∫ a
√

N

R+a

dr

∫ 2π

0
dϕ

+
∫ R+a

R−a

dr

∫ 2π−a/R

a/R

dϕ.

There is no difficulty in finding the integrals above, so, finally,
one arrives at

G(R) = G0(R)

{
1 − 2p − p

π

2πβJ
ln(R/a)

}
,

which can be written for small concentrations p and low
temperatures 1/(βJ ) as

G(R) � (1 − 2p)

(
R

a

)−ηs.d.

, (38)

with

ηs.d.(p) = η(0) + p
T

2J
+ O(p2) + O((T/J )2)

� η(0)(1 + πp), (39)

where η(0) is the exponent of the pure system given by Eq. (2).
The factor (1 − 2p) in Eq. (38), which appeared naturally
from the expansion, is the probability to have both sites that
stand in the pair correlation function occupied with spins:
(1 − p)2 →

p→0
1 − 2p.

IV. CONCLUSIONS

The spin-spin correlation function of the 2D XY model de-
cays as a power law at all temperatures below the Berezinskii-
Kosterlitz-Thouless transition point with a temperature-
dependent exponent η = η(T/J ). In the 2D XY model with
site or bond dilution this exponent depends on concentration
p of removed sites or bonds as well. The knowledge of the
slope ∂η/∂p at point p = 0 allows one to predict the value
of the exponent for small dilution concentrations: η(p) �
η(0) + p(∂η/∂p)|p=0. The analytical derivation, performed
here in the low-temperature limit, led to (∂η/∂p)|p=0 = πη(0)
and 2η(0) for site and bond dilution, respectively, where
η(0) = T/2πJ is the well-known result for the model without
dilution. These results are illustrated in Fig. 2.

The positive sign of (∂η/∂p)|p=0 was well expected, since,
as it was mentioned in the Introduction, dilution can be

1

 1.5

2

 2.5

3

 3.5

4

0  0.05  0.1  0.15  0.2  0.25  0.3

η(
p)

/η
(0

)

p

site dil. - MC [10]
site dil. - Eq.(39)

bond dil. - Eq.(27)

FIG. 2. Analytical (lines) and Monte Carlo (squares, site dilution
only) results for the ratios ηs.d.(p)/η(0) and ηb.d.(p)/η(0) (p is the
concentration of missing spins and bonds, respectively). Concerning
the analytical results, one is referred to Eqs. (39) and (27). The Monte
Carlo data are borrowed from Ref. 10 and come from simulations with
the Wolff cluster algorithm at T/J = 0.08.

interpreted as the increase of effective temperature. One might
be tempted to equate the left sides of Eqs. (27) and (39) to
the universal value of η(TBKT) = 1/4 and identify the T in the
right side as the corresponding critical temperatures for site
and bond dilution. Unfortunately, such an estimate of TBKT(p)
as a function of p would not be quantitatively reasonable,
since Eqs. (27) and (39) were obtained in the spin-wave
approximation and do not hold for T close to TBKT(p).

It is worth noting that in order to compare the results
for site and bond dilutions it may be more instructive to
express the concentration of spinless sites, p = (number
of empty sites)/(number of all sites), through the actual
concentration of missing bonds, p′ = [(four bonds)×(number
of empty sites)]/(number of all bonds). (The latter relation
holds, of course, only under the assumption of low dilution
concentration, when the probability to have neighboring
spinless sites is negligible.) Finally, noting that the total
number of bonds in the system is two times the number
of all sites, we have p = p′/2. Then one shall compare the
exponent

ηs.d.(p
′) = η(0)[1 + (π/2)p′] (40)

and Eq. (27) for p′ = p, which means that we look at the
systems with the same number of missing bonds (although
in the case of site dilution all missing bonds are connected
in unbreakable groups of four). One can notice that ηb.d. >

ηs.d. for the same concentration of missing bonds, which is
well expected, since the disordering effect must be stronger
for a completely random distribution of removed bonds in
comparison to the site dilution case when removed bonds
are connected in groups of four, and only these groups are
distributed randomly then.

