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Theory of rigid-plane phonon modes in layered crystals
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The lattice dynamics of low-frequency rigid-plane modes in metallic (graphene multilayers, GML) and in
insulating (hexagonal boron-nitride multilayers, BNML) layered crystals is investigated. The frequencies of
shearing and compression (stretching) modes depend on the layer number N and are presented in the form of fan
diagrams. The results for GML and BNML are very similar. In both cases, only the interactions (van der Waals and
Coulomb) between nearest-neighbor planes are effective, while the interactions between more distant planes are
screened. A comparison with recent Raman scattering results on low-frequency shear modes in GML [Tan et al.,
Nat. Mater., in press, doi: 10.1038/nmat3245, (2012)] is made. Relations with the low-lying rigid-plane phonon
dispersions in the bulk materials are established. Master curves, which connect the fan diagram frequencies for
any given N, are derived. Static and dynamic thermal correlation functions for rigid-layer shear and compression
modes are calculated. The results might be of use for the interpretation of friction force experiments on multilayer
crystals.
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I. INTRODUCTION

The experimental discovery of graphene and other free-
standing two-dimensional (2D) crystals1,2 has opened the
path for the synthesis of a whole class of layered materials
with novel physical properties and with a great potential
for technological applications.3 The most prominent mem-
ber, graphene—a monoatomic layer of crystalline C with
hexagonal structure—is a metallic conductor. In addition to an
unusual electronic spectrum, this material shows extraordinary
mechanical strength4 and thermal properties.5

On the other hand, 2D hexagonal boron nitride (h-BN) is an
insulator1,2 (3D h-BN has a direct band gap in the ultraviolet
region).6 While graphene is a purely covalent crystal, 2D
h-BN, built from III-V elements, has partially covalent and
ionic bonds. The ionic character is a consequence of the charge
transfer of ≈0.6 electrons from B to N.7 Since the crystal
structure of 2D h-BN is noncentrosymmetric (point group
symmetry D3h), the two sublattices (B+ and N−) exhibit an
electromechanical coupling. Hence 2D h-BN is the structurally
most simple crystal that, according to theoretical predictions,8

should be piezoelectric.
Nanoscale thin sheets of graphene, 2D h-BN and related

layered materials9 are of great importance for applications as
electronic devices and nanoelectromechanical systems. The
synthesis, characterization of multilayers, and the study of
their physical and chemical properties are the challenges of
current solid-state physics and materials science. In particular,
the change of properties with the number of layers and
the evolution of the layer system to the corresponding bulk
material are of foremost importance. Most remarkable is, for
instance, the change in electronic structure from graphene, a
zero-gap semiconductor, to graphite, a semimetal with band
overlap.10 These theoretical results are directly related to the
interpretation of electronic transport experiments.1,2,11 The
change in the electronic bands is reflected in the double reson-
ance Raman spectrum that clearly evolves with the number of
layers.12 Beside the electronic structure, the elastic properties

depend on the number of layers. Atomic force microscopy ex-
periments (AFM) on various thin-sheet materials demonstrate
that the nanoscale friction decreases with increasing number
of layers.13 It has been suggested that the trend arises from the
thinner sheets’ increased susceptibility to out-of-plane elastic
deformations.

Since physical properties vary with the number of layers, it
is important to study separately the lattice dynamics of modes
where the atomic planes move as rigid units. Since this motion
is governed by the weak interlayer forces, the corresponding
frequencies are low (�150 cm−1) in comparison with the
high-frequency optical modes (�1600 cm−1), which are due
to covalent intralayer forces. In graphite, these low-frequency
modes have been discovered half a century ago by inelastic
neutron scattering experiments.14 One distinguishes modes
where the planes move parallel to the hexagonal axis (we will
call these modes compression modes), and modes where the
planes move perpendicular to this axis (shear modes). Later on
the complete phonon dispersions associated with rigid-plane
motion have been measured by neutron scattering.15 The
rigid-plane (-layer) shear mode is optically active and has been
measured by Raman scattering in graphite16 and in 3D h-BN.17

Due to the weakness of the interlayer forces, the rigid-layer
shear frequency in graphite18 and in h-BN19 increases strongly
with applied pressure.

The measurement of rigid-layer modes in few-layer systems
has been an outstanding problem. Neutron scattering is not
an adequate technique since the samples are too small. Most
recently, the interlayer shear modes in few-layer graphene
systems have been uncovered by Raman spectroscopy.20 The
increase of the resonance frequency with increasing layer
number provides a unique signature for few-layer graphene
systems and for multilayers in general.

In the present paper, we report on theoretical studies of low-
frequency rigid-layer shear modes and compression modes
in graphene- and boron-nitride multilayers. While the high-
frequency optical mode spectra of graphene- and boron-nitride
multilayers are very different due to the efficiency of Coulomb
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FIG. 1. (Color online) Brillouin zone of the 3D hexagonal
primitive lattice �h; the shaded hexagon containing the �, M, and
K points is the Brillouin zone of a 2D hexagonal crystal.

forces in the latter,21 the low-frequency optical mode spectra
in both systems turn out to be very similar.

The content of the paper is as follows. First (see Sec. II), we
present the main theoretical concepts that are used to treat by
analytical means the lattice dynamics of multilayer systems.
Within a same formalism, we consider graphene multilayers
and h-BN multilayers. The phonon dispersion relations of
the corresponding rigid-layer motions (compression and shear
modes) are calculated in Sec. III. The dependence of the
frequency spectra on the number of layers N is presented in
the form of fan diagrams. Next (see Sec. IV), we compare the
theoretical results with experiment. Then, we derive relations
between the phonon frequencies of the rigid layer systems and
the dispersions of the corresponding bulk materials. We derive
master curves that allow to connect the fan diagram frequencies
for any given N. In Sec. V, we calculate static and dynamic
thermal displacement correlation functions. The temperature
dependence of displacement correlations of surface layers
is calculated, the dependence on the layer number N is
investigated. Concluding remarks (see Sec. VI) close the
paper.

II. LATTICE DYNAMICS

In previous work, we have studied by analytical methods the
phonon dispersion relations for graphene multilayers (GML)22

and h-BN multilayers (BNML).21 Here, we briefly recall the
main concepts. Both graphene and 2D h-BN have the same
symmetry D3h with two atoms per unit cell. Since each atom
has three degrees of freedom, the dynamical matrix D(�q⊥) for
the planar problem has dimension 6 × 6. Here, �q⊥ is the wave
vector in the 2D Brillouin zone (see Fig. 1). The 3D parent
crystals, graphite and bulk h-BN have the same space group
symmetry, P 63/mmc (D4

6h). Since in both cases there are four
atoms per unit cell, the corresponding dynamical matrices are
of dimension 12 × 12. In the case of GML, electron diffraction
experiments12 have shown that the stacking of atomic planes is
the same as in graphite (. . .ABAB. . .).23 In 3D h-BN, each B
atom is on top of a N atom in the adjacent plane and vice versa,
with . . .AA′AA′ . . . stacking.24 We assume that the same holds
for BNML.

