
PHYSICAL REVIEW B 85, 094401 (2012)

Thermal spin current and magnetothermopower by Seebeck spin tunneling
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The recently observed Seebeck spin tunneling, the thermoelectric analog of spin-polarized tunneling, is
described. The fundamental origin is the spin dependence of the Seebeck coefficient of a tunnel junction with
at least one ferromagnetic electrode. Seebeck spin tunneling creates a thermal flow of spin-angular momentum
across a tunnel barrier without a charge tunnel current. In ferromagnet/insulator/semiconductor tunnel junctions,
this can be used to induce a spin accumulation �μ in the semiconductor in response to a temperature difference
�T between the electrodes. A phenomenological framework is presented to describe the thermal spin transport
in terms of parameters that can be obtained from experiment or theory. Key ingredients are a spin-polarized
thermoelectric tunnel conductance and a tunnel spin polarization with nonzero energy derivative, resulting in
different Seebeck tunnel coefficients S

↑
st and S

↓
st for majority and minority spin electrons. We evaluate the thermal

spin current, the induced spin accumulation and �μ/�T , discuss limiting regimes, and compare thermal and
electrical flow of spin across a tunnel barrier. A salient feature is that the thermally induced spin accumulation
is maximal for smaller tunnel resistance, in contrast to the electrically induced spin accumulation that suffers
from the impedance mismatch between a ferromagnetic metal and a semiconductor. The thermally induced spin
accumulation produces an additional thermovoltage proportional to �μ, which can significantly enhance the
conventional charge thermopower. Owing to the Hanle effect, the thermopower can also be manipulated with a
magnetic field, producing a Hanle magnetothermopower.

DOI: 10.1103/PhysRevB.85.094401 PACS number(s): 72.25.Hg, 73.40.Gk, 72.20.Pa, 85.75.−d

I. INTRODUCTION

The interplay of heat and charge transport is the basis
of thermoelectrics, enabling the conversion of heat flow to
electrical power and vice versa. Spintronics concerns the
interplay of spin and charge transport and has transformed
magnetic data storage technology and magnetic field sensing.
The connection between these two important fields has been
established in studies of thermoelectric properties of magnetic
nanostructures.1–10 This interplay between heat and spin
transport, now referred to as spin caloritronics,9,11 has recently
gained impetus because the combination of thermoelectrics
and spintronics offers unique possibilities. On the one hand, it
provides a new, spin-based approach to thermoelectric power
generation and cooling. On the other hand, it provides a thermal
route to create and control the flow of spin in novel spintronic
devices that make functional use of heat and temperature
gradients. In addition, most spintronic nanodevices involve
the application of electrical currents, which create thermal
gradients that might influence magnetic and spin-related phe-
nomena and thereby device performance and efficiency. This
underpins the importance of understanding the fundamental
interactions between thermal and spin effects.

A notable recent development is the observation of the spin
Seebeck effect by Uchida et al..12 They found that when a
ferromagnetic material (permalloy) is subjected to a thermal
gradient ∇T , a spin current is injected into a nonmagnetic
metal (Pt) strip attached to the ferromagnet. This spin current
is converted into a voltage proportional to ∇T via the inverse
spin Hall effect.12 The name “spin Seebeck effect” suggests
it is the spin analogue of the classical charge Seebeck effect.
The latter can be understood in the following way, noting
that the electrical conductance depends on the energy of the
charge carriers. A thermal gradient across a (nonmagnetic)

conductor causes a flow of electrons with energy above the
Fermi energy from the hot to the cold side. Simultaneously,
electrons with energy below the Fermi energy flow in the
opposite direction. There is a net current because the two
current components do not cancel when the conductivity for
electrons above and below the Fermi energy is different. In
open circuit conditions, this results in a voltage between the
hot and cold ends of the conductor, proportional to S ∇T , with
S the Seebeck coefficient. In a ferromagnetic conductor, one
expects that the Seebeck coefficient is different for electrons
with majority and minority spins, as their electronic properties
are different. A thermal gradient across a ferromagnet would
then yield a net flow of spin parallel to the thermal gradient, and
produce in a spin voltage (accumulation of spin) at the hot and
the cold ends of the ferromagnet. Although this was originally
suggested to be the cause of the observed spin Seebeck effect,12

the currently accepted interpretation is rather different. It is
now considered to originate from a nonequilibrium between
the magnon distribution in the ferromagnet and the electrons in
the attached nonmagnetic metal, resulting in thermally driven
dynamical spin pumping across the interface, without a global
spin current or spin accumulation in the ferromagnet.13–17

This microscopic mechanism bears no relation with the
classical charge Seebeck effect. Yet, the spin Seebeck effect
is a novel method to convert a thermal gradient into a
voltage, via the spin, and the phenomenon is generic, i.e.,
subsequent to the original demonstration for permalloy,12 it
was also observed in ferromagnetic insulators,18 ferromagnetic
semiconductors,19,20 and other ferromagnetic metals.21

In a different type of experiment, Slachter et al.22 demon-
strated for the first time that the Seebeck coefficient of a
ferromagnet depends on spin. They showed that a thermal
gradient in ferromagnetic permalloy induces a spin current
in the permalloy parallel to the heat flow, and that when the

094401-11098-0121/2012/85(9)/094401(8) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.85.094401