It also should be mentioned that, in principle, taking higher
order terms in dilution concentration p in Eq. (13), one would
expect to arrive at the end at the correlation function with
exponent η(p) represented by a series in powers of p divergent

094405-5



OLEKSANDR KAPIKRANIAN PHYSICAL REVIEW B 85, 094405 (2012)

at the percolation threshold value p = pperc for the square
lattice [which is exactly 1/2 for bond dilution and � 0.41 for
site dilution (see, for example, Ref. 14)]. It is interesting in that
it might give an exact value for the site percolation threshold
which is not known yet. However, it also might not be possible
to carry out this calculation in an exact way, due to very high
complexity.
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APPENDIX A: EXPRESSION FOR
〈
θk1 . . . θk2n ei

∑
k ηkθk

〉
0

Looking at Eq. (16), it is easy to see that

〈
θk1 . . . θk2n

ei
∑

k ηkθk
〉
0 = (−1)n

22n

∂

∂ηk1

· · · ∂

∂ηk2n

G0(R) , (A1)

where

∂

∂ηk
≡ ∂

∂ηc
k

− i
∂

∂ηs
k

,
∂

∂η−k
≡ ∂

∂ηc
k

+ i
∂

∂ηs
k

. (A2)

Here and below, 〈. . . 〉0 stands for the thermodynamic av-
eraging with the Hamiltonian of the undiluted system, see
Eq. (20).

Noting that ∂ηk
∂ηk′ = 2δk,k′ (δk,k′ is the Kronecker delta)

and establishing some simple recursive relations when taking
sequential derivatives from Eq. (17), one relatively easily
arrives at

〈
θk1 · · · θk2n

ei
∑

k ηkθk

〉
0

= G0(R)
n∑

l=0

(−1)n−l

(2βJ )2n−l

∑
comb(2n,l)

l∏
u=1

δkiu ,−kju

γkiu

×
2n−2l∏
w=1

η−kpw

γkpw

, (A3)

where the sum
∑

comb(2n,l) spans all distinguishable combina-
tions of l pairs (ki1 ,kj1 ), (ki2 ,kj2 ), . . . ,(kil ,kjl

) [combinations
which can be obtained from each other by permutations of
the pairs are not distinguished] which can be formed using
k1,k2, . . . ,k2n. It is instructive to point out that

∑
comb.(2n,l)

1 = (2n)!

(2!)l(2n − 2l)!l!
. (A4)

Note, that when ηk = 0, (A3) gives

〈
θk1 · · · θk2n

〉
0 = 1

(2βJ )n
∑

comb(2n,n)

n∏
u=1

δkiu ,−kju

γkiu

. (A5)

APPENDIX B: CALCULATION OF
〈
ei

∑
k ηkθk Hn

1 (r)
〉
0

To calculate the quantity〈
ei
∑

k ηkθkHn
1 (r)

〉
0 = (J/N )n

∑
k1,...,k2n

e−i(k1+···+k2n)r

×gk1,k2 · · · gk2n−1,k2n

〈
ei
∑

k ηkθkθk1 · · · θk2n

〉
0, (B1)

[gk,k′ was defined after Eq. (31)] one needs the result of the
previous appendix for

〈
θk1 · · · θk2n

ei
∑

k ηkθk
〉
0, Eq. (A3). Each

Kronecker delta from Eq. (A3) deletes one summation index
k′ from the sum in Eq. (B1) and “connects” two k’s belonging
either to one g:

N−1
∑
k,k′

gk,k′δk,k′/γk = N−1
∑

k

gk,−k/γk,

or to two different g’s:

N−1
∑
k,k′

g∗,kgk′,∗δk,k′/γk = N−1
∑

k

g∗,kg−k,∗/γk.

The former will be symbolically represented as �g� and
the latter as g − g. In the same vein, g × η will denote
N−1 ∑

k g∗,kηke
−ikr/γk. Note also, that gk,k′ = gk′,k.

Using Eq. (A3) and the symbolic notations introduced
above, one can write Eq. (B1) as a sum of terms which are prod-
ucts of nonfactorizable “blocks” �g�, �g − g�, . . . ,(η ×
g × η), (η × g − g × η), . . . , etc.:〈

ei
∑

k ηkθkHn
1 (r)

〉
0

= G0(R)
n∑

l=0

(−1)n−l

(2βJ )2n−l

∑
comb(2n,l)

(
�g�

)λ1

× (
�g − g�

)λ2 · · ·
(

�g − · · · − g︸ ︷︷ ︸
l

�

)λl

× (η × g × η)λ
∗
1 · · · (η × g − · · · − g︸ ︷︷ ︸

n

×η)λ
∗
n . (B2)

To each term of the combinatorial sum
∑

comb(2n,l), de-
fined after Eq. (A3), corresponds a certain set of integer
numbers {λ1, . . . ,λl,λ

∗
1, . . . ,λ

∗
n}, λi,λ

∗
i = 0,1,2, . . .. How-

ever, there are many terms corresponding to the same set
{λ1, . . . ,λl,λ

∗
1, . . . ,λ

∗
n}. Determining the number of terms

(combinations of “connections”) in Eq. (B2) which correspond
to any particular set of λ’s, one can use the λ’s as summation
indexes. Using shorter notations

Ii = �g − g − · · · − g︸ ︷︷ ︸
i

�, I ∗
j = η × g − g − · · · − g︸ ︷︷ ︸

j

×η

(B3)
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[for explicit expressions for Ii , I ∗
i the reader is referred to

Eqs. (C1)–(C3)], one arrives at〈
ei
∑

k ηkθkHn
1 (r)

〉
0

= G0(R)(2β)−n

n∑
l=0

(−1)n−l

(2βJ )n−l

⎡
⎣ l∏

i=1

∞∑
λi=0

n∏
j=1

∞∑
λ∗

j =0

⎤
⎦

×δ

⎛
⎝ l∑

i=1

iλi +
n∑

j=1

(j − 1)λ∗
j −l

⎞
⎠ δ

⎛
⎝ n∑

j=1

λ∗
j − (n − l)

⎞
⎠

×�
λ∗

1,...,λ
∗
n

λ1,...,λl
I

λ1
1 · · · I λl

l I ∗
1

λ∗
1 · · · I ∗

n
λ∗

n , (B4)

where δ(x) =
{

1, x=0
0, x 
=0

, and �
λ∗

1,...,λ
∗
n

λ1,...,λl
is the combinatorial factor

given by the number of combinations of connections in the sum
in Eq. (B2) corresponding to the set {λ1, . . . ,λl,λ

∗
1, . . . λ

∗
n}.

The upper possible values of λ’s are finite, of course, for finite
n, but are not important (and so can be put equal to ∞ for
simplicity), since the first Kronecker delta in Eq. (B4) ensures
that altogether one has l connections between g’s and the
second Kronecker delta ensures that one has (n − l) pairs of
η’s; any realizations {λ1, . . . ,λl,λ

∗
1, . . . ,λ

∗
n} that do not fulfill

this condition do not contribute to the sum.
Factor �

λ∗
1,...,λ

∗
n

λ1,...,λl
can be found from a simple combinatorial

analysis: it is given by the number of ways of dividing n

elements g into λ1 and λ∗
1 blocks of one g, λ2 and λ∗

2 blocks
of two g’s, and so on, which is given by (blocks with the same
number of g’s are not distinguished)

n!/[λ1!λ2! · · · λl! λ∗
1!λ∗

2! · · · λ∗
n!