We will use a unified description of the dynamical matrix
for GML and BNML; the differences in structure and in
interatomic (ionic) forces will be taken into account in the
numerical evaluation of the secular equation. We consider a
slab of a finite number of N layers; the layers are labeled by
an index l ∈ {0,1, . . . ,N − 1}. The distance between nearest-
neighbor planes that are perpendicular to the crystallographic
�c axis is c/2. Since the slab is infinitely extended only in
two dimensions, we regard it as a 2D crystal that consists
of prismatic unit cells25 with basis area a2

√
3/2 and height

Nc/2. We recall that a = |�a1| = |�a2| is the length of the lattice
translation vectors of the 2D hexagonal basis crystal.23 Each
unit cell contains N pairs of atoms (C,C) or (B,N) in the case
of GML or BNML, respectively. Since each atom has three
vibrational degrees of freedom i (j ) ∈ {x,y,z}, the N-layer
slab has 6N vibrational modes.

In order to calculate the phonon dispersion relations, we
construct the 6N × 6N dynamical matrix �N(�q⊥). In terms
of 6 × 6 submatrices D(l,l′| �q⊥) with elements Dκκ ′

ij (l,l′|�q⊥),
where κ (κ ′) takes two values κ (κ ′) ∈ {C,C} or {B,N}
that corresponds to {C,C} or {B,N}, the dynamical matrix
reads

�N(�q⊥) =

⎛
⎜⎜⎜⎜⎜⎜⎝

D(0,0|�q⊥) D(0,1|�q⊥) D(0,2|�q⊥) . . . D(0,N − 1|�q⊥)

D(1,0|�q⊥) D(1,1|�q⊥) D(1,2|�q⊥) . . . D(1,N − 1|�q⊥)

D(2,0|�q⊥) D(2,1|�q⊥) D(2,2|�q⊥) . . . D(2,N − 1|�q⊥)
...

...
...

. . .
...

D(N − 1,0|�q⊥) D(N − 1,1|�q⊥) D(N − 1,2|�q⊥) . . . D(N − 1,N − 1|�q⊥)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (1)

Here, we take into account the interaction within a same layer
(l = l′) and interactions between layers separated by a distance
(l − l′)c/2, l �= l′. The “same-plane” matrices D(l,l|�q⊥) are
given by

D(l,l|�q⊥) = D(l,l|�q⊥) + K(l,l|�q⊥ = 0), (2)

where D(l,l|�q⊥) is the dynamical matrix of the lth monolayer
while K(l,l|�q⊥ = �0) accounts for the self-interaction due to
interplane couplings. Assuming that the in-plane interactions
are the same for all planes, one has in terms of elements

Dκκ ′
ij (l,l|�q⊥) = Fκκ ′

ij (l,l|�q⊥) + Cκκ ′
ij (l,l|�q⊥). (3)
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The matrices F and C stand for the in-plane covalent and
Coulomb interactions, respectively. In the case of GML, only
covalent interactions are taken into account, F �= 0, C = 0;
in the case of BNML, both F and C are taken into account.
The interplane coupling matrices D(l,l′|�q⊥), l �= l′ in Eq. (1)
are due to van der Waals and Coulomb interactions J and C,
respectively:

Dκκ ′
ij (l,l′|�q⊥) = J κκ ′

ij (�q⊥)δl′,l±1 + Cκκ ′
ij (l,l′|�q⊥). (4)

Here, again Coulomb interactions are relevant for BNML with
1 � |l − l′| � N − 1, while for both BNML and GML van
der Waals forces act between nearest-neighbor planes only.
Hence in the case of GML, only nearest-neighbor off-diagonal
elements D(l,l ± 1|�q⊥) are nonzero in Eq. (1) [see Eq. (27) of
Ref. 22].

In calculating the submatrices F (l,l|�q⊥), we take into
account intraplane covalent interactions by means of a force-
constant model originally derived from in-plane inelastic x-ray
scattering experiments on single crystals of graphite.26 In case
of BNML, intra- and extraplane Coulomb interaction matrices
are calculated by means of Ewald’s method.27 We have solved
numerically the secular determinant of order 6N,

|1ω2 − �N(�q⊥)| = 0, (5)

and obtained the phonon dispersion relations for GML22 and
BNML.21 In terms of eigenvalues [ωλ(�q⊥)]2 and orthogonal
eigenvectors �ξλ(�q⊥) we have[

ωλ(�q⊥)
]2 =

∑
ll′

∑
κκ ′

∑
ij

ξ
(l,κ)∗
i (λ,�q⊥)Dκκ ′

ij (l,l′|�q⊥)

× ξ
(l′,κ ′)
j (λ,�q⊥). (6)

Here, λ labels the 6N eigenmodes. We discern three acoustic
modes such that ωλ(�q⊥ = �0) = 0 for λ = 1,2,3, and 6N − 3
optical modes with ωλ(�q⊥) �= 0 for all values of �q⊥. Among
the latter, we distinguish near �q⊥ = �0 3N atomic vibrational
modes (in-plane and out-of-plane displacements) and 3(N −
1) rigid-plane modes.

As has been shown previously,21 marked differences be-
tween GML and BNML appear in the highest optical branches
with frequencies ≈1300–1500 cm−1. These modes are due
to intraplane shear displacements where the Coulomb forces
in BNML are efficient. On the other hand, for a given N,
the low-frequency (<200 cm−1) optical phonon dispersions
in GML and BNML are very similar.21,22 These modes are
due to rigid-plane compression and shear displacements. As a
consequence of the overall charge neutrality of the BN atomic
planes, the Coulomb forces between nearest-neighbor rigid
planes are screened and hence there is no qualitative difference
between GML and BNML rigid-plane modes. In the following
section, we will discuss the evolution of the rigid-layer modes
with the number of layers.

III. RIGID-LAYER MODES

We first recall the situation in the 3D parent materials
graphite and h-BN. Since the point group symmetry is D6h,
the decomposition into irreducible representations of the
optical displacements at the center of the Brillouin zone
(see Fig. 1) reads28,29 � = A2u + 2B2g + E1u + 2E2g . While

six of these modes are high-frequency interplane vibrational
modes (800–1600 cm−1), one of the doubly degenerate E2g

modes and one B2g mode refer to low-frequency rigid-plane
motions. We denote these modes by E2g1 and B2g1 . The
E2g1 mode corresponds to the rigid-plane shear displacements
perpendicular to the crystallographic �c axis. This mode
has been measured in graphite by Raman reflectivity29 at
42 ± 1 cm−1 and is called “rigid-layer shear” mode. It can be
identified with the zero wave-vector transverse optical mode
(TO) near 1.35 THz measured first by neutron scattering in
high-quality pyrolytic graphite.15 The B2g1 mode corresponds
to a rigid-layer compression mode along the �c axis. This
mode is optically inactive, however, it appears near 3.9 THz
(≈130 cm−1) in neutron scattering.15 For a more complete
discussion of the early work, we refer to Ref. 16. A discussion
of the zone-center optical modes in h-BN was originally given
in Ref. 30, the E2g1 rigid-layer shear mode was observed
by Raman scattering17 at 51.8 cm−1. Recently, the phonon
dispersions of h-BN have been measured by inelastic x-ray
scattering and analyzed by ab initio calculations.31 At the �

point, the E2g1 rigid-layer shear mode has energy 6.5 meV
(52 cm−1), the compression rigid-layer mode (called there
B1g) has energy 15 meV (121 cm−1).

In the N-layer system, the 3(N − 1) rigid-plane optical
modes at the center of the 2D Brillouin zone decompose
into N − 1 compression modes with frequencies ωλc

(�q⊥ = �0),
λc = 1,2,3, . . . ,N − 1 and eigenvectors �ξ (λc,�q⊥ = �0) and
into N − 1 doubly degenerate shear modes with frequencies
ωλs

(�q⊥ = �0) and eigenvectors �ξ (λ(1)
s ,�q⊥ = �0) or �ξ (λ(2)

s ,�q⊥ =
�0), where λ(1)

s (λ(2)
s ) = 1,2,3, . . . ,N − 1. The degeneracy of

the shear modes is a consequence of hexagonal symmetry
at �q⊥ = �0. The compression and shear modes correspond,
respectively, to the low-frequency modes B2g1 and E2g1 of
the bulk materials. Since the λc modes have only nonzero
displacement components along the z direction (�c axis), while
the λs modes have only nonzero x and y components, one has
the simplified orthonormality conditions:

∑
l,κ

ξ (l,κ)
z (λc,�0)ξ (l,κ)

z (λ′
c,

�0) = δλcλ′
c
, (7)

∑
i

∑
l,κ

ξ
(l,κ)
i (λs,�0)ξ (l,κ)

i (λ′
s ,

�0) = δλsλ′
s
, (8)

where i ∈ {x,y}. The eigenvector components fulfill the
relations

ξ
(l,κ)
i (λα,�0)√

mκ

= ξ
(l,κ ′)
i (λα,�0)√

mκ ′
, κ �= κ ′, (9)

where mκ is the mass of atom κ , λα = λc (λs) for i = z

(x,y). Hence atoms within a same plane l experience equal
displacements. In addition, one has

∑
l

ξ
(l,κ)
i (λα,�0) = 0, (10)

where α = s for i ∈ {x,y} and α = c for i = z, which means
that the center of mass of the N-layer system stays at rest.
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(a) (b)

(c) (d)

(e) (f)

FIG. 2. (Color online) Rigid-plane shear and compression dis-
placements for N = 2 (a) and (b), respectively, and for N = 3,
(c) and (e) and (d) and (f), respectively.

As an example, we first consider GML. For the case N = 2
(bilayer), we obtain the rigid-plane shear mode eigenvectors
with 12 components:

�ξN=2(x) = 1
2 (1,0,0,1,0,0,−1,0,0,−1,0,0), (11)

�ξN=2(y) = 1
2 (0,1,0,0,1,0,0,−1,0,0,−1,0), (12)

with degenerate eigenfrequency 30.4 cm−1 [see Fig. 2(a)].
Here, the components 1−3 and 4−6 refer to the Cartesian
displacements of the first (κ = 1) and second (κ = 2) atom
in plane l = 1, respectively, while the components 7−9 and
10−12 refer to the displacements of the two atoms in the plane
l = 2. The rigid-plane compression mode eigenvector for the
bilayer reads

�ξN=2(z) = 1
2 (0,0,1,0,0,1,0,0,−1,0,0,−1), (13)

with eigenfrequency 90.1 cm−1 [see Fig. 2(b)].
For the case N = 3, there are two doubly degenerate

shear modes with frequencies 21.5 and 37.2 cm−1, shown,
respectively, in Figs. 2(c) and 2(e), and two compression
modes with frequencies 63.7 and 110.4 cm−1, in Figs. 2(d)
and 2(f). We notice that for one degenerate shear mode and
one compression mode [see Figs. 2(c) and 2(d)], the center
plane undergoes no displacement. This feature is characteristic
for all multilayers with N uneven. On the other hand, the
displacements of the two outer layers are opposite to the
displacements of the inner (central) layer [see Figs. 2(e)
and 2(f)], in agreement with the general requirement that
the center of mass of the N-layer system stays at rest. We
have plotted the calculated frequencies of the rigid-plane shear
modes and compression modes for GML as a function of the
layer number N in the form of fan diagrams in Fig. 3(a).
The lower set (red, filled circles), centered around the bilayer
shear frequency 30.4 cm−1, corresponds to the rigid-layer
shear modes {ωλs

(N)}; the upper set (blue, open circles),
centered around the bilayer compression frequency 90.1 cm−1

corresponds to the rigid-layer compression modes {ωλc
(N)}.

In the fan diagram of shear motions for GML, the sequence
of frequencies at 30.4 cm−1, which occurs for even values
of N, refers to the situation where the N/2 upper planes of

FIG. 3. (Color online) Rigid-layer frequencies ω(N) at the �

point for (a) GML and (b) BNML as a function of number of layers
N. Lines connecting the frequency points are master curves given by
Eqs. (18) and (19). For both GML and BNML, the two sets of points
(red, filled circles and blue, open circles) are referred to as lower and
upper fan diagrams, respectively.

the system move in unison in the direction perpendicular to
the hexagonal axis (�c), while the N/2 lower planes move
in unison in the opposite direction. The same holds for the
compression motions where the frequencies at 90.1 cm−1 in
the fan diagram correspond to two sets of unison motions with
opposite direction along �c.

Proceeding along the same lines, we have calculated
the rigid-layer eigenfrequencies and displacement vectors
for the case of BNML. Shown in Fig. 3(b) are again the
eigenfrequency fan diagrams as a function of N. The lower
set (red, filled circles) corresponds to the rigid-layer shear
modes and is centered around the BN bilayer shear frequency
38.6 cm−1, the upper set (blue, open circles), centered around
the BN bilayer compression frequency 86.3 cm−1 corresponds
to the rigid-layer compression modes.

Here, some considerations on symmetry and optical activity
are in order. For GML modes, symmetry has been discussed
in Ref. 32. We recall that . . .ABAB. . . stacked graphite and
. . .AA′AA′. . . stacked h-BN have the same space group D4

6h.
Likewise, for both GML and BNML, in case of an even
number of layers the symmetry group is D3d and in case
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TABLE I. Eigenmodes and symmetry species. Columns s and c
refer to shear and compression modes, respectively. Modes Eg , A1g ,
A′

1, E′′ are Raman active, Eu, A2u, A′′
2 are infrared (IR) active, and

E′ is Raman and IR active.

N eigenmodes s c

2 [−+] Eg A1g

3 [−0+] E′′ A′
1

[− + −] E′ A′′
2

4 [− − ++] Eg A1g

[− + +−] Eu A2u

[− + −+] Eg A1g

5 [− − 0 + +] E′′ A′
1

[− + + + −] E′ A′′
2

[− + 0 − +] E′′ A′
1

[− + − + −] E′ A′′
2

of an odd number of layers is D3h. The decomposition in
irreducible representations33 reads D3d = A1g + A2g + Eg +
A1u + A2u + Eu and D3h = A′

1 + A′
2 + E′ + A′′

1 + A′′
2 + E′′.

In Table I, we have listed the eigenmodes and their symmetry
for the cases N = 2, . . . ,5. Thereby, we use the notation that
two planes with opposite direction of displacements (either
both ⊥ to �c or both ‖ to �c) are marked by + and − signs while
a plane at rest is marked by 0. For instance, Figs. 2(c) and
2(d) have the symbol [+0−]. The eigenmodes are quoted in
order of increasing frequency for a given N. Obviously, the
frequency increases with the number of +− neighbors.

In the next section, we discuss these results and compare
with recent experiments and ab initio calculations on GML.20

IV. DISCUSSION OF RESULTS

A. Comparison with experiment

Given the similarity of the fan diagrams [see Figs. 3(a)
and 3(b) for GML and BNML, respectively], we first dis-
cuss some general features. We recall that for the GML
systems, we have only taken into account van der Waals
forces between nearest-neighbor planes. On the other hand,
we have treated the BNML systems as ionic crystals. In
addition to van der Waals forces between nearest-neighbor
planes, we have summed the Coulomb interactions over all
planes. Obviously, the overall charge neutrality and the layer
rigidity, i.e., the absence of relative motion between the B+
and N− sublattices, leads to a screening of the Coulomb
interactions between next-nearest-neighbor and more distant
h-BN planes. Hence the low-frequency fan diagrams for GML
and BNML are very similar. We recall that the screening effect
disappears for non-rigid-layer displacements, as is seen from
the high-frequency (�1300 cm−1) optical mode dispersions
in BNML,21 which are qualitatively very different from the
corresponding dispersions in GML.22

The similarity of the low-frequency results of GML and
BNML is also reflected by the low-frequency spectra of the
3D parent materials. We recall that transverse acoustic (TA)
and optical (TO) as well as longitudinal acoustic (LA) and
optical (LO) phonon dispersions along �q = (0,0,qz) were first
measured by neutron scattering15 in pyrolytic graphite and

(a)

(b)

FIG. 4. (Color online) Low-frequency phonon branches along A–
� [�q = (0,0,qz) : (0,0, π

c
) −→ �0] for (a) graphite and (b) 3D h-BN.

Cuts at well defined values of qz (marked by vertical lines and labels at
the top horizontal axis) yield the � point frequencies of the multilayers
(see text).

recently by inelastic x-ray scattering in single crystals of
graphite26 and in h-BN.31 In Figs. 4(a) and 4(b), we have
plotted the low-frequency phonon dispersion relations for
graphite22 and for bulk h-BN21 along the line A–� in the
3D Brillouin zone (see Fig. 1). Similar results have been
obtained earlier by first-principles calculations for graphite34,35

and h-BN.36

We first discuss the low-frequency dispersions of graphite
in relation with the GML low-frequency shear modes. The
two lowest branches (TA and TO) in Fig. 4(a) (red, full
lines) refer to the acoustic and optical rigid-plane shear
motion, respectively. The optical branch TO evolves from the
frequency value 30.4 cm−1 at the A point of the Brillouin
zone to 43.0 cm−1 at the � point. We notice that the value at
the A point [�qA = (0,0, π

c
)] agrees with the rigid-plane shear

frequency 30.4 cm−1 of the bilayer at �q⊥ = �0 and with the
center points for even N in the lower fan diagram of Fig. 3(a)
(red, filled circles). We attribute this agreement to the fact
that in our calculation on graphite and multilayer systems, we
have restricted ourselves to van der Waals interactions between
nearest-neighbor planes only.22 However, since this is a well
justified approximation, this correspondence should also be
valid experimentally (inelastic neutron scattering on graphite15

gives ν � 1 THz at the A point, most recent low-frequency
Raman experiments20 measure a shear frequency of 31 cm−1

for bilayer graphene). The value 43.0 cm−1 of the E2g1 mode
at the � point of the 3D system corresponds to the limit value
for large N of the sequence of highest frequencies {ωh

λs
(N)} =

{30.4 cm−1, 37.2 cm−1, 39.7 cm−1, . . ., 42.4 cm−1, . . .} for
N = {2,3,4, . . . ,10, . . .}, respectively.

In case of h-BN [see Fig. 4(b)], the rigid-layer shear mode
TO evolves from 38.6 cm−1 at A to 54.5 cm−1 at � (symmetry
E2g1 ). Notice that the value at A agrees again with the shear
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mode frequency of the bilayer. Here, the Coulomb interaction
is only effective between nearest-neighbor layers and screened
between more distant layers in the bulk system and in N-layer
systems. The value at � agrees with the corresponding limit
frequencies {ωh

λs
(N)} of BNML for N −→ ∞.

The sequence of frequencies {ωh
λs

(N)} has been mea-
sured recently in GML up to N = 11 by polarized Raman
techniques.20 These experiments demonstrate that the shift of
the resonance (called C peak)20 with N being truly represen-
tative of the GML system. Furthermore, the authors of Ref. 20
have studied the eigenfrequencies and eigenvectors of the
N-layer shear modes by using a simple linear-chain model and
by performing ab initio calculations up to N = 5. Comparing
our own calculated values of the shear-mode eigenfrequencies
with those of Ref. 20, we see close agreement.

It is useful to trace back this agreement on the level of
interlayer van der Waals (vdW) interactions. From experiment,
the authors of Ref. 20 derive that the interlayer force constant
per unit area α has the value α ∼ 12.8 × 1018 N/m3. The
area of the unit cell in graphene is v2D = a2

√
3/2 = 5.24 ×

10−16 cm2 (a = 2.46 Å). We then define the interlayer force
constant per unit cell α̃ = αv2D with value 670 dyn/cm. In
Ref. 20, the rigid-layer shear frequency of graphite is obtained
as the limit for N −→ ∞ of the GML frequency ωN and reads
ω∞ = 2

√
α/μ. Here, μ = 2M/v2D = 7.6 × 10−8 g/cm2 is

the mass per unit area (M = 12 u for C). Writing then ω∞ =√
2α̃/M , we compare with the expression of the rigid-layer

shear mode in graphite ω(E2g1 ), see Eq. (31) of Ref. 22. It is
straightforward to recast this expression in the form ω(E2g1 ) =√

2h̃xx/M , where h̃xx is a sum of interatomic vdW force
constants between next-neighbor graphene planes. With the
values of Ref. 22, we obtain h̃xx = 654 dyn/cm, comparable
with 670 dyn/cm.20 For the graphene bilayer, we obtain
ωλs

(N = 2) =
√

h̃xx/M and hence ω(E2g1 ) = √
2ωλs

(N = 2).
We recall that the values of these interlayer shear force
constants have to be chosen ad hoc, they can not be obtained
from currently accepted Lennard-Jones potentials for C-C
vdW interactions.37 Similar relations hold for the rigid-layer
compression modes. We obtain ω(B2g1 ) =

√
2h̃zz/M and for

the bilayer, ωλc
(N = 2) = ω(B2g1 )

√
2. The force constant is

given by h̃zz = 5755 dyn/cm.

B. Relation with bulk dispersions

We now establish quantitative relations between the shear-
mode eigenfrequencies {ωλs

(N)} of the multilayers GML and
BNML and the TA and TO dispersions with wave vector
�q = (0,0,qz) along A–� in graphite and h-BN, respectively.
With the N-layer system we associate a quantized wave length
νλz = Nc/2 or equivalently a wave vector qN

z (ν) = 4πν/Nc,
where ν is an integer in the interval 1 � ν � N/2. The center
of mass of the multilayer system stays at rest in displacements
associated with the wave vector �qN

z (ν). We calculate the sum
of phase factors of the corresponding displacement pattern,

N−1∑
n=0

eiqN
z (ν) n

2 c = sin(πν)ei(N−1) πν
N

sin
(

πν
N

) , (14)

which is zero since ν is an integer in the interval [1,N/2].
Since the nearest distance between equivalent planes in the
bulk materials is 2(c/2), we have the correspondence

qz(ν) ≡ qN
z (ν)

2
= 2π

c

ν

N
. (15)

We find that the N − 1 rigid-layer shear modes {ωλs
(N)} of

the N-layer system are obtained as the intersections of the
two lowest phonon branches TA and TO in Fig. 4(a) (red, full
lines) with vertical lines located at �q = [0,0,qz(ν)], ν integer
∈ [1,N

2 ]. For N even, the value ν = N
2 corresponds to �q =

(0,0, π
c

), i.e., the A point of the 3D Brillouin zone. Hence one
obtains the series of central points with constant frequencies
in the fan diagrams. These are located at ω = 30.4 cm−1 for
the shear modes in GML [see Fig. 3(a)], and at ω = 38.5 cm−1

for the shear modes in BNML [see Fig. 3(b)]. The cuts of the
graphite A–� branches resulting in the GML fan diagrams for
N � 10 are shown in Fig. 4(a) by vertical lines at qz given by
Eq. (15); the values of c

π
qz = 2ν

N
as well as the corresponding

N values are labeled on the top horizontal axis. Note that the
frequencies present for N are also present for all multiples of
N. Also note that in the limit N −→ ∞, a cut of the graphite
A–� branches at qz = 0, i.e., the � point, is reached, consistent
with the observation that the frequency of the E2g1 mode at
the � point (ω = 43.0 cm−1) corresponds to the limit value of
the highest frequencies {ωh

λs
(N)} of the lower fan diagram of

Fig. 3(a) (red, filled circles) mentioned before. On the other
hand, the lowest frequencies {ωl

λs
(N)} of the lower fan diagram

of Fig. 3(a) (red, filled circles) evolve to zero for N −→ ∞, in
agreement with the limit of the TA branch with qz −→ 0. We
next consider the rigid-plane compression modes {ωλc

(N)} in
GML, upper fan diagram of Fig. 3(a) (blue, open circles). Here
too, the relation [see Eq. (15)] with the LA and LO modes in
graphite can be established. The two branches meet at the A
point at 90.1 cm−1, which agrees with the value of the bilayer
and rigid-plane compression eigenfrequency at �q⊥ = �0. The
frequency ω(B2g1 ) = 127.5 cm−1 of the LO branch at � in
graphite corresponds to the limit for large N of the sequence
of highest eigenfrequencies of the compression modes in
GML {ωh

λc
(N)} = {90.1 cm−1, 110.4 cm−1, 117.8 cm−1, . . .,

125.9 cm−1, . . .} for N = {2,3,4, . . . ,10, . . .}, respectively.
Here, the lowest frequencies {ωl

λc
(N)} tend to zero for N −→

∞, in agreement with the TA branch. The evolution of this
mode with increasing number of layers has already been
studied in one of our previous papers.22 Since the B2g1 mode in
graphite is optically silent, this prediction has not been checked
by experiment. However, from a group-theoretical analysis, it
has been concluded32 that in GML with N even there are
N/2 compression modes with symmetry A1g that are Raman
active. Also for the case of N uneven, infrared active modes
should occur. Again, the eigenfrequencies plotted in the upper
fan diagram in Fig. 3(a) coincide with the intersections of the
vertical lines �q = (0,0,qz) with qz given by Eq. (15) with the
LO and LA phonon branches along A–� in graphite. From a
comparison of low-frequency out-of-plane phonon dispersions
of N-layer graphene at � and the low-frequency dispersions
LO, LA of graphite along �–A, it has been inferred38 that a
relation like Eq. (15) holds, however, with ν = 0,1, . . . ,N − 1.
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This range of ν overestimates the number of rigid plane
compression modes by more than a factor 2.

We now turn to BNML. Comparing with the low-frequency
dispersions TA, TO, and LA, LO of h-BN along A–� in
the Brillouin zone, we find that the intersections obtained
by means of Eq. (15) determine again the eigenfrequencies
of the multilayers. This holds as well for the shear modes
{ωλs

(N)} as for the compression modes {ωλc
(N)} [lower and

upper fan diagrams in Fig. 3(b), respectively] and is illustrated
in Fig. 4(b).

Having established the relation between the A–� phonon
branches TO, TA, and LO, LA of the 3D materials and the
eigenfrequencies {ωλs

(N)} and {ωλc
(N)} at the � point of

the multilayers for rigid-shear and rigid-compression modes
[see Eq. (15)], it is possible to deduce ω(N) master curves
connecting the fan diagram frequencies (see Fig. 3). The
following considerations hold for the shear modes as well
as for the compression modes. In the former case, ωA and
ω� stand for ωTO

A and ωTO
� , respectively, in the latter case, for

ωLO
A and ωLO

� . First, one needs to consider each fan diagram
as a set of pairs of ω(N) curves; at (N,ω) = (2n,ωA), with
n = 1,2,3, . . ., a pair of curves (one increasing, the other
decreasing) originates. From Eq. (15), it follows that the
frequencies lying on the curves originating at (ωA,2n) are ob-
tained by cutting the corresponding A–� branches of the
3D material at Qn ≡ c

π
qz(n) = 2n

N
, with N = 2,3,4, . . .. The

curves containing the highest and lowest frequencies (n = 1)
are, e.g., obtained by cuts at Q1 = 2

2 , 2
3 , 2

4 , . . .. Secondly, the
A–� 3D phonon branches can be extremely well approximated
by second-degree curves. For the optical branches, satisfying
ω(Q ≡ c

π
qz = 0) = ω� , ω(Q = 1) = ωA and dω

dQ
|Q=0 = 0,

we put

ω+(Q) = ω� − (ω� − ωA)Q2. (16)

For the acoustic branches, for which ω(Q = 0) = 0 and
ω(Q = 1) = ωA, we assume

ω−(Q) = ωAQ[(1 + r) − rQ], (17)

with r a dimensionless fit parameter. The superscripts “+”
and “−” refer to the increasing and the decreasing curves,
respectively. Now inserting Qn = 2n

N
results in

ω+
n (N) = ω� − (ω� − ωA)

4n2

N2
, (18)

ω−
n (N) = ωA

2n

N

[
(1 + r) − r

2n

N

]
. (19)

The ω+
n (N) and ω−

n (N) curves plotted in Figs. 3(a) and 3(b)
have been obtained by evaluating Eqs. (18) and (19). For
the latter, values of r = 0.165 and 0.166 were fitted for
GML and BNML, respectively. The agreement between the
multilayer phonon frequencies, obtained by diagonalizing the
6N × 6N dynamical matrix, and the master curves, obtained
by making cuts of the A–� 3D phonon branches, is perfect.
Quadratic-form assumptions for the A–� rigid-shear and
rigid-compression phonon branches obviously work extremely
well (for both graphite and h-BN). Expression (17) for ω−(Q)
is readily used to calculate the sound velocity of LA and

TA phonons in the bulk materials. Substituting Q = c
π
qz in

Eq. (19), we obtain

V = lim
qz−→0

∂ω−

∂qz

= ωA
c

π
(1 + r). (20)

With c = 6.7 Å, ωLA
A = 90.1 cm−1, and ωTA

A = 30.4 cm−1, we
obtain, in case of graphite, the longitudinal and transverse
sound velocities: VLA = 4.22 km/s and VTA = 1.42 km/s.
The experimental values are 4.14(4) and 1.48(6) km/s,
respectively.39 For h-BN, with c = 6.66 Å, ωLA

A = 86.3 cm−1,
and ωTA

A = 38.6 cm−1, we obtain VLA = 4.02 km/s and VTA =
1.79 km/s, to be compared with the experimental values40

3.44(3) and 1.84(6) km/s, respectively. Note further that the
evolution of the rigid modes’ highest frequencies (shear and
compression) is given by

ω+
1 (N) = ω� − (ω� − ωA)

4

N2
. (21)

The procedure of obtaining the phonon eigenfrequencies
of the multilayer system by making intersections of the A–�

phonon branches of the 3D material is the analog of the zone-
folding scheme where the phonon dispersion relations of 1D
carbon nanotubes are obtained from 2D graphene.41,42

The qualitative agreement between the calculated rigid
multilayer frequencies and the interactions of the A–� 3D
low-lying phonon branches indicates that surface relaxations
and reconstructions of the boundary layers are negligible. We
mention that first-principles calculations32 show that these
effects are absent in GML. We attribute this fact to the
dominant role of the strong intralayer bonding (covalent
in GML and partially covalent and ionic in BNML). The
intralayer bonding in few-layer systems is quasi of the same
strength as in the bulk materials. This fact justifies our choice
of force constant models from the bulk materials.

V. DISPLACEMENT CORRELATIONS

Having determined the eigenfrequencies and eigenmodes
for GML and BNML systems, we will calculate the
temperature-dependent dynamic and static correlation func-
tions. The knowledge of these functions is relevant for the
interpretation of scattering experiments and is likely to be use-
ful for friction experiments.13 We use a quantum-mechanical
formulation of lattice dynamics in the harmonic approximation
and extend the standard theory of 3D crystals27 to the case
of multilayers. For a given N-layer system, we consider
the time-dependent displacement operator ui(�n⊥,l,κ; t). Here,
i ∈ {x,y,z}, �n⊥ refers to the prismatic unit cell,21 l to the
multilayer plane, 0 � l � N − 1, κ to the atom of mass mκ , t

stands for time. The expansion in terms of normal coordinates
Qλ(�q⊥; t) reads

ui(�n⊥,l,κ; t)

= 1√
N⊥mκ

∑
�q⊥,λ

ξ
(l,κ)
i (λ,�q⊥)Qλ(�q⊥; t)ei �q⊥· �X(�n⊥,l,κ). (22)

Here, �X(�n⊥,l,κ) is the equilibrium position of the atom
(�n⊥,l,κ) in the multilayer crystal, N⊥ the number of unit cells.
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In terms of phonon creation (b†) and annihilation (b) operators,
the time-dependent normal coordinate reads

Qλ(�qλ; t) =
√

h̄

2ωλ(�q⊥)
[b†λ(−�qλ)eiωλ(�q⊥)t + bλ(�qλ)e−iωλ(�q⊥)t ].

(23)

One has the usual commutation relations for Bose operators:

[bλ(�q⊥),b†λ′(�q ′
⊥)] = δ�q ′

⊥δλλ′ , (24)

[bλ(�q⊥),bλ′ (�q⊥)] = [b†λ(�q⊥),b†λ′ (�q ′
⊥)] = 0. (25)

The thermal occupation of phonons with polarization λ and
frequency ωλ(�q⊥) is given by

〈b†λ(�q⊥)bλ(�q⊥)〉 ≡ nλ(�q⊥) = 1

eβh̄ωλ(�q⊥)−1
, (26)

where β = kBT , T is the temperature, and kB the Boltzmann
constant.

In the case of rigid-layer displacements, we retain at �q⊥ = �0
those eigenmodes that satisfy Eqs. (7)–(10), and we denote
the eigenfrequencies ωλα

(�q⊥ = �0) by ωλα
and the occupation

number nλα
(�q⊥ = �0) by nλα

. Here again, λα = λs refers to
rigid-layer shear modes and λα = λc to rigid-layer com-
pression modes. The rigid-layer displacement-displacement
dynamical correlation function reads

〈ui(�n⊥,l,κ; t)ui(�n⊥,l,κ; 0)〉N
= 1

N⊥mκ

∑
λα

ξ
(l,κ)
i (λα,�0)ξ (l,κ)

i (λα,�0)
〈
Qλα

(�0; t)Qλα
(�0; 0)

〉
N

.

(27)

We have taken into account that only terms diagonal in λα

contribute to the thermal average 〈 〉. Evaluation of the thermal
average gives〈
Qλα

(�0; t)Qλα
(�0; 0)

〉
N

= h̄

2ωλα

[
nλα

eiωλα t + (
1 + nλα

)
e−iωλα t

]
.

(28)

Notice that the right-hand side of Eq. (27) is independent of
�n⊥ (rigid layers!). In order to obtain the shear and compression
correlation functions of the N-layer system, we multiply both
members of Eq. (27) by the number of unit cells N⊥, sum over
l, κ , and i ∈ {x,y} or i = z. We call the result 〈uα(t)uα(0)〉N,
where α = s in case i ∈ {x,y} and α = c for i = z. The result
reads

〈uα(t)uα(0)〉N = f
∑
λα

〈
Qλα

(t)Qλα
(0)

〉
N

, (29)

where

f =
∑
lκi

ξ
(l,κ)
i (λs,�0)ξ (l,κ)

i (λs,�0)

mκ

=
∑
lκ

ξ (l,κ)
z (λc,�0)ξ (l,κ)

z (λc,�0)

mκ

= 2

m
, (30)

with m = ∑
κ mκ , κ ∈ {1,2}. The result (30) is a consequence

of Eqs. (7)–(9). Note that the result is independent of the num-
ber of layers; one has f = 0.0806 or 0.0833 u−1 for BNML

or GNML, respectively (with m in atomic mass units u). The
sum over λα on the right-hand side of Eq. (29) depends on N.

The static correlation functions are obtained by taking t =
0. From Eq. (28) we get, by using Eq. (26),〈(

Qλα
(�0; 0)

)2〉
N

= h̄

2ωλα

coth
βh̄ωλα

2
, (31)

and hence 〈
u2

α(0)
〉
N

= f
∑
λα

h̄

2ωλα

coth
βh̄ωλα

2
. (32)

Making use of relations (18) and (19), we can write

〈
u2

α(0)
〉
N

= gf

{
h̄

2ωA
coth

βh̄ωA

2
+

∑
n

[
h̄

2ω+
n (N)

× coth
βh̄ω+

n (N)

2
+ h̄

2ω−
n (N)

coth
βh̄ω−

n (N)

2

]}

(33)

for N even (n = 1,2,3, . . . ,N
2 − 1) and

〈
u2

α(0)
〉
N

= gf
∑

n

[
h̄

2ω+
n (N)

coth
βh̄ω+

n (N)

2

+ h̄

2ω−
n (N)

coth
βh̄ω−

n (N)

2

]
(34)

for N odd (n = 1,2,3, . . . ,N−1
2 ). Here, g = 2 accounts for the

degeneracy in case of the shear modes, while g = 1 in case of
compression modes. We recall that Eqs. (33) and (34) apply
to shear modes {λs} for ωA and ω� entering ω±

n given by ωTO
A

and ωTO
� and to compression modes {λc} for ωLO

A and ωLO
� .

We have calculated the temperature-dependent mean-square
displacements

√〈u2
α(0)〉N for rigid-plane shear (α = s) and

compression (α = c) modes by means of Eqs. (33) and (34)
for GML and BNML. Results for a series of N-layer systems
are shown in Fig. 5. We recall that these results are obtained
for rigid layers [see Eq. (9)], while the center of mass of the
N-layer system stays at rest. Hence the static displacement
correlation functions 〈u2

s (0)〉N and 〈u2
c(0)〉N are a measure of

the total amount of the relative shear and compression motion,
respectively, between rigid layers.

We next study the static displacement correlation function
of the surface layer with label l = 0. Instead of Eq. (30), we
have to consider

f
(0)
N (λα) =

∑
iκ

ξ
(0,κ)
i (λα,�0)ξ (0,κ)

i (λα,�0)

mκ

, (35)

where α = s for i ∈ {x,y} and α = c for i = z. The static
correlation function now reads〈(

u(0)
α (0)

)2〉
N

=
∑
λα

f
(0)
N (λα)

h̄

2ωλα

coth
βh̄ωλα

2
. (36)

In Fig. 6, we show numerical results of the mean-square
thermal displacements.

From Figs. 5 and 6, we conclude that the average rigid-layer
shear and compression displacements increase with increasing
temperature and with layer number N. In Ref. 13, the results
of friction force microscopy experiments demonstrate that
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FIG. 5. (Color online) Temperature-dependent mean-square dis-
placements

√〈u2
α(0)〉N for rigid-plane shear (α = s, top) and com-

pression (α = c, bottom) for GML. The number of layers N ranges
from two (lowest curve) to ten (upper curve). The results for BNML
are very similar.

friction decreases monotonically with the number of layers.
The mechanical origin for the observed effect is attributed
to the fact that the sliding AFM tip causes out-of-phase
deformations (puckering) of the surface sheet. The increased
tip-sheet contact area or (and) the additional work required to
move the puckered region forward lead to increased friction.
This effect is more pronounced for thinner samples which
exhibit a lower bending stiffness. On the other hand for thicker
sheets, the puckering is less prominent owing to the larger
bending stiffness of the sheet.13 Within this scenario it is
suggested that some relative sliding between the topmost layer
and the material below occurs. This feature should increase
the spacing of the stick-slip events. Our results (see Fig. 6)
on the increase of the mean-square shear displacements of
the surface layer with increasing N are then compatible with
the experimental findings that the spacing of the stick-slip
events increases with increasing N.13 Concerning the increase
of the vertical (compression) mean-square displacements with
increasing N, we are led to argue that those processes decrease
the contact area between AFM tip and multilayer system and
hence contribute to a decrease of friction with increasing N.