R. JANSEN, A. M. DEAC, H. SAITO, AND S. YUASA PHYSICAL REVIEW B 85, 094401 (2012)

heat flow is directed toward an interface with a non-magnetic
metal, the spin current crosses the interface and produces a spin
accumulation in the nonmagnetic metal. This thermally driven
spin injection is directly proportional to the difference of the
Seebeck coefficient of majority- and minority-spin electrons
in the ferromagnet, which was shown to be a fraction of the
regular charge Seebeck coefficient of the ferromagnet.22,23

A distinctly different phenomenon, Seebeck spin tunneling,
was observed by Le Breton et al..24 Unlike previous work,
Seebeck spin tunneling is a pure interface effect that occurs
in tunnel junctions with a temperature difference �T between
the two electrodes, provided that at least one of the electrodes
is ferromagnetic. It was demonstrated that Seebeck spin
tunneling creates a flow of spin angular momentum across
a tunnel barrier without a charge tunnel current. This thermal
spin current was shown to be governed by the variation of
the spin polarization of the tunneling process with the energy
of the tunneling electrons. As will be explained here, Seebeck
spin tunneling is directly linked to the spin-dependent Seebeck
coefficient of a magnetic tunnel contact. This implies that the
results of Le Breton et al. effectively demonstrated that the
Seebeck tunnel coefficient for majority and minority spin is
different. In addition, Le Breton et al. used Seebeck spin tun-
neling for thermally driven spin injection into a semiconductor,
i.e., they observed that in ferromagnet/insulator/silicon tunnel
contacts, the thermal spin current induces a spin accumulation
�μ in the silicon.

An interesting analogy exists between electrical and
thermal spin transport across a tunnel junction. Seebeck
spin tunneling is the thermoelectric analog of spin-polarized
tunneling, which refers to the spin dependence of the electrical
conductance of a magnetic tunnel contact. The latter was
clearly demonstrated four decades ago in experiments25,26

on ferromagnet/insulator/superconductor junctions, showing
that the charge tunnel current between a ferromagnet and
a nonmagnetic counterelectrode is spin polarized. In mag-
netic tunnel junctions comprising of two ferromagnetic
electrodes, spin-polarized tunneling also gives rise to large
tunnel magnetoresistance,27,28 denoting the change of the
tunnel resistance as a function of the relative orientation
(parallel versus antiparallel) of the magnetization of the
electrodes. Analogously, Seebeck spin tunneling produces
a tunnel magnetothermopower, i.e., a dependence of the
thermopower of a magnetic tunnel junction on the relative
magnetization alignment of the two electrodes. This tunnel
magnetothermopower (or tunnel magneto-Seebeck effect) has
been theoretically predicted2,29 and recently observed by
different groups, first, in MgO-based tunnel junctions30,31

and, subsequently, in Al2O3 junctions.32 Anisotropy of the
tunnel magnetothermopower was also reported.33 Last but
not least, it was predicted that thermal gradients give rise to
thermal spin-transfer torques in magnetic heterostructures9,34

and tunnel junctions35 and experimental evidence for thermal
torques has been presented.36,37

Le Breton et al.24 described the salient features of Seebeck
spin tunneling by numerical evaluation of a free-electron
model. Here, we present a phenomenological framework to
describe Seebeck spin tunneling in linear response in terms
of parameters that can be obtained from experiment and
analytical or ab initio theory. Key ingredients are a tunnel

conductance with a spin polarization that depends on energy,
and the spin polarization of the thermally induced electrical
transport across the tunnel barrier. An important aim is to
establish the connection with a Seebeck tunnel coefficient
that depends on spin. We evaluate the thermal spin current,
the induced spin accumulation and �μ/�T , and show that
these are proportional to S

↑
st − S

↓
st , where S

↑
st and S

↓
st denote

the Seebeck tunnel coefficient for majority and minority
spin, respectively. We discuss limiting regimes and point out
that the thermally induced spin accumulation increases for
smaller tunnel resistance, in contrast to the electrically induced
spin accumulation that suffers from the impedance mismatch
between a ferromagnetic metal and a semiconductor.38–40 We
also compare the fundamental limits of thermal and electrical
spin tunneling. Finally, we demonstrate that the thermally
induced spin accumulation produces an additional thermo-
voltage proportional to �μ that can significantly enhance the
conventional charge thermopower. The thermopower can be
manipulated with a magnetic field owing to the Hanle effect,
producing a Hanle magnetothermopower in junctions with
only one ferromagnetic electrode.

II. SEEBECK SPIN TUNNELING

A. Model

We consider a tunnel junction with a ferromagnetic elec-
trode and a nonferromagnetic electrode, typically a semi-
conductor (see Fig. 1) or metal. It is assumed that the
tunnel resistance Rtun is much larger than the resistance of
the electrodes, such that tunneling limits the transport. The
ferromagnetic and nonmagnetic electrode are characterized by
so-called spin resistances r fm

s and rs , respectively, describing
the ratio of the spin accumulation in the material and the
associated spin current due to spin relaxation.40–42 The value
of Rtun relative to r fm

s and rs plays an important role in the
spin transport, as it determines the coupling between the
two spin systems. We will assume that Rtun � r fm

s , which is

FIG. 1. (Color online) Energy band diagram of a ferromag-
net/insulator/semiconductor tunnel junction. The semiconductor elec-
trode is at temperature Tn, whereas the ferromagnet is at Tfm. A spin
accumulation exists in the semiconductor, described by a spin splitting
�μ = μ↑ − μ↓ of the electrochemical potential. The applied bias
voltage V is referenced to the spin-average potentials.
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usually the case when an interface with a (Schottky or oxide)
tunnel barrier is formed (the resistance-times-area product
is 1-10 �μm2 or larger for magnetic tunnel junctions,28,43

while r fm
s is typically below 0.01 �μm2 for transition-metal

ferromagnets40–42). Therefore, we do not need to consider the
spin accumulation and spin-dependent (electrical or thermal)
transport within the ferromagnet, including the spin-dependent
Seebeck effect22,23 due to any temperature gradients within
the ferromagnet (this is important for the regime Rtun < r fm

s ,
as recently shown44). The spin resistance of the nonmagnetic
material is normally much larger than r fm

s . We do not make
any specific assumptions about the value of Rtun relative to
rs . We thus cover the regime with Rtun > rs where the spin
accumulation in the semiconductor is effectively decoupled
from the ferromagnet by the tunnel barrier as well as the regime
with Rtun < rs where the coupling to the ferromagnet reduces
the spin accumulation in the nonmagnetic material.38–40

For a given bias voltage V and temperature difference
�T across the barrier, the tunnel current I σ for each spin
(σ =↑ , ↓, denoting electrons with magnetic moment, re-
spectively, parallel and antiparallel to the magnetization of
the ferromagnet) is

I↑ = G↑
(

V − �μ

2

)
+ L↑�T, (1)

I↓ = G↓
(

V + �μ

2

)
+ L↓�T. (2)

The first term on the right-hand side describes the electrically
driven current governed by spin-dependent tunnel conduc-
tances G↑ and G↓. It incorporates the effect of the shifts of
the electrochemical potentials μσ in the semiconductor due
to the presence of the spin accumulation �μ = μ↑ − μ↓ (for
convenience we have defined �μ in units of volt). Note that
the spin accumulation typically decays exponentially with
distance from the injection contact and that �μ denotes
the value of the spin accumulation at the interface with
the tunnel barrier, as is relevant for tunneling. The second
term on the right-hand side describes the thermally induced
tunnel current in response to a temperature difference, as
governed by L↑ and L↓, which we will refer to as the
thermoelectric tunnel conductances (not to be confused with
the thermal conductance that describes heat flow). We define
�T = Tn − Tfm, where Tn and Tfm are the temperatures of
the nonmagnetic and ferromagnetic electrode, respectively,
and V = Vn − Vfm, where Vn and Vfm are the spin-averaged
potentials of the nonmagnetic and ferromagnetic electrode.

The total conductances are G = G↑ + G↓ and L = L↑ +
L↓, and their spin polarizations are PG = (G↑ − G↓)/(G↑ +
G↓) and PL = (L↑ − L↓)/(L↑ + L↓). The charge tunnel
current I and the spin tunnel current Is are then

I = I↑ + I↓ = GV − PG G

(
�μ

2

)
+ L�T, (3)

Is = I↑ − I↓ = PG GV − G

(
�μ

2

)
+ PL L�T. (4)

The spin current consists of an electrical (PG GV ) and a
thermal contribution (PL L�T ) as well as a correction due
to the �μ that is induced by the (electrical and/or thermal)
spin current. The feedback of �μ on the spin/charge tunnel

current implies that another (independent) relation between
�μ and Is is required to obtain a solution. This is provided
by the requirement of a steady-state spin accumulation in the
nonmagnetic material, which implies that the spin current Is

injected by tunneling is balanced by the spin current due to spin
relaxation in the material, integrated over its full spatial extent.
The spin current associated with spin relaxation is proportional
to the spin accumulation. We define a spin resistance rs of the
nonmagnetic material via

�μ = 2 Is rs . (5)

In our model, rs is a phenomenological parameter that
describes the conversion of the spin current Is that is injected
by tunneling, into a spin accumulation �μ. As mentioned
before, �μ denotes the value of the spin accumulation right
at the tunnel interface. This definition of rs makes no specific
assumptions about the spatial profile of the spin accumulation
in the nonmagnetic material, or the formalism used to
compute it. If we use the spin-diffusion equation and a spin
accumulation that decays exponentially with distance from the
injection interface with the spin-diffusion length Lsd, then the
spin resistance of a unit contact area can be expressed as ρnLsd,
where ρn is the resistivity of the nonmagnetic material.40–42

This result is frequently used to analyze experimental data, but
note that it requires introduction of a somewhat unusual factor
of two in Eq. (5). If rs = ρnLsd is used, our result is consistent
with a recent evaluation based on the spin-diffusion equation.44

B. Spin current and Seebeck spin tunnel coefficient

Equations (3)–(5) fully define the system and allow us
to obtain the relevant quantities. We first derive a general
expression for the spin accumulation, valid for electrical
(I �= 0) and thermal (�T �= 0) injection as well as for a
combination of the two. We shall discuss the case of purely
thermal (I = 0) and purely electrical (�T = 0) driving force
later on. The solutions for �μ and the spin current in terms of
�T and I are

�μ =
[

2 rs

Rtun + (
1 − P 2

G

)
rs

]

× [(PG) Rtun I − (PL − PG) S0�T ], (6)

Is =
[

1

Rtun + (
1 − P 2

G

)
rs

]

× [(PG) Rtun I − (PL − PG) S0�T ], (7)

where Rtun = 1/G is the tunnel resistance and S0 = −L/G is
the charge thermopower (in the absence of a spin accumula-
tion; see below). The first term in Eq. (7), proportional to I ,
is the electrical spin current associated with the spin-polarized
charge current. The second term is the pure spin current due to
Seebeck spin tunneling (driven by �T ) and will be referred to
as the Seebeck spin current. The thermal spin current and the
corresponding spin accumulation are odd functions of �T and
thus change sign when the sign of the temperature difference
is reversed, as observed in experiment.24 The Seebeck spin
tunneling coefficient Sst = �μ/�T is obtained by setting
I = 0 in Eq. (6), and rewriting (PL − PG) S0 in terms of spin-
dependent Seebeck tunnel coefficients S

↑
st = −L↑/G↑ and
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S
↓
st = −L↓/G↓ for majority and minority spin, respectively.

