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Optical conductivity of polarons: Double phonon cloud concept verified by
diagrammatic Monte Carlo simulations
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We study theoretically a fundamental issue in solids: the evolution of the optical spectra of polaron as the
electron-phonon coupling increases. By comparing the exact results obtained by the diagrammatic Monte Carlo
method and the data obtained through exact diagonalization within an appropriate subspace of the phononic
wavefunctions, the physical nature of the crossover from weak to strong coupling is revealed. The optical spectra
are well understood by the quantum mechanical superposition of states with light and heavy phonon clouds
corresponding to large and small polarons, respectively. It is also found that the strong coupling Franck-Condon
regime is not accessible at realistic values of the coupling constant.
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I. INTRODUCTION

Polaron physics plays a crucial role in describ-
ing magnetoresistive perovskites,1 high-temperature super-
conductors,2,3 molecular semiconductors,4 fullerenes,5 polar
semiconductors,6 etc. However, in spite of a lot of efforts,
there are still only a few well grounded results concerning
spectral properties, optical conductivity (OC), and Lehman
spectral function of polaronic systems at any coupling. Even
the simplest model for a periodic system, i.e., the Holstein
model, is not an exception, and the nature of its spectral
response at all couplings is still a puzzle, in particular in the
nearly adiabatic case, the most frequently encountered regime
in experiments.

In contrast to Frochlich-like models,7 which simplify the
manifold of all momenta of the lattice system by using
continuum approximation, the Holstein model takes into
account the true momentum space of the system.8 Here the
tight-binded charge carrier is coupled with an optical local
phonon mode:
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where t is the nearest-neighbor hopping amplitude, c
†
i (ci)

denotes the electron creation (annihilation) operator in the site
i, and b

†
i (bi) creates (annihilates) a phonon in the site i with

frequency ω0. The strength of electron-phonon interaction is
characterized by the dimensionless coupling parameter λ =
g2ω0/2tD expressed in terms of the coupling constant g and
system dimensionality D.

There are many methods able to calculate the ground-
state properties of the Holstein polaron (see Ref. 9 for an
incomplete list). In particular, adiabatic and some variational
calculations lead to a discontinuous transition between weak
and strong coupling regimes as electron-phonon interaction
increases.10 The quantum correction to this picture is a singular
perturbation, and essentially nonperturbative. A naive picture
is that the discontinuous transition becomes a crossover by
quantum mixture of states describing asymptotic regimes.

On the other hand, the situation changes drastically if some
spectral properties, e.g., OC, are considered. The main problem
is due to the infinite dimensional phononic Hilbert space that
has prevented an in-depth analysis so far. The full phonon
basis exact diagonalization (ED) method11 is basically valid
only for 1D and 2D systems and suffers from effects caused
by the very small size of the considered clusters, normally
limited to ten sites. The dynamical mean-field theory,12 though
it is exact in an infinite dimension system, leaves doubts
about applicability to realistic 3D, 2D, and especially 1D
systems. Finally, containing no approximation, diagrammatic
Monte Carlo (DMC) methods3,13 provide approximation-free
results for infinite systems of any dimension. However, none
of the above methods help physical intuition or provide an
understanding of the nature of OC and/or excited states in the
weak, strong, and especially the traditionally most puzzling
intermediate coupling regime. An exception is momentum
average14 approach. It suggests an analytic formula and
explicitly relates the shape of OC in the strong coupling regime
to the phononic cloud dragged by polaron moving through the
crystal. Unfortunately, the intermediate coupling regime, the
most interesting one from an experimental point of view, is a
puzzle for the momentum average approach too.

II. POLARON OPTICAL CONDUCTIVITY

In the present paper, we present the exact DMC results
for the OC of the 1D system for any interaction value ranging
from the weak- to the strong-coupling regime. The regular part
of the OC, a typical experimental probe of a physical system,
is defined15 as

σreg(ω) = π
∑

n�=0
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[δ(ω − ωn) + δ(ω + ωn)].
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is the current operator, �Ri is the position vector of the site i, e is
charge, |ψn〉 and En are the exact eigenstates and eigenvalues,
respectively, and ωn = (En − E0). The lattice parameter a and
Planck constant h̄ are set to unity.

To disclose the nature of the OC we introduce two
contrasting physical pictures of a polaronic phonon cloud:
i) a weak-coupling phonon cloud (WCPC) that allows for
a very good description of the weak-coupling regime; ii) a
strong-coupling phonon cloud (SCPC) that is able to reproduce
accurately the properties of the strong-coupling regime. The
surprising result obtained by our analysis of the exact DMC
data is that a straightforward linear superposition of the
weak- and strong-coupling phonon clouds, i.e., double phonon
cloud (DPC), is capable of describing polaron properties
in any coupling regime. Comparison of the exact results
with those obtained by the DPC analysis points out that
the Franck-Condon approach, based on the factorization of
the wave functions associated to charge and lattice degrees
of freedom and on optical transitions in a frozen lattice,
fails at all couplings except for strong and unrealistic values
of charge-lattice interