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Quantum deflagration and supersonic fronts of tunneling in molecular magnets
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The theory of magnetic deflagration taking into account dipolar-controlled spin tunneling has been applied to
the realistic model of molecular magnet Mn12Ac. At small transverse field, the front speed v has tunneling maxima
on the bias field Bz, reflecting those of the molecular spin’s relaxation rate calculated from the density-matrix
equation. At high transverse field, spin tunneling directly out of the metastable ground state leads to front speeds
that can exceed the speed of sound. Both for the weak and strong transverse fields, the spatial profile of the
deflagration front near tunneling resonances shows a front of tunneling that triggers a burning front behind it.
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I. INTRODUCTION

Burning or deflagration,1,2 a self-supporting phenomenon
that can exist in the form of propagating fronts, is a decay of
metastable states, controlled by the temperature increasing as a
result of the energy release and heat conduction toward the cold
region before the front. The main ingredient of deflagration
is the decay rate � of the metastable state that has the
Arrhenius form � = �0 exp[−U/(kBT )] at low temperatures
T � U , where U is the energy barrier. One could ask if
deflagration can exist in magnetic systems, many of which
are bistable due to a strong uniaxial anisotropy that creates
an energy barrier between the two energy minima. However,
the energy release in magnetic systems is much weaker than
in the case of a regular (chemical) deflagration, thus, at room
temperatures, the ensuing temperature increase is too small to
change the relaxation rate and support burning. The situation
changes at low temperatures, however, since temperature
generated by the decay of metastable states can exceed the
initial temperature by far and result in a strong increase
of �. Recently, magnetic deflagration has been observed
in low-temperature experiments on the molecular magnet
Mn12Ac.3,4 This discovery initiated theoretical5 and further
experimental6–8 work. Magnetic deflagration has also been
observed on manganites.9 Very fast-moving fronts of burning
in Mn12Ac initiated by a fast sweep of the magnetic field
have been observed in Ref. 10. This leads to the idea of
magnetic detonation driven by thermal expansion creating a
shock wave.11,12

The main exponents of magnetic deflagration, molecular
magnets, are built of molecules with a large effective spin,
such as S = 10 in Mn12 and Fe8. Their uniaxial anisotropy D

creates the energy barrier DS2 � 67 K for spin rotation13,14

(see Ref. 15 for a review). Molecular magnets made quite a
big splash by the discovery of resonance spin tunneling,16–18

which occurs when spin energy levels on different sides of the
barrier match. This is controlled by the bias created by the
longitudinal magnetic field. Magnetic molecules in molecular
magnets form a crystal lattice (body-centered tetragonal for
Mn12Ac). As magnetic cores of the molecules are shielded
by organic ligands, there is no exchange interaction between
the molecules in the crystal, and the dipole-dipole interaction
(DDI) is dominating. Different members of the Mn12 family
remain in the center of magnetic deflagration research because

of the elongated shape of the crystals. To the contrast, Fe8

crystals have pyramidal shape, inappropriate for studying
moving fronts.

The impact of spin tunneling on deflagration in molecular
magnets has been addressed in Refs. 4, 5, and 19. Since
no transverse magnetic field was applied in experiments
so far, tunneling via low-lying states was negligibly small.
Thus, quantum effects in deflagration could only exist due
to thermally assisted tunneling20,21 via the energy levels just
below the top of the barrier. This effect can be taken into
account as effective lowering of the barrier U at resonant
values of the bias.22 Peaks of the deflagration front speed
versus longitudinal magnetic field (Fig. 4 of Ref. 4) have been
interpreted as spin tunneling. The simplest way to explain these
peaks was to use the escape rate � with the effective barrier
U in the standard formula for the speed of the deflagration
front [Eqs. (10) and (11)] with ṽ = 1 (dashed line in Fig. 4 of
Ref. 4). For higher bias and thinner crystals, observed speed
maxima were much weaker (Fig. 5 of Ref. 6 and Fig. 3 of
Ref. 7), which created a controversy.

At the same time, there was a quest for an essentially
quantum mechanism of deflagration in molecular magnets that
does not reduce to mere barrier lowering in the thermally
activated escape rate. As a further development, fronts of
spin tunneling (dubbed “cold deflagration”) controlled by the
dipolar field at zero temperature have been proposed.23,24 This
mechanism requires a strong transverse magnetic field that
creates a sufficiently large tunnel splitting � between the
metastable ground state and an excited state on the other side
of the barrier. The idea is that the dipolar field created by the
sample produces a bias on magnetic molecules (spins), which
is typically large in comparison to �, thus the dipolar field can
control tunneling. As tunneling of one spin changes dipolar
fields on other spins, facilitating or preventing their tunneling,
the problem is self-consistent. It was shown that there are
solutions in which the spatial distribution of magnetization
and dipolar field is adjusted in such a way that there is
a moving front of spin tunneling with many spins in the
front core being on resonance, which allows them to tunnel
efficiently. This so-called laminar front has been found for
not too large values of the external bias. For a larger bias,
it breaks down, resulting in a slow nonlaminar front where
most spins are off resonance.24 Fronts of cold deflagration
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exist within the dipolar window of the external bias, having
the width equal to the dipolar field B(D)

z = 52.6 mT produced
by a uniformly magnetized molecular magnet.25,26 In addition
to the transverse field, observation of fronts of tunneling in
pure form requires a good thermal contact between the crystal
and its environment, so that released heat gets conducted away
and the temperature remains low.

If the crystal of a molecular magnet is thermally insulated,
spin tunneling in a biased case leads to release of Zeeman
energy and the temperature increase. In this case, both spin
tunneling and thermal activation can play a role, so that
deflagration is controlled by two parameters: dipolar field
and the temperature. The combined quantum-thermal theory
of magnetic deflagration has been proposed in Ref. 27. In
contrast to the pure cold deflagration, where in the case of
overdamped tunneling it is sufficient to use the Lorentzian
form of the tunneling rate near the resonance [Eq. 12 of
Ref. 24], here one needs the numerically calculated escape
rate �(Bz,T ) for both resonant and nonresonant values of Bz.
This escape rate has been calculated from the density-matrix
equation28 based on the universal spin-phonon interaction.29,30

To contrast with the pure cold deflagration that leaves some
metastable magnetization unburned behind the front, the
combined deflagration leads to complete burning, as the
standard magnetic deflagration. This flattens out irregularities
of nonlaminar fronts and makes them move faster, reaching
high speeds at the right end of the dipolar window (see Fig. 4
of Ref. 27).

Reference 27 used the generic model of a molecular magnet
with the anisotropy of the form −DS2

z . In this model, tunneling
resonances of all levels take place at the same value of Bz:

Bz = Bk = kD/(gμB), k = 0,±1,±2, . . . (1)

and, nontrivially, the resonances remain unchanged if trans-
verse magnetic field is applied. In the real Mn12Ac, there is
an additional term −AS4

z that makes resonances of different
levels be achieved at different values of Bz. The latter was used
to experimentally monitor the transition between thermally
assisted and ground-state tunneling in Mn12Ac.31,32 Splitting
of tunneling resonances should manifest itself in experiments
on magnetic deflagration, and studying related phenomena is
one of the aims of this work.

Another aim of this work is to explore the high-speed
regime of magnetic burning near the ground-state resonance
at high transverse fields. As the speed of fronts of tunneling
should be much higher than that of the standard burning fronts
driven by heat conduction, burning in these fronts should
be independent of the thermal diffusivity, which resembles
detonation. To study this regime, more accurate numerical
calculations on longer crystals have to be performed.

The rest of the paper is organized as follows. In Sec. II,
equations describing deflagration with dipolar-controlled spin
tunneling are set up and the method of their solution is
outlined. Section III introduces the relaxation rate of magnetic
molecules that is calculated with the help of the density-matrix
formalism and contains the effects of both thermal activation
and spin tunneling. Section IV presents numerical results for
the front speed in weak transverse fields. Section V is devoted
to the case of a strong transverse field, where ground-state

tunneling leads to supersonic front speeds. The concluding
section summarizes the results obtained and outlines unsolved
problems.

II. EQUATIONS OF DEFLAGRATION WITH SPIN
TUNNELING AND DIPOLAR FIELD

The system of equations describing deflagration with
quantum effects in molecular magnets27 consists of the rate
equation for the metastable population n,

∂n(t,z)

∂t
= −�[Btot,z(z),T (z)][n(t,z) − n(eq)(T )], (2)

and the heat conduction equation that can be conveniently
written for the thermal energy E per magnetic molecule

∂E(t,z)

∂t
= ∂

∂z
κ

∂E(t,z)

∂z
− �E

∂n(t,z)

∂t
. (3)

It is assumed that the crystal has an elongated shape and
everything depends only on the coordinate z along the
geometrical axis of the crystal. The easy axes of magnetic
molecules are also directed along this axis, which was the
case for all experimentally studied crystals.3,4,6–8,26 In Eq. (2),
�(Bz,T ) is the numerically computed relaxation (escape) rate
of magnetic molecules’ spins out of the metastable state with
the spin pointed to the left when a longitudinal external
field is applied in the direction to the right. n(eq)(T ) is the
thermal-equilibrium population of the metastable state that is
small in the case of a large bias and will be discarded. In Eq. (3),
κ is thermal diffusivity that proves to be difficult to measure.
Estimations3 yield κ ∼ 10−5 m2/s (comparable to that of
metals), which will be adopted here. The second term in this
equation is the source term, in which �E is the energy released
by transition of one molecular spin from the metastable state
to the ground state |−S〉 → |S〉, that is, �E = 2SgμBBz.
The relation between the energy E and temperature is given
by

E(T ) =
∫ T

0
C(T ′)dT ′, (4)

where C(T ) is the experimentally measured heat capacity of
Mn12Ac per magnetic molecule.33

Since the relaxation rate �(Btot,z,T ) has very sharp maxima
at the resonance values of the total longitudinal field Btot,z, it
is important to include the dipolar field created by the crystal

Btot,z(z) = Bz + B(D)
z (z). (5)

Although the dipolar field B(D)
z is much weaker than the

external field Bz (and thus can be dropped in �E), it is much
greater than the width of tunneling peaks in �(Btot,z,T ), so
that it can control tunneling. It is convenient to represent B(D)

z

in the form

B(D)
z = SgμB

v0
Dzz, (6)

where Dzz is the dimensionless dipolar field, v0 = a2c is the
unit-cell volume, a and c are lattice spacings. For Mn12Ac,
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one has SgμB/v0 = 5.0 mT. For crystals of cylindrical shape
with radius R and length L, one obtains25

Dzz(z) =
∫ L

0
dz′ 2πνR2σz(z′)

[(z′ − z)2 + R2]3/2
− kDσz(z), (7)

where ν is the number of molecules per unit cell, ν = 2
for Mn12Ac, σz = 1 − 2n is polarization of pseudospins
representing spins of magnetic molecules (σz = ±1 in the
ground and metastable states, respectively), and

kD ≡ 8πν/3 − D̄(sph)
zz = 4πν − D̄(cyl)

zz > 0. (8)

Here, the barred quantities correspond to the reduced dipolar
field inside a uniformly magnetized sphere and a long cylinder,
and Dzz = D̄zzσz for σz = const. For Mn12Ac, calculations
yield25 D̄

(sph)
zz = 2.155, D̄

(cyl)
zz = 10.53 [in real units B(D)

z =
52.6 mT (Refs. 25 and 26)], and thus in the local term of Eq. (7),
one has kD = 14.6. One can check that Eq. (7) yields the
correct result for the field inside a long uniformly magnetized
cylinder. At the ends of a cylinder, the dipolar field has the form
Dzz = (D̄(sph)

zz − 2πν/3)σz that for Mn12Ac becomes Dzz =
−2.03σz. The dipolar field opposite to the spin orientation is
the reason for the instability of the uniformly magnetized state
of Mn12Ac that leads to domain formation.34 For other shapes
such as elongated rectangular, one obtains qualitatively similar
expressions.24

It has to be stressed that the results above represent the
dipolar field exactly at the magnetic molecules in the lattice
and they depend on the lattice structure. Using the spatially
averaged field following from macroscopic magnetostatics
would be a mistake. Indeed, the magnetostatic field inside a
long uniformly magnetized cylinder isB(D)

z = 4πM , where the
magnetization is given by M = νSgμB/v0. The dipolar field in
Mn12Ac is essentially smaller, B(D)

z = (D̄(cyl)
zz /2)M = 5.26M .

The difference between the two is due to the local term with
kD in Eq. (7).

A striking feature of Eq. (7) is that the integral and local
terms have different signs. The integral term changes at the
scale of R, while the local term can change faster, which creates
a nonmonotonic dependence of Dzz(z). In the case of a regular
magnetic deflagration, the spatial magnetization profile in the
slow-burning limit is σz(z) = − tanh[(z − z0)/ld ], where ld is
the width of the deflagration front that satisfies ld � R (see
below). The resulting dipolar field is shown in Fig. 1, where
the line is the result of Eq. (7) and points represent the dipolar
field along the symmetry axis of a long cylindrical crystal
calculated by direct summation of microscopic dipolar fields
over the Mn12Ac lattice. One can see that Eq. (7) is pretty
accurate, small discrepancies resulting from ld being not large
enough in comparison to the lattice spacing a. The central
region with the large positive slope is dominated by the local
term of Eq. (7), which changes in the direction opposite to
that of the magnetization. For R ≫ ld , Dzz reaches the values
±14.6 due to the local term before it begins to slowly change
in the opposite direction. In real units, the dipolar field at the
local maximum and minimum is ±B(kD)

z , where

B(kD)
z = 72.9 mT, (9)

exceeding the dipolar field of the uniformly magnetized long
cylinder B(D)

z = 52.6 mT. Also, one can see from Fig. 7 that

FIG. 1. (Color online) Reduced dipolar field in a deflagration
front in the slow-burning limit, created by the magnetization pro-
file σz(z) = − tanh[(z − z0)/ld ]. Solid line: Eq. (7). Points: Direct
summation of dipolar fields over the Mn12Ac lattice.

the dipolar field becomes opposite to the magnetization at the
ends of the cylinder, as mentioned above.

Equations (2)–(7) form a system of integrodifferential
equations describing deflagration with spin tunneling in
molecular magnets, taking into account the dipole-dipole
interaction. Before discussing the numerical solution of
these equations, it is worth recuperating the results of the
standard (“hot”) deflagration and of the cold deflagration. If
the whole released energy remains in the body and the initial
temperature is very low, the thermal energy per spin behind
the front is �E. The corresponding temperature defined by
the inversion of Eq. (4) is the so-called flame temperature
Tf = T (�E), which is in the range 10–15 K in deflagration
experiments. Theory of deflagration yields the expressions
for the speed of the front v and front width ld :

v = ṽ�f ld = ṽ
√

κf �f , ld = √
κf /�f , (10)

where κf and

�f = �0 exp(−Wf ), Wf ≡ U/(kBTf ) (11)

are thermal diffusivity and relaxation rate at the flame
temperature, while ṽ is a dimensionless coefficient. It was
shown5 that in the slow-burning limit Wf 	 1, one has
ṽ ∼= 2/

√
Wf . On the other hand, the speed of the laminar

front of tunneling at zero temperature is given by23,24

v = v∗�resR, (12)

where �res = �2/(h̄2�m′) is the relaxation rate at overdamped
tunneling resonance, �/h̄ � �m′ , �m′ being the decay rate of
the matching level m′ at the other side of the barrier, R is the
width of the crystal (radius of the cylinder in our model),
and v∗ is a dimensionless coefficient. With a sufficiently
strong transverse field applied, one can have �/h̄ ∼ �m′

at the applicability limit of the overdamped approximation,
and then �res 	 �f because thermal activation goes over
high levels of the magnetic molecule, where the distances
between the levels and thus the energies of phonons involved
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are much smaller than for the low-lying levels, and also
because �f is exponentially small since Tf � U . Additionally,
estimation of ld with κf = 10−5 m2/s and the experimental
value �0 = 107 s−1 yield ld ∼ 3 × 10−4 mm for Bz near the
first tunneling resonance and even smaller for larger bias. As in
the experiment, the width of the crystal was much larger than
ld (0.3 mm in Ref. 3, 0.2 mm in Ref. 6, and 1 mm in Ref. 4),
one can see that �resR 	 �f ld is quite possible in a strong
transverse field, and then the front of spin tunneling is much
faster than the front of spin burning. A very conservative esti-
mation with �res ⇒ �0 = 107 s−1 and v∗ ⇒ 1 for the crystal
0.2 mm thick yields v ∼ 1000 m/s. As said above, in a strong
transverse field, one can have �res 	 �0, so that the speed of
a spin-tunneling front can easily surpass the speed of sound
that is about 2000 m/s in molecular magnets (see analysis in
Ref. 35). The results of our calculations confirm this.

Discretization of the variable z reduces Eqs. (2), (3), and
(7) to a system of ordinary differential equations that can be
solved numerically. Very narrow tunneling peaks in �(Bz,T )
make it necessary to carefully control the step in the numerical
integration. Mathematica’s NDSolve proves to be an efficient
tool for this problem. To ignite a deflagration front, the
temperature at the left end of the crystal had been increased
during a short time. Then, the equations were solved and, to
find the front speed, the time of arrival of the front at the right
end of the crystal was measured.

III. RELAXATION RATE

It is crucial to calculate and tabulate the relaxation rate
�(Bz,T ) before solving the deflagration problem because a
runtime calculation of �(Bz,T ) is practically impossible. We
use the effective-spin model with the Hamiltonian containing
the uniaxial anisotropy −DS2

z − AS4
z and other anisotropy

terms, according to Ref. 36. Spin-phonon interaction is taken
into account within the universal model of pure rotations of the
crystal field by transverse phonons described in Refs. 29, 30,
and 37. Since in this model the crystal field is not distorted,
spin-phonon coupling coefficients can be expressed through
the measurable crystal-field parameters. The density-matrix
equation has been solved within the semisecular approxima-
tion that is valid everywhere, including tunneling resonances.28

In the generic model of a molecular magnet with the
anisotropy −DS2

z , the fields corresponding to tunneling
resonances are given by Eq. (1) for all level pairs. The resulting
�(Bz,T ) in a strong transverse field is shown in Fig. 2 of
Ref. 27. Tabulation of such a function requires a lot of points
along the Bz axis in the vicinity of tunneling maxima. The
realistic model with the uniaxial anisotropy −DS2

z − AS4
z is

more complicated because tunneling resonances for different
level pairs are achieved for different Bz that depend on
the transverse field. Thus, the first step is to find tunneling
peaks numerically for a given transverse field, then to build
a nonequidistant grid with a small step near the peaks, then
calculate �(Bz,T ) and, finally, make the interpolation. These
tasks have been fulfilled with the help of Mathematica using a
high custom precision and parallelization.

For a weak transverse field (set to B⊥ = 0.04–0.05 T that
may result from a 1◦ misalignment between the crystal axis
and the longitudinal field), �(Bz,T ) contains a zoo of tunneling

FIG. 2. (Color online) Relaxation rate of Mn12Ac vs temperature
and longitudinal magnetic field in the transverse field B⊥ = 0.04 T.

peaks shown in Fig. 2. The range of Bz here corresponds to that
in Ref. 4 and contains groups of resonances with k = 2,3, and
partially 4. One can see that ground-state resonances, which are
the only survivors at T = 0, are achieved at higher fields than
resonances of excited states. At temperatures as high as flame
temperature, low-lying tunneling resonances are drowned in
the nonresonant background. There is also a much weaker
nonresonant tunneling at T = 0. Relaxation rate at a stronger
bias, also in a small transverse field, corresponding to that in
Refs. 3 and 6–8, is shown in Fig. 3. At such bias, the effect of
ground-state tunneling begins to appear at high temperatures.

In a strong transverse field such as B⊥ = 3.5 T in Fig. 4, the
barrier is strongly lowered and most of tunneling resonances
are broadened away. Here, one can see the ground-state res-
onance (Bz = 0.522), the first-excited-state resonance (Bz =
0.490), and with an effort a very broad second-excited-state
resonance further to the left. Note the much higher tunneling
rate at T = 0, in comparison with the previous figure. The

FIG. 3. (Color online) Relaxation rate of Mn12Ac vs temperature
and longitudinal magnetic field in the transverse field B⊥ = 0.04 T
for a stronger bias.
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FIG. 4. (Color online) Relaxation rate of Mn12Ac vs tempera-
ture and longitudinal magnetic field in the transverse field B⊥ =
3.5 T.

range of Bz in Fig. 4 corresponds to the tunneling resonance
with k = 1. Figure 5 shows the details of the ground-state
peak in Fig. 4. The height and width of this peak increase
with temperature. This increase is moderate, however, in
comparison to the exponential increase of the nonresonant
relaxation rate. The first-excited-state peak in Fig. 4 is higher
than the ground-state peak at the flame temperature, but it
plays a much smaller role in the front propagation, as we will
see in the following.

A long-standing problem in the theory of relaxation of
molecular magnets is the prefactor �0 in the Arrhenius relax-
ation rate being by two orders of magnitude too small. This was
already recognized in the early Ref. 21. Without introducing
artificially strong spin-phonon interactions,38 it is impossible
to arrive at �0 ∼ 107 s−1 observed in experiments22,33 using
the standard spin-lattice relaxation model considering one spin
in an infinite elastic matrix. This model could be justified for
a strongly diluted molecular magnet, but in the normal case
it can not. High density of magnetic molecules should lead

FIG. 5. Magnification of the ground-state tunneling peak of
�(Bz,T ) (multiplied by 100) at B⊥ = 3.5 T.

FIG. 6. (Color online) Speed of deflagration front estimated
from Eq. (10) for the microscopically calculated relaxation rate
�[Bz,Tf (Bz)] with the correction factor 100, together with Eq. (10)
using the Arrhenius formula for �[Bz,Tf (Bz)].

to such collective effects as superradiance39–41 and phonon
bottleneck.42–44 As it would be difficult to deal with these
complicated issues while addressing the quantum deflagration
problem, the calculated relaxation rate was simply multiplied
by 100 to approximately match the experiment. It is instructive
to plot the theoretical deflagration speed given by Eq. (10)
(with ṽ = 1) at small transverse field as a function of Bz

using the corrected values of �[Bz,Tf (Bz)]. Figure 6 shows a
good overall agreement, except for tunneling maxima in the
microscopically calculated result. As tunneling resonances are
broadened by ligand disorder, dipolar field, and nuclear spins,
very narrow peaks due to tunneling resonances of lower levels
here will be washed out in the experimentally measured front
speed. In fact, a similar interpretation of experimental results
has been done in Ref. 4, where the dashed line in Fig. 4 is√

κf �f with �f taken from relaxation experiments on the
same crystal.

An alternative explanation of much higher relaxation rates
observed in the experiment is based on deviations from the
strong-exchange model that lead to mixing of the states with
different total spin S. In Ref. 45, it was shown that this
small mixing taken into account perturbatively leads again
to the giant-spin model with S = 10, however, with additional
higher-order crystal-field terms that would normally be absent
for d electrons. These additional terms can explain the
observed ground-state tunnel splitting � in Fe8, which is three
orders of magnitude larger than the theoretical result using the
standard spin Hamiltonian. A similar mechanism could work
for Mn12 and lead to the increase of the spin-lattice relaxation
rate as well. However, the importance of this mechanism is
limited to small transverse fields. The most interesting results
below for supersonic fronts of tunneling directly out of the
metastable ground state without thermal activation require a
strong transverse field that produces a large tunnel splitting.
In this limit, the latter becomes insensitive to crystal-field
terms responsible for tunneling in zero or small transverse
fields.

094403-5



D. A. GARANIN AND SAABER SHOYEB PHYSICAL REVIEW B 85, 094403 (2012)

FIG. 7. Numerically calculated speed of the deflagration front in
a Mn12Ac crystal in small transverse field.

IV. FRONT SPEED AT WEAK TRANSVERSE FIELD

The procedure of numerical solution of the quantum
deflagration equations is discussed at the end of Sec. I. The
result for the front speed at small transverse fields in the range
Bz = 0.7–1.7 T is shown in Fig. 7. Here, the cylinder radius R

in our model has been chosen so that it yields the same cross
section as the crystal of transverse sizes La = Lb = 1 mm in
Ref. 4, that is, R = √

LaLb/π = 0.564 mm. One can see that,
in comparison to Fig. 6, narrow tunneling peaks are washed
out and only broad peaks remain. The reason is that the total
magnetic field in the crystal is not constant and changes in
the front as shown in Fig. 1, so that tunneling resonances in
v are spread. Overall, there is a good agreement between our
Fig. 2 and Fig. 4 of Ref. 4. For a comparison, the calculated
front speed for a crystal of smaller transverse dimensions
La = Lb = 0.2 mm, such as in Refs. 6–8, is shown in Fig. 8. In
this case, tunneling peaks are not washed out, although they are
much wider and lower than those in Fig. 6. Some of these peaks

FIG. 8. Numerically calculated speed of the deflagration front for
small transverse field for a Mn12Ac crystal with a smaller transverse
size.

FIG. 9. Numerically calculated speed of the deflagration front in
a thinner Mn12Ac crystal for small transverse field and a larger bias.

are asymmetric, similarly to the single large peak in Fig. 4 of
Ref. 27. The reason for this asymmetry will be discussed in
the following. Then, Fig. 9 shows the calculated front speed
for the bias and crystal size corresponding to the experiments
in Refs. 6–8. Here, tunneling peaks are quite pronounced, at
variance with the above experiments that show very small
peaks. Just above 3 T and just below 3.5 T there are regions
where the speed is too high to be measured in this calculation,
an effect of ground-state tunneling.

Spatial profiles of the magnetization, energy, and the total
bias field in the deflagration front give an idea of the role
played by spin tunneling. Figure 10 shows these profiles at
Bz = 1.5 T, which is far from resonances. In this case, there is
a pure slow burning with the magnetization and energy profiles
of a tanh shape.5 The dipolar field shown in the lower panel
plays no role in the process.

Figure 11 shows the spatial profiles at the asymmetric
peak of v at Bz = 2.852 T in Fig. 9. Here, the front speed

FIG. 10. (Color online) Spatial profiles of the deflagration front
in a small transverse field B⊥ = 0.05 T. The bias Bz = 1.5 T is far
from resonances, thus the front is that of a pure slow burning.
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FIG. 11. (Color online) Spatial profiles of the deflagration front
in a small transverse field B⊥ = 0.05 T at the peak of the front speed
at Bz = 2.852 T. There is a resonance spin tunneling at the face of
the front and burning in its central and rear parts.

is high because of tunneling at the face of the front where
in the lower panel the total bias field is flat at the level of
the tunneling resonance at Bz,tot = 2.889 T. Magnetization
distribution adjusts so that the dipolar field ensures resonance
for a sizable group of spins that tunnel. Tunneling of these
spins results in energy release, the temperature and relaxation
rate increase, and tunneling gives way to burning in the central
and rear areas of the front.

Formation of the asymmetric maxima of the front speed
can be explained as follows. When Bz increases, the peak
of Bz,tot that arises due to the local dipolar field reaches the
resonant value. Here, the strong increase of v(Bz) begins. The
maximum of Bz,tot sticks to the resonance value and becomes
flat with progressively increasing width. Greater width of the
resonance region results in a stronger tunneling and higher
front speed. With further increase of Bz, the right edge of the
tunneling region moves too far away from the front core into
the region where the temperature is too low. As the tunneling
resonance in question is thermally assisted, it disappears at
low temperatures, thus, the flat region of Bz,tot can not spread
too far to the right. As a result, the flat configuration of Bz,tot

becomes unstable and suddenly Bz,tot changes to the regular
shape of Fig. 1, which crosses the resonance twice in the face
part of the front. At the right crossing, the temperature is too
low and tunneling does not occur, whereas at the left crossing,
burning already is going on and tunneling can not add much.
There can be the third resonance crossing further to the left, but
it does not play a role because everything has already burned.
It should be noted that multiple resonance crossings do not
occur in the laminar regime of the pure quantum case (cold
deflagration) (see Fig. 2 of Ref. 24).

If the transverse size of the crystal is large, R 	 ld , the slope
of Bz,tot to the right of the maximum in Fig. 7 is small. In this
case, increasing Bz leads to a very quick displacement of the
right border of the tunneling region to the right where tunneling
can not take place, as explained above. Thus, tunneling peaks
of v(Bz) should be very narrow for such crystals. This explains
why tunneling peaks are quite pronounced in Fig. 8 but very
small in Fig. 7.

FIG. 12. (Color online) Spatial profiles of the deflagration front
in a small transverse field B⊥ = 0.05 T. Faster burning with no
tunneling.

Tunneling peaks of v(Bz) corresponding to broad reso-
nances of highly excited states are almost symmetric, such
as the high peak at Bz = 2.644 T in Fig. 9. In this case, peaks
are formed when the maximum of Bz,tot crosses the resonance.
In these cases, progressive flattening of Bz,tot does not occur
because here tunneling requires high temperatures and the
right border of the tunneling region can not move to the cold
region to the right.

Figure 12 shows an off-resonance front again, Bz = 3 T, but
it is not a slow-burning front anymore because the bias is high.
In this region, the analytical theory of Ref. 5 does not work,
which can be seen on the magnetization and energy profiles
that differ from the tanh shape.

V. FRONT SPEED AT STRONG TRANSVERSE FIELD

As one can see from Fig. 4, at strong transverse fields,
the structure of the relaxation rate �(Bz,T ) simplifies because
tunneling resonances of the most excited states broaden away.
At B⊥ = 3.5 T, one can see only two tunneling peaks,
and the ground-state tunneling peak is not drowned by the
thermal-activation processes up to the highest temperatures.
This means that in a bias window around this peak, the barrier
is cut completely. The latter changes the dynamics of the
system, drastically increasing the role of tunneling in the front
propagation. Since tunneling out of the metastable ground state
does not require an elevated temperature, the right border of
the tunneling region before the main part of the front can shift
unlimitedly to the right without causing the instability that kills
tunneling, described in the preceding section. Thus, the width
of the tunneling region can reach the values of order R,23,24

which leads to front speeds much greater than the speed of a
regular magnetic deflagration [see comments after Eq. (12)].

Numerical results at high transverse fields show that, shortly
after ignition, by raising the temperature at the left end of the
crystal, a regular slow-burning front can transform into a fast
combined tunneling-burning front by quantum self-ignition
before the slow-burning front, if the crystal is near ground-
state tunneling resonance. Figure 13 shows this phenomenon
at B⊥ = 3.5 T and Bz = 0.47 T, where the ground-state
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FIG. 13. (Color online) Quantum self-ignition before a slow-
burning front, leading to a fast combined tunneling-burning front
near ground-state resonance at high transverse fields.

resonance is achieved at Bz,tot = 0.522 T. One can see that
at short times t�f � 10, there is a slow front with a steep
profile, but before the front, where Bz,tot crosses the resonance
value, spins begin to tunnel. This quantum self-ignition leads
to flattening of the Bz,tot curve and formation of another,
fast-moving front, with tunneling followed by burning. The
spatial profile of Bz,tot at different times, which shows that
self-ignition before the slow-burning front is caused by spin
tunneling, is shown in Fig. 14.