We then obtain an important result, namely, �μ/�T is
proportional to (S↑

st − S
↓
st):

Sst = �μ

�T
=

[ (
1 − P 2

G

)
rs

Rtun + (
1 − P 2

G

)
rs

]
(S↑

st − S
↓
st). (8)

Since 0 � P 2
G � 1, the prefactor always has a positive sign.

The sign of Sst is thus determined by the difference between S
↑
st

and S
↓
st . Note that the prefactor tends to zero when the tunnel

spin polarization becomes very large (PG ≈ 1 or −1), but Sst

does not because also Gσ for one of the two spin channels
goes to zero. Hence either S

↑
st or S

↓
st diverges. Taking this into

account, one finds that Sst = +4 (L↓/G↑)(rs/Rtun) for PG = 1
and Sst = −4 (L↑/G↓)(rs/Rtun) for PG = −1. Expressions (6)
and (7) apply to situations for which I and �T are fixed.
This includes recent experiments on Seebeck spin tunneling24

(where I = 0) as well as most experiments on electrical spin
injection that are performed in constant current mode (and
�T = 0). Alternatively, we can express �μ and Is in terms of
�T and V . However, care has to be taken not to set V = I Rtun,
as this is not correct when �μ �= 0 or �T �= 0, see Eq. (3).

C. Charge thermopower and Hanle magnetothermopower

The charge thermopower S is obtained from the voltage
V |I=0 for which I vanishes. From Eq. (3), we obtain

S = V |I=0

�T
= S0 +

(
PG

2

)
Sst. (9)

This is another important result. In the presence of a spin accu-
mulation, the charge thermopower is not equal to S0 = −L/G.
There is an additional, previously unidentified, contribution
that is proportional to �μ and thus to the Seebeck spin tunnel
coefficient Sst. Since PG can be positive or negative depending
on the properties of the ferromagnet/insulator interface, and
also Sst can have either sign, the additional contribution can
enhance or reduce the charge thermopower. The enhancement
can be significant because Sst can be much larger than S0, as
we will see in the discussion section.

Next, we address how the thermally induced spin accumula-
tion can be detected as a voltage signal. Just as for electrically
induced spin accumulation, this can be done via the Hanle
effect, which occurs when the spins in the semiconductor are
subjected to a magnetic field B at a solid angle θ with the spin
direction.45–47 This causes spin precession and consequently
a reduction of �μ depending on θ and on the product of
the spin lifetime τs and the Larmor frequency ωL = gμBB/h̄,
where g is the Landé g factor, μB the Bohr magneton, and h̄ is
the Planck’s constant divided by 2π . When the tunnel resis-
tance is sufficiently large (Rtun � rs) such that the coupling of
the spin accumulation to the ferromagnet can be neglected, spin
precession causes a decay of �μ in a Lorentzian fashion:45,47

�μ = 2 Is rs ≡ 2 Is r0
s

[
cos2(θ ) + sin2(θ )

1 + (ωLτs)2

]
. (10)

In the absence of any magnetic field, there is no spin precession
and the spin resistance is r0

s . If we keep �T and the charge
current I constant, apply a magnetic field perpendicular to the
spins, and increase B from zero to a value for which ωLτs � 1,

the spin resistance is gradually reduced from r0
s to zero. The

�μ then also goes to zero, even if the spin current Is that is
injected by tunneling is nonzero. This results in the desired
voltage change, which is obtained from Eqs. (3) and (10) as

�VHanle = V |ωL=0 − V |ωLτs�1 =
(

PG

2

)
�μ|ωL=0. (11)

An important point is that this expression is valid irrespective
of how the spin accumulation is created. In other words, also
for a thermally induced spin accumulation, the detected voltage
signal �VHanle is given by PG/2 times �μ, which is the same
relation as for electrically induced spin accumulation.46

In the regime where Rtun < rs , the magnitude of �μ is
reduced by the coupling of the spins to the ferromagnet,
but also the functional dependence of �μ on B is modified
and Eq. (10) does not correctly describe the dependence on
B and θ . However, the maximum and minimum values of
�μ for, respectively, ωL = 0 and ωLτs � 1 are still properly
described. Therefore the amplitude of the spin accumulation
can still be correctly obtained from Eq. (11). However,
extracting the spin lifetime from the linewidth of the Hanle
curve requires a detailed description of the line shape taking
the interaction with the ferromagnet into account.

The ability to manipulate the spin accumulation with an
external magnetic field (owing to the Hanle effect) also means
that Sst and hence the charge thermopower S can be controlled
by a magnetic field. We define the Hanle magnetothermopower
Smag as the relative change of the thermopower between its
value in zero magnetic field, and the value at �μ = 0 that
corresponds to ωLτs � 1:

Smag = S|ωL=0 − S|ωLτs�1

S|ωLτs�1
=

(
PG

2

) (
Sst|ωL=0

S0

)
. (12)

The magnetothermopower is mediated by the spin accumu-
lation, has a variation with magnetic field that is governed
by the Hanle effect, and occurs in tunnel contacts in which
only one of the electrodes is ferromagnetic. It is thus different
from the tunnel magnetothermopower recently observed in a
magnetic tunnel junction with two ferromagnetic electrodes,
which has a magnetic field variation that is controlled by the
angle between the magnetizations of the two electrodes.30,31

The Hanle magnetothermopower can be very large because
Sst can be much larger than S0. The field scale for the
Hanle magnetothermopower is set by the spin lifetime. The
half-width (for which ωLτs = 1) is inversely proportional to
τs , and for a typical value of τs = 1 ns, the half width is about
60 Gauss (6 mT) for a nonmagnetic material with a g factor of
2.