×(1!)λ1 (2!)λ2 · · · (l!)λl (1!)λ
∗
1 (2!)λ

∗
2 · · · (n!)λ

∗
n] ,

times the number of ways of connecting g’s inside every
block. Consider a block of gk1,k′

1
, gk2,k′

2
, . . . ,gki ,k′

i
and count

in how many ways one can interconnect all g’s in it:
�g − g − · · · − g︸ ︷︷ ︸

i

�. The answer will be 2i−1(i − 1)!, which

is the number of permutations i! divided by 2i, since (a) it
is a cyclic structure (so only one ith part of all permutations
give distinct combinations of interconnections, others are their
repetitions) and (b) the combination of connections is not
changed by inversion of the g’s’ order (hence only one-half
of the permutations must be counted), and multiplied by 2i ,
since every g has two k’s by which it can connect. The
same reasoning leads to 2j−1j ! possible combinations of
connections inside a block η × g − g − . . . − g︸ ︷︷ ︸

j

×η, since it

is not cyclic. Eventually,

�
λ∗

1,...,λ
∗
n

λ1,...,λl
= n!

l∏
i=1

[2i−1(i − 1)!]λi

λi!(i!)λi

n∏
j=1

[2j−1j !]λ
∗
j

λ∗
j !(j !)λ

∗
j

. (B5)

Therefore, one has〈
ei
∑

k ηkθkHn
1 (r)

〉
0

= G0(R)
n!

βn

n∑
l=0

(−1)n−l

(2βJ )n−l

l∏
i=1

∞∑
λi=0

1

λi!

(
Ii

2i

)λi

×
n∏

j=1

∞∑
λ∗

j =0

1

λ∗
i !

(
I ∗
i

2

)λ∗
i

δ

⎛
⎝ n∑

j=1

λ∗
j − (n − l)

⎞
⎠ δ

×
⎛
⎝ l∑

i=1

iλi +
n∑

j=1

(j − 1)λ∗
j − l

⎞
⎠ . (B6)

When ηk = 0,

〈
Hn

1 (r)
〉
0 = (2β)−n

⎛
⎝ n∏

i=1

∞∑
λi=0

⎞
⎠ δ

(
n∑

i=1

iλi − n

)
,

×�
0,...,0
λ1,...,λn

I
λ1
1 · · · I λn

n , (B7)

and hence

〈
Hn

1 (r)
〉
0 = n!

βn

n∏
i=1

∞∑
λi=0

1

λi!

(
Ii

2i

)λi

δ

(
n∑

i=1

iλi − n

)
. (B8)

APPENDIX C: CALCULATION OF II AND I∗
I

The sums Ii and I ∗
i , introduced in Appendix B, Eq. (B3),

can be written as

Ii = 1

N

∑
k

Ĩi−1(k, − k)/γk, (C1)

and

I ∗
i = 1

N

∑
k,k′

Ĩi−1(k,k′)
η−kη−k′

γkγk′
e−i(k+k′)r∗

(C2)

(i � 1) with

Ĩi(k,k′) = 1

Ni

∑
k1,...,ki

gk,−k1gk1,−k2 · · · gki−1,−ki
gki ,k′

γk1 · · · γki

(C3)

for i � 1 and Ĩ0(k,k′) = gk,k′ . One can notice the obvious
recursive relation

Ĩi+1(k,k′) = 1

N

∑
k∗

Ĩi(k, − k∗)gk∗,k′/γk∗ . (C4)

In the thermodynamic limit, one can replace the sum
1
N

∑
k over the first Brillouin zone with the integral

a2

(2π)2

∫ π/a

−π/a
dkx

∫ π/a

−π/a
dky , and then, noticing that

a2

π2

∫ π/a

0
dkx

∫ π/a

0
dky

sin4 kxa

2

sin2 kxa

2 + sin2 kya

2

= 1

π

and

a2

π2

∫ π/a

0
dkx

∫ π/a

0
dky

sin2 kxa

2 cos2 kxa

2

sin2 kxa

2 + sin2 kya

2

= a2

π2

∫ π/a

0
dkx

∫ π/a

0
dky

sin2 kxa

2 sin2 kya

2

sin2 kxa

2 + sin2 kya

2

= 1

2
− 1

π
,
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one can show that

1

N

∑
k′

gk,−k′gk′,k′′/γk′

=
(

1 − 2

π

)
gk,−k′′ − 1

π
(gk,−k′′ + gk,k′′)

+
(

1

2
− 1

π

)
γkγk′′ ,

1

N

∑
k′

gk,k′gk′,k′′/γk′ =
(

1 − 2

π

)
gk,k′′ − 1

π
(gk,−k′′ + gk,k′′ )

+
(

1

2
− 1

π

)
γkγk′′ ,

and

1

N

∑
k

gk,k′ = −γk′ .

Then, it is easy to see that

Ĩi(k,k′) = Aigk,(−1)ik′ + Bi(gk,−k′ + gk,k′) + Ciγkγk′ ,

with coefficients Ai , Bi , and Ci obeying the recursive relations

Ai+1 =
(

1 − 2

π

)
Ai,

Bi+1 = − 1

π
Ai +

(
1 − 4

π

)
Bi ,

Ci+1 =
(

1

2
− 1

π

)
(Ai + 2Bi) − Ci ,

and A0 = 1, B0 = 0, C0 = 0. Thus,

Ai =
(

1 − 2

π

)i

,

Bi = − 1

π

i−1∑
j=0

(
1 − 4

π

)j (
1 − 2

π

)i−1−j

= −1

2

[(
1 − 2

π

)i

−
(

1 − 4

π

)i]
,

Ci = (−1)i−1

(
1

2
− 1

π

) i−1∑
j=0

(−1)j
(

1 − 4

π

)j

= 1

4

[
(−1)i−1 +

(
1 − 4

π

)i]
.

Finally, one can obtain expressions for Ii and I ∗
i and find

that
∞∑
i=1

(−1)iI ∗
i

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
N

∑
k,k′

([
π
4 − π

4(π−2)

]
gk,−k′ − [

π
4 + π

4(π−2)

]
gk,k′

)
× η−kη−k′

γkγk′ e−i(k+k′)r, if
∑
k,k′

η−kη−k′e−i(k+k′)r = 0;

∞, otherwise.

(C5)

APPENDIX D: FUNCTIONS S1(A,B) AND S2(A,B)

In this Appendix one finds the asymptotic form for the
functions

S1(A,B) = 1

N

∑
k

sin kxa

2 cos kxa

2∑
α=x,y sin2 kαa

2

sin Akx cos Bky , (D1)

S2(A,B) = 1

N

∑
k

sin2 kxa

2∑
α=x,y sin2 kαa

2

cos Akx cos Bky , (D2)

where the sums span the first Brillouin zone. It turns out that
simple analytic expressions can be obtained, assuming that at
least one of the arguments A,B is large. Using the integral15∫ ∞

0

cos x

x2 + a2
dx = π

2|a|e
−|a|, (D3)

one can show that

S1(A → ∞,B) = a

π

∫ π/a

0
dkye

−A 2
a

sin
ky a

2 cos Bky

× sinh
(
2 sin kya

2

)
2 sin kya

2

� a

π

∫ π/a

0
dkye

−Aky cos Bky,

and

S1(A,B → ∞) = a

π

∫ π/a

0
dkxe

−B 2
a

sin kx a
2 sin Akx

× cos
kxa

2
� a

π

∫ π/a

0
dkye

−Bkx sin Akx.

So,

S1(A,B) = a

π

A

A2 + B2
, (D4)

when at least one of its arguments A,B is sufficiently large.
In a similar way one can show that

S2(A,B) = a2

2π

B2 − A2

(A2 + B2)2
, (D5)

if at least one of its arguments A,B is sufficiently large.
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