The front speed v in the vicinity of a biased ground-state
resonance in a strong transverse field can achieve supersonic
values, as can be seen in Fig. 15. This is in accord with the
comments below Eq. (12). To the contrast, the small peak on
the left side of Fig. 15 is due to the first-excited-state tunneling
resonance at Bk = 0.490 (see Fig. 4). Its position is given
by Bz = Bk − B(kD)

z = 0.417 T, which is close to the position
in the figure. In Sec. IV, it was explained that the front of

FIG. 14. (Color online) Profiles of the total longitudinal magnetic
field at B⊥ = 3.5 T and Bz = 0.47 T at different moments of time.

FIG. 15. Front speed for a strong transverse field (B⊥ = 3.5 T) in
the vicinity of the ground-state tunneling resonance at 0.522 T. There
is a strong increase of the front speed within the dipolar window of
125.5 mT around the resonance. The small peak on the left (inset) is
due to the first-excited-state tunneling resonance.

tunneling via excited levels can not shift much ahead of the
burning zone because it is too cold before the front. This limits
the speed of such fronts and explains why the speed of the
first-excited state tunneling front is much smaller than that of
the ground-state tunneling front, in spite of the relaxation rate
at the former being higher.

Returning to the ground-state tunneling front, it should
be stressed that no metastable population is left behind the
front (see Fig. 13), although there is unburned metastable
population behind pure nonthermal fronts of tunneling.23,24

Here, the metastable population is burning just behind the
front of tunneling as the result of the temperature increase.
It should be stressed that heat conduction can not support
burning fronts moving faster than the speed of sound, and
it becomes nonoperative in this case. In this respect, the
situation is reminding of detonation that has been suggested
for molecular magnets in Refs. 11 and 12 in the case of
a strong bias and thus high-energy release. In detonation,
thermal expansion resulting from burning sends a shock wave
into the cold region before the front where, as a consequence,
the temperature rises as a result of compression, initiating
burning. As the mechanism of detonation is based on elasticity,
the speed of a detonation front is comparable to the speed
of sound. Fronts of tunneling are not based on elasticity,
and their speed can be much higher. However, shock waves
must accompany tunneling fronts and modify their properties
in some way. Experimentally, fast deflagration or detonation
fronts in Mn12Ac have been observed in Ref. 10, but they were
caused by a very fast sweep of Bz, so that there is a question
as to which extent the process was self-propelled.

One can see in Fig. 15 that the speed of the front is
asymmetric and grows toward the right end of the tunneling
window, showing divergence or nearly divergence of the front
speed. In the case of cold deflagration (assuming the unbroken
laminar regime everywhere), v diverges at the right border
of the dipolar window Bz = Bk + B(D)

z , where Bk is the
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resonance field of Eq. (1). It is given by24

v ∼ �resR
Bz − Bk

Bk + B
(D)
z − Bz

(13)

for Bk � Bz � Bk + B(D)
z , whereas above Bk + B(D)

z , it
abruptly drops to a zero. The reason for this is that above
Bk + B(D)

z , the total field well before the front is above the
resonance, so that resonance crossing can not occur. To the
contrast, just below Bk + B(D)

z , the field well before the front is
a little bit below the resonance and increases closer to the front.
In this case, there is a wide region where the system is close to
the resonance, and the front speed becomes very high. Thus,
as Bz crosses the value Bk + B(D)

z from below, the front speed
drops abruptly. Similar behavior can be seen in Fig. 15: The
ground-state resonance is at 0.522 T, and by adding the dipolar
field B(D)

z = 0.0526 T, one obtains 0.573 T, as in the figure.
However, here v drops to the speed of the regular magnetic
deflagration, as also in Fig. 4 of Ref. 27. Another difference
is that in the case of cold deflagration,24 tunneling begins at
Bz = Bk (left border of the dipolar window) whereas in our
case it begins when the local maximum of Bz,tot first touches
the resonance (see, e.g., the lower panel of Fig. 11). Since
for the crystals studied here the front width is much smaller
than the transverse size of the crystal, the dipolar field at the
maximum is close to B(kD)

z given by Eq. (9). Thus, the left
border of the dipolar window is at Bz = Bk − B(kD)

z , in Fig. 15
at Bz = 0.45 T. The total width of the dipolar window of the
ground-state tunneling resonance in Mn12Ac is

�B(D)
z = B(D)

z + B(kD )
z = 125.5 mT, (14)

which is much greater than dipolar windows of excited-state
tunneling resonances (see, e.g., Fig. 9).