III. DISCUSSION

A. Origin and definition of Seebeck spin tunneling

We have seen that Seebeck spin tunneling occurs when the
Seebeck coefficient of a magnetic tunnel contact is different
for majority and minority spin. Le Breton et al.24 described
the salient features of Seebeck spin tunneling by numerical
evaluation of a free electron model, and showed that Seebeck
spin tunneling is determined by the energy derivative of the
tunnel spin polarization. In this section, we will establish the
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important connection between these two notions, and also
clarify the definition of Seebeck spin tunneling.

First, we note that (S↑
st − S

↓
st) is proportional to (PL − PG)

and that the spin accumulation induced by Seebeck spin tun-
neling is proportional to (PL − PG). This is easily understood
because when I = 0, any thermally induced current (with
polarization PL) must be balanced by an equal but opposite
electrically driven current (with polarization PG). If the tunnel
spin polarization does not depend on energy, all the induced
(electrical or thermal) current components necessarily have the
same spin polarization, and we have PL = PG. In that case,
Sst = 0, the Seebeck spin current vanishes for all �T , and a
spin current exists only if the charge current is nonzero. To
illustrate that PL = PG if the tunnel spin polarization does not
depend on energy, we express Gσ and Lσ in terms of the tunnel
transmission function Dσ (E) integrated over energy E, as29,48

Gσ = −e2

h

∫
Dσ (E) [∂Ef (E,μ,T )] dE, (13)

Lσ = − e

h

1

T

∫
Dσ (E) (E − μ) [∂Ef (E,μ,T )] dE, (14)

where ∂Ef (E,μ,T ) is the energy derivative of the Fermi-
Dirac distribution function f (E,μ,T ). When D↑(E) and
D↓(E) have the same variation with energy, we can write
Dσ (E) = χσD(E), where the coefficients χ↑ and χ↓ do
not depend on energy. Inserting this in Eqs. (13) and (14),
we find PG = PL = (χ↑ − χ↓)/(χ↑ + χ↓). Then PG and PL

are independent of E and PL = PG. Since (S↑
st − S

↓
st) is

proportional to (PL − PG), we conclude that S
↑
st = S

↓
st if the

tunnel spin polarization does not depend on energy. This
establishes the connection between the energy derivative of
PG and a spin-dependent Seebeck coefficient: S

↑
st �= S

↓
st only

if the tunnel spin polarization depends on energy.
We now define the term Seebeck spin tunneling more

precisely, because one could argue that a thermally driven spin
current can exist even if PL = PG or, equivalently, if S

↑
st = S

↓
st .

This can be seen more easily by writing Eq. (7) in terms of
applied bias V :

Is =
[

1

Rtun + rs

]
[ PG (V − S0�T ) − (PL − PG) S0�T ].

(15)

When PL = PG, a term proportional to PG S0�T is still
present. This term, which was already discussed by Johnson
and Silsbee,1 originates from the thermally induced charge
current, which is spin polarized due to the nonzero value of PG.
In fact, for PL = PG any thermally induced spin current is from
the spin-polarized charge current that arises from the shift of
the I -V curve by an amount equal to the charge thermovoltage
S0�T . Although technically this is a thermally-induced spin
current, the charge current is nonzero, i.e., it is not a pure spin
current, as can be seen from Eq. (7). Since this spin current
exists even if the tunnel spin polarization is not dependent
on energy, we do not consider this to be Seebeck spin
tunneling. Seebeck spin tunneling thus refers to the other term,
proportional to (PL − PG), that is associated with a nonzero
energy derivative of the tunnel spin polarization (in analogy
with the conventional charge Seebeck effect that is related

to a nonzero energy derivative of the charge conductivity).
The Seebeck spin tunneling term and its relation with the
energy dependence of PG has not been discussed or described
in previous theoretical treatments of thermally driven spin
transport across interfaces.1,10 Experimentally, one will have
a combination of a thermally driven spin-polarized charge
current and Seebeck spin tunneling, unless one measures at
I = 0, as done in Ref. 24.

There is ample evidence for the energy dependence of
the tunnel spin polarization. Indirect evidence comes from
the decay of tunnel magnetoresistance with bias voltage in
magnetic tunnel junctions,27,28 which is, in part, governed
by the decay of the tunnel spin polarization with energy.
Direct evidence is provided in two reports for transition metal
ferromagnets on Al2O3, where the variation of the tunnel
spin polarization with energy of the tunnel electrons was
determined.49,50 A significant asymmetry in the decay of the
tunnel spin polarization with energy below and above the
Fermi energy was reported, the decay being much faster above
the Fermi energy.

B. Comparison of electrical and thermal spin current

It is instructive to compare the magnitude of the spin
current due to electrical and thermal spin tunneling. Besides
the fundamental interest, this is of course important from
a technological point of view. One question is whether the
creation of a spin current by a temperature difference across
the tunnel barrier can be more energy efficient than creating
a spin current electrically. Another question is whether the
heat that is produced by electrical generation of a spin current
can be reused to supplement it with a thermal spin current,
and how much increase in spin current, or reduction in energy
consumption, can be obtained in this way. The answer to those
questions cannot be given in general terms. The efficiency of
creating the temperature difference depends crucially on the
thermal design of the structures. Moreover, whereas it has been
known for four decades that the electrical tunnel conductance
is spin polarized and the polarization has been rather well
optimized, the Seebeck spin tunneling has only recently been
observed and the difference (S↑

st − S
↓
st) is far from optimum.

We will therefore only discuss the factors that determine the
ultimate limits of electrical and thermal spin current.

We consider the driving term as well as the proportionality
factor between �μ and the driving term (see Table I). The
thermal driving term is S0�T , which should be compared
to the electrical driving term Rtun I . For nonmagnetic metal
tunnel junctions S0 has been evaluated51,52 to be in the range
of 50–100 μV/K, although it has been predicted that it can
be enhanced by magnons in ferromagnetic tunnel junctions.3,4

The �T for tunnel junctions will, in practice, be limited to
about 10 K. Hence S0�T is of the order of 1 mV, which is to
be compared to typical values of a few 100 mV for Rtun I . In
general, the thermal driving term will thus be smaller than the
electrical driving term.

With respect to the proportionality factor, for electrical spin
injection it is limited by PG, since its absolute value cannot
be larger than one (by definition). However, such a restriction
does not exist for the proportionality factor of the thermal spin
current, since there is no limit for the energy derivatives that
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TABLE I. Comparison of thermal and electrical spin current in a tunnel junction.

Driving Typical Extreme
Method Type of spin current term values Proportionality values

Electrical Spin-polarized charge current Rtun I ∼100 mV PG ±1
Thermal Pure spin current (I = 0) S0�T ∼0.1–1 mV S

↑
st − S

↓
st ±∞

govern (S↑
st − S

↓
st) and (PL − PG). In principle, L↑ and L↓ can

be equal in magnitude but of opposite sign, so that L ≈ 0 and
PL goes to infinity. Physically, this corresponds to the situation
where the tunnel spin polarizations for states above and below
the Fermi energy have opposite sign, such that one type of spin
is driven from the hot to the cold side of the tunnel contact, and
the other type of spin is driven from the cold to the hot side.
Hence the proportionality factor for thermal spin accumulation
can, in principle, be arbitrarily large for suitably engineered
materials. This can therefore (more than) compensate for the
smaller thermal driving term. This suggests that Seebeck spin
tunneling can be a viable approach to create a spin current,
either by itself, or in conjunction with an electrical spin current.

C. Magnitude of Seebeck spin tunnel coefficient

The magnitude of the thermal spin current (and spin
accumulation) depends on the value of the polarizations PL

and PG as well as on the coupling of the spin accumulation
to the ferromagnet. An important point is that the Seebeck
spin tunnel coefficient Sst can be much larger than the regular
charge thermopower S0. To illustrate this, the ratio of Sst and
S0 is shown as a function of relevant parameters in Fig.2.
For materials with large tunnel spin polarization (PG ≈ 1
or −1), a very large Seebeck spin tunneling coefficient is
produced if PL and PG are unequal, or preferably, of opposite
sign. This situation would occur for ferromagnet/insulator
interfaces that have an almost full spin polarization of the

FIG. 2. (Color online) Seebeck spin tunnel coefficient Sst normal-
ized to S0, as a function of Rtun/rs , for various values of PL/PG and
fixed PG = 0.9, and (inset) for fixed PL/PG = −2 and PG varied.
Note that Sst = 0 if PL/PG = +1.

tunnel conductance for states at and below the Fermi energy
EF , but a rapidly decaying or even opposite spin polarization
above EF , for instance, due to the onset of a contribution to
the tunneling of a band with opposite spin orientation. Since
the total thermopower is given by the sum of S0 and (PG/2) Sst

[see Eq. (9)], the thermally induced spin accumulation in the
nonmagnetic material can significantly enhance the charge
thermopower of a tunnel junction.

D. Scaling with tunnel resistance

A noteworthy difference between electrical and thermal
creation of a spin accumulation is the scaling with tunnel
resistance (see Fig. 3 and Appendix A for explicit expressions
for the different regimes). For electrical spin injection, the
polarization of the injected current (Is/I ) is PG as long
as the tunnel resistance is larger than the spin resistance
of the semiconductor [see Eq. (A4)]. However, when Rtun �

FIG. 3. (Color online) Scaling of the electrical and thermal spin
accumulations with tunnel resistance. Shown are �μ/I for electrical
injection (top panel) and �μ/�T for Seebeck spin tunneling
(bottom panel), both as a function of the ratio Rtun/rs of the tunnel
resistance and the spin resistance of the semiconductor. The results are
normalized to the maximum value as indicated (2 PG rs for electrical
and S

↑
st − S

↓
st for thermal). The dashed lines describe the result when

one neglects the feedback of �μ on the spin current injected from the
ferromagnet. The arrows indicate the reduction due to the feedback.
The PG was set to 0.3.
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rs , the coupling to the ferromagnet starts to play a role,
and the feedback of �μ on the tunnel transport severely
reduces the spin polarization of the tunnel current (which is
well established38–40). As a result, �μ/I , the spin accumu-
lation per unit injected charge current, is constant at large
Rtun but decays at small tunnel resistance (see Fig. 3, top
panel).

In contrast, the scaling of the thermally induced spin
accumulation is opposite; �μ/�T increases as the tunnel
resistance is lowered, and reaches a large and constant value
when Rtun becomes smaller than rs (see Fig. 3, bottom panel).
This behavior is consistent with that obtained by numerical
evaluation of a free-electron model.24 It thus appears that
thermal injection is more efficient at small tunnel resistance,
whereas electrical creation of spin accumulation requires
sufficiently large tunnel resistance to overcome the impedance
mismatch. Note that in Fig. 3, we have neglected that S0 decays
for thinner tunnel barriers, because the decay is known to be
very weak51,52 and does not critically affect the main scaling
trend. It is also known that for an ultrathin tunnel contact,
the thermal (heat) conductance IQ/�T , with IQ the heat
current, is limited by the interfaces rather than the bulk thermal
heat conductance of the tunnel barrier material. Therefore the
thermal conductance IQ/�T is expected to be approximately
independent of Rtun. A similar trend would thus result if we
would plot �μ/IQ instead of �μ/�T . We thus find that the
spin accumulation per unit charge current is maximum for
large tunnel resistance, whereas the spin accumulation per
unit heat current across the tunnel barrier is maximum at small
tunnel resistance.

IV. SUMMARY

A phenomenological framework has been presented to
describe Seebeck spin tunneling, the thermoelectric analog
of spin-polarized tunneling. It was established that Seebeck
spin tunneling originates from the spin dependence of the
Seebeck coefficient of a tunnel junction with a ferromagnetic
electrode, i.e., S

↑
st �= S

↓
st . The connection with a tunnel spin

polarization PG that depends on energy was also made.
Seebeck spin tunneling creates a thermal flow of spin-angular
momentum across a tunnel barrier without a charge tunnel
current. In ferromagnet/insulator/semiconductor tunnel junc-
tions, it allows creation of a spin accumulation �μ in the
semiconductor by a temperature difference �T between the
electrodes. We expressed the thermal spin current, the induced
spin accumulation and �μ/�T in terms of the spin-dependent
Seebeck coefficients, tunnel resistance and spin resistance of
the nonmagnetic electrode. The thermally induced spin accu-
mulation produces an additional thermovoltage proportional
to �μ, which can significantly enhance the conventional
charge thermopower. Because the spin accumulation can be
manipulated via the Hanle effect, the thermopower depends on
a magnetic field, producing a Hanle magnetothermopower in
junctions in which only one of the electrodes is a ferromagnet.
The thermally induced spin accumulation was shown to be
maximum for smaller tunnel resistance, in contrast to the
electrically induced spin accumulation that suffers from the
impedance mismatch between a ferromagnetic metal and a
semiconductor. While the efficiency of electrical spin injection

is limited by the fact that |PG| � 1, no such restriction
exists for thermal spin current that is determined by the
energy derivative of PG, which is unbounded. With suitably
engineered materials, Seebeck spin tunneling is thus a viable
option for efficient creation of spin current.

APPENDIX: SPIN CURRENT AND ACCUMULATION IN
LIMITING REGIMES

1. Thermal spin current

There are two limiting regimes for Seebeck spin tunneling
(I = 0). When Rtun � rs , the induced �μ remains relatively
small and the feedback of �μ on the tunnel transport is
negligible. For this regime, one obtains

�μ

�T
≈ −2 (PL − PG)

(
rs

Rtun

)
S0

= (
1 − P 2

G

) (
rs

Rtun

)
(S↑

st − S
↓
st). (A1)

The spin accumulation decays at larger tunnel resistance
since for a tunnel contact S0 = −L/G depends only weakly
on Rtun. This is because all (thermal or electrical) tunnel
current components, and hence L and G, decay exponentially
with tunnel barrier width and height.51,52 When Rtun/rs <

(1 − P 2
G), we have

�μ

�T
≈ −2 (PL − PG)

1 − P 2
G

S0 = (S↑
st − S

↓
st). (A2)

In this regime, which corresponds to tunnel contacts with
sufficiently low-resistance area product, Sst and �μ do not
directly depend on Rtun.

2. Electrical spin current

For comparison, the spin accumulation �μel induced
by electrical injection of a spin-polarized charge current,
without a temperature difference across the tunnel barrier, is
given by

�μel = 2 rs Rtun

Rtun + (
1 − P 2

G

)
rs

PG I, (A3)

and the spin current is

I el
s = Rtun

Rtun + (
1 − P 2

G

)
rs

PG I. (A4)

We remark that it is customary39–42 to replace the real tunnel
resistance Rtun by (1 − P 2

G) r∗
B , introducing r∗

B as an effective
tunnel resistance. The prefactor then takes a more simple
form without the factor (1 − P 2

G). As a result, it is no longer
evident that in order to determine the transition into the regime
where the feedback of �μ on the tunneling becomes relevant,
one has to compare the tunnel resistance to (1 − P 2

G) rs . The
transition thus depends on the value of PG. We therefore
choose to retain the term (1 − P 2

G) explicitly.

094401-7



R. JANSEN, A. M. DEAC, H. SAITO, AND S. YUASA PHYSICAL REVIEW B 85, 094401 (2012)

1M. Johnson and R. H. Silsbee, Phys. Rev. B 35, 4959 (1987).
2Z.-C. Wang, G. Su, and S. Gao, Phys. Rev. B 63, 224419 (2001).
3E. McCann and V. I. Fal’ko, Phys. Rev. B 66, 134424 (2002).
4E. McCann and V. I. Fal’ko, J. Magn. Magn. Mater. 268, 123 (2004).
5A. Fukushima, K. Yamagi, A. A. Tulapurkar, Y. Suzuki, H. Kubota,
A. Yamamoto, and S. Yuasa, Jpn. J. Appl. Phys. 44, L12 (2005).

6A. Fukushima, H. Kubota, A. Yamamoto, Y. Suzuki, and S. Yuasa,
IEEE Trans. Magn. 41, 2571 (2005).

7L. Gravier, S. Serrano-Guisan, F. Reuse, and J. Ph. Ansermet, Phys.
Rev. B 73, 024419 (2006).

8L. Gravier, S. Serrano-Guisan, F. Reuse, and J.Ph. Ansermet, Phys.
Rev. B 73, 052410 (2006).

9M. Hatami, G. E. W. Bauer, Q. Zhang, and P. J. Kelly, Phys. Rev.
Lett. 99, 066603 (2007).

10M. Hatami, G. E. W. Bauer, Q. Zhang, and P. J. Kelly, Phys. Rev.
B 79, 174426 (2009).

11G. E. W. Bauer, A. H. MacDonald, and S. Maekawa, Solid State
Commun. 150, 459 (2010).

12K. Uchida et al., Nature (London) 455, 778 (2008).
13J. Xiao, G. E. W. Bauer, K. C. Uchida, E. Saitoh, and S. Maekawa,

Phys. Rev. B 81, 214418 (2010).
14J. Sinova, Nat. Mater. 9, 880 (2010).
15H. Adachi, K. Uchida, E. Saitoh, J. Ohe, S. Takahashi, and

S. Maekawa, Appl. Phys. Lett. 97, 252506 (2010).
16H. Adachi, J. I. Ohe, S. Takahashi, and S. Maekawa, Phys. Rev. B

83, 094410 (2011).
17K. Uchida, T. Ota, T. Nonaka, Y. Kajiwara, H. Adachi, S. Maekawa,

J. Xiao, G. E. W. Bauer, and E. Saitoh, e-print arXiv:1111.3036v1.
18K. Uchida et al., Nat. Mater. 9, 894 (2010).
19C. M. Jaworski, J. Yang, S. Mack, D. D. Awschalom, J. P. Heremans,

and R. C. Myers, Nat. Mater. 9, 898 (2010).
20C. M. Jaworski, J. Yang, S. Mack, D. D. Awschalom, R. C. Myers,

and J. P. Heremans, Phys. Rev. Lett. 106, 186601 (2011).
21S. Bosu, Y. Sakuraba, K. Uchida, K. Saito, T. Ota, E. Saitoh, and

K. Takanashi, Phys. Rev. B 83, 224401 (2011).
22A. Slachter, F. L. Bakker, J. P. Adam, and B. J. van Wees, Nat. Phys.

6, 879 (2010).
23A. Slachter, F. L. Bakker, and B. J. van Wees, Phys. Rev. B 84,

174408 (2011).
24J. C. Le Breton, S. Sharma, H. Saito, S. Yuasa, and R. Jansen,

Nature (London) 471, 82 (2011).
25P. M. Tedrow and R. Meservey, Phys. Rev. Lett. 26, 192

(1971).
26R. Meservey and P. M. Tedrow, Phys. Rep. 238, 173 (1994).
27J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys.

Rev. Lett. 74, 3273 (1995).

28S. Yuasa and D. D. Djayaprawira, J. Phys. D: Appl. Phys. 40, R337
(2007).

29M. Czerner, M. Bachmann, and C. Heiliger, Phys. Rev. B 83, 132405
(2011).

30M. Walter et al., Nat. Mater. 10, 742 (2011).
31N. Liebing, S. Serrano-Guisan, K. Rott, G. Reiss, J. Langer,

B. Ocker, and H. W. Schumacher, Phys. Rev. Lett. 107, 177201
(2011).

32W. Lin, M. Hehn, L. Chaput, B. Negulescu., S. Andrieu,
F. Montaigne, and S. Mangin, e-print arXiv:1109.3421v2.

33Ts. Naydenova, P. Dürrenfeld, K. Tavakoli, N. Pégard, L. Ebel,
K. Pappert, K. Brunner, C. Gould, and L. W. Molenkamp, Phys.
Rev. Lett. 107, 197201 (2011).

34J. C. Slonczewski, Phys. Rev. B 82, 054403 (2010).
35X. Jia, K. Xia, and G. E. W. Bauer, Phys. Rev. Lett. 107, 176603

(2011).
36H. Yu, S. Granville, D. P. Yu, and J. Ph. Ansermet, Phys. Rev. Lett.

104, 146601 (2010).
37E. Padrón-Hernández, A. Azevedo, and S. M. Rezende, Phys. Rev.

Lett. 107, 197203 (2011).
38G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J.

van Wees, Phys. Rev. B 62, R4790 (2000).
39E. I. Rashba, Phys. Rev. B 62, R16267 (2000).
40A. Fert and H. Jaffrès, Phys. Rev. B 64, 184420 (2001).
41A. Fert, J.-M. George, H. Jaffrès, and R. Mattana, IEEE Trans. Elec.

Dev. 54, 921 (2007).
42H. Jaffrès, J.-M. George, and A. Fert, Phys. Rev. B 82, 140408

(2010).
43K. Yakushiji, T. Saruya, H. Kubota, A. Fukushima, T. Nagahama,

S. Yuasa, and K. Ando, Appl. Phys. Lett. 97, 232508 (2011).
44B. Scharf, A. Matos-Abiague, I. Žutić, and J. Fabian, Phys. Rev. B
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