We close with a comment on dynamics. The Fourier trans-
form of the time-dependent correlation function 〈uα(t)uα(0)〉,

FIG. 6. (Color online) Temperature-dependent mean-square sur-
face layer displacements

√
〈(u(0)

α (0))2〉N for rigid-plane shear (α = s,
top) and compression (α = c, bottom) for GML. The number of layers
N ranges from two (lowest curve) to ten (upper curve). The results
for BNML are very similar.

α = s (c), is relevant for the interpretation of dynamic
scattering laws. We define

Cαα
NN(ω) = 1

2π

∫ +∞

−∞
dt eiωt 〈uα(t)uα(0)〉N (37)

and obtain by means of Eqs. (28) and (29),

Cαα
NN(ω) = f

∑
λα

h̄

2ωλα

[
nλα

δ
(
ω + ωλα

)
+ (

1 + nλα

)
δ
(
ω − ωλα

)]
. (38)

Here, h̄ω stands for the energy transfer of the scattering particle
(photon or neutron) to the N-layer system. The first term within
the square bracket represents an energy absorption by the
scattering particle (anti-Stokes process) and the second term
is an energy loss (Stokes process) that becomes dominant at
low T . Expression (38) comprises all shear or compression
motion resonances of a given N-layer system. So far the
highest value shear resonances {ωh

λs
} have been detected by

experiment.20 While these experiments have been carried out
at room temperature, it might be necessary to go to lower T in
order to detect the resonances at lower frequencies. Also the
Raman-active compression modes in even N multilayers,32

symmetry A1g are a challenge for further experiments.
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VI. CONCLUDING REMARKS

We have given a theoretical investigation of the low-
frequency phonon dispersions in crystalline layered materials.
These phonons, associated with rigid-plane motions, show
universal behavior that applies to metallic (GML) as well as to
ionic, insulating (BNML) systems. The frequency spectra have
been represented in the form of fan diagrams for compression
(also called stretching) and shearing motions. For a system
of N layers, one distinguishes N − 1 compression modes
and N − 1 doubly degenerate shear modes with frequencies
{ωλc

(N)} and {ωλs
(N)}, respectively. The fan diagrams (see

Fig. 3) are centered around a series of frequency points
given by the bilayer frequencies ωλc

(N = 2) and ωλs
(N = 2)

appearing for systems with an even number of layers N. The
fan diagram associated with compression is centered around
higher frequencies than the fan diagram associated with shear
motion in both GML and BNML. For both shearing and
compression the sequences of highest frequencies, {ωh

λs
(N)}

and {ωh
λc

(N)} have as limits for N −→ ∞ the bulk material
frequencies ω(E2g1 ) and ω(B2g1 ), respectively, at the � point
of the 3D Brillouin zone. In case of GML, the series of shear
frequencies {ωh

λs
(N)} up to N = 11 has been measured by

Raman scattering.20 On the other hand, the sequences of lowest
frequencies {ωl

λs
(N)} and {ωl

λc
(N)} have limit values 0 for

N −→ ∞. Comparison with the low-frequency dispersions
along the �–A line in the Brillouin zone of hexagonal layered
3D materials shows that the frequencies ωλs

(N = 2) and
ωλc

(N = 2) of the bilayer agree with the bulk frequencies
ω(TO) and ω(LO), respectively, at the A point. In addition, one
has the relations

√
2ωλc

(N = 2) = ω(B2g1 ) and
√

2ωλs
(N =

2) = ω(E2g1 ). These relations are a consequence of the fact that
the interlayer force constants h̃zz for compression and h̃xx for
shearing are only effective between next-neighbor rigid planes.
Interactions between more distant rigid planes are negligible.
Note that for the case of rigid-layer shear modes in GML, this
conclusion was drawn from Raman scattering results.20 We
have attributed the absence of longer distance interactions to
screening effects. In GML, the screening is due to the metal
nature (π electrons), in BNML the screening is due to the
overall charge neutrality and the plane rigidity.

Here, some comments on the stacking of layers are in
order. We recall (see Sec. II) that we have studied GML
with . . .ABAB. . . stacking and BNML with . . .AA′AA′. . .
stacking. Notwithstanding the difference in stacking, the fan
diagrams Figs. 3(a) and 3(b) are qualitatively very similar. In-
deed, the relevant interactions between next-nearest-neighbor
planes are rather close in strength. In both cases, the frequency
ωλc

(N = 2) of the compressional mode of the bilayer is larger

than the frequency ωλs
(N = 2) of the shear mode. Recently, it

has been shown experimentally that the electronic structures of
ABA and ABC stacked graphene trilayers are fundamentally
different,43–45 which demonstrates the importance of the stack-
ing degree of freedom in the context of electronic properties.
For vibrational properties, however, we expect ABA and ABC
stacking to give similar fan diagrams [see Fig. 3(a)] since the
rigid and shear modes are governed by nearest-neighbor plane
van der Waals interactions only. As for the case of stacking
disorder within GML, we notice that the increase of disorder
from ideal graphite to turbostratic graphite leads to an increase
of the interlayer distance from 3.354 to 3.440 Å.23 Hence
we expect that the fan diagrams in Fig. 3(a) are centered
around lower frequencies ωλc

(N = 2) and ωλs
(N = 2) than

in the case of ABAB stacking. However, we expect that the
overall picture remains qualitatively unchanged. A quantitative
study of stacking effects would require a detailed knowl-
edge of the interlayer potential landscape by first-principles
calculations. In case of bilayer h-BN, it has been shown
that the main role of van der Waals forces is to anchor the
layers at a fixed distance whereas the electrostatic forces
dictate the optimal stacking mode and the interlayer sliding
corrugation.46

We further have explored the relations between the LO and
LA phonons of the bulk materials along �q = [0,0,qz] and the
fan diagram frequencies for compression modes in N-layer
systems; similar relations exist between TO and TA phonons
along A–� and the fan diagram frequencies for shearing
modes. In both cases, the N − 1 rigid-layer frequencies
{ωλc

(N)} and {ωλs
(N)} are obtained as intersections of the LO,

TA, and TO, TA phonon branches, respectively, with vertical
lines at discrete positions qz(ν) along �–A. We have obtained
master curves that allow to derive the fan diagrams of GML
and BNML for any given N.

Finally, we have calculated static and dynamic correlation
functions for rigid-plane motions. We have studied correlations
as functions of T and of N. Our results, which exhibit
again a large similarity between GML and BNML, might
be of relevance for the understanding on an atomistic level
of the results of force friction experiments on thin-layer
sheets.13
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