In the case of cold deflagration, there is an unburned
metastable population in the final state behind the front
[Eq. (41) of Ref. 24] that can be rewritten as

nf = Bz − Bk

B
(D)
z

(15)

(n = 1 before the front). One can see that the change of
n across the front �n = 1 − nf goes to zero at the right
border of the dipolar window Bk + B(D)

z . This reconciles the
situation with the general requirement that the rate of change
of the magnetization of the crystal Ṁ , limited by the tunneling
parameter �, remains finite. Indeed,

Ṁ ∝ (1 − nf )v = �resR
Bz − Bk

B
(D)
z

(16)

reaches only a finite value Ṁ ∝ �resR at the right border of
the dipolar window before it drops to zero. In the present case
of tunneling followed by complete burning, Ṁ is not limited
by � and can achieve very high values at the right border of
the dipolar window.

VI. DISCUSSION

Numerical calculations for deflagration fronts with
dipolar-controlled spin tunneling for the realistic model of
Mn12Ac performed in this work have shown many quantum
peaks in the dependence of the front speed v on the external

magnetic field Bz, if a zero or small transverse field is applied.
The multitude of peaks results from the splitting of the
tunneling resonance by the −AS4

z term in the crystal field
of the magnetic molecule, and peaks in v(Bz) reflect those
in the relaxation rate �(Bz,T ) of the metastable states of
Mn12Ac molecules. The peaks of v(Bz) are more pronounced
for crystals of a smaller transverse size.

Whereas the results of the calculations for thicker crystals
in the range of smaller bias are in a qualitative accord with
the experiments of Ref. 4, the results for thinner crystals and
stronger bias show much stronger tunneling peaks in v(Bz)
than it was observed in Refs. 6–8. One can try to explain the
lack of peaks in the experiment by the spread of tunneling
resonances as the result of ligand disorder, which is pretty
strong in Mn12Ac.46,47 It has been shown that static disorder
that is weaker than the dipole-dipole interaction does not
destroy fronts of tunneling since the magnetization distribution
can adjust so that many spins in the front core are still on
resonance and can tunnel.23 However, static disorder that
is stronger than the DDI can not be accommodated by the
latter and should result in spread and suppression of tunneling
maxima in v(Bz). The best way to deal with this problem is to
make experiments on the members of the Mn12 family that do
not have ligand disorder.

Possibly there is a more fundamental reason for the near
absence of tunneling peaks in the experiments of Refs. 6–8.
The prefactor �0 in the theoretical relaxation rate being by
a factor 102 smaller than the measured prefactor suggests
collective relaxation processes such as superradiance and
phonon bottleneck that can be expected in a dense magnetic
system such as molecular magnet. Collective boosting of
relaxation processes should not affect tunneling, however.
Thus, the nonresonant background in �(Bz,T ) can move up by
a factor 100, partially drowning tunneling peaks. On the other
hand, in our calculation we have boosted the whole function
�(Bz,T ), including tunneling peaks.

Whereas it is impossible to develop a collective theory of
relaxation in molecular magnets in this paper, one can modify
our density-matrix calculation by multiplying spin-phonon
coupling amplitudes by 10. This should result in the increase
of the nonresonant part of �(Bz,T ) by 100, while one could
expect tunneling peaks to be much less changed. Such a
calculation has been performed, but its results do not show
a strong suppression of tunneling peaks in v(Bz). The likely
reason for this is that at small transverse field tunneling peaks
are due to thermally assisted tunneling, which also gets boosted
by an artificial increase of spin-phonon interactions.

Calculations in the case of a strong transverse field, making
tunneling directly out of the metastable ground state operative,
show an increase of the front speed within the tunneling
window around the tunneling resonance up to supersonic
values. It would be highly interesting to perform experiments
on deflagration fronts in this region.

ACKNOWLEDGMENTS

This work has been supported by the NSF under Grant
No. DMR-0703639. The author thanks E. M. Chudnovsky for
valuable discussions.

094403-9



D. A. GARANIN AND SAABER SHOYEB PHYSICAL REVIEW B 85, 094403 (2012)

1I. Glassman, Combustion (Academic, New York, 1996).
2L. D. Landau and E. M. Lifshitz, Fluid Dynamics (Pergamon,
London, 1987).

3Y. Suzuki, M. P. Sarachik, E. M. Chudnovsky, S. McHugh,
R. Gonzalez-Rubio, N. Avraham, Y. Myasoedov, E. Zeldov,
H. Shtrikman, N. E. Chakov et al., Phys. Rev. Lett. 95, 147201
(2005).

4A. Hernández-Minguez, J. M. Hernández, F. Macia, A. Garcia-
Santiago, J. Tejada, and P. V. Santos, Phys. Rev. Lett. 95, 217205
(2005).

5D. A. Garanin and E. M. Chudnovsky, Phys. Rev. B 76, 054410
(2007).

6S. McHugh, R. Jaafar, M. P. Sarachik, Y. Myasoedov, A. Finkler,
H. Shtrikman, E. Zeldov, R. Bagai, and G. Christou, Phys. Rev. B
76, 172410 (2007).

7S. McHugh, B. Wen, X. Ma, M. P. Sarachik, Y. Myasoedov,
E. Zeldov, R. Bagai, and G. Christou, Phys. Rev. B 79, 174413
(2009).

8S. McHugh, R. Jaafar, M. P. Sarachik, Y. Myasoedov, A. Finkler,
E. Zeldov, R. Bagai, and G. Christou, Phys. Rev. B 80, 024403
(2009).
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R. Ziolo, Europhys. Lett. 35, 301 (1996).

18L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and
B. Barbara, Nature (London) 383, 145 (1996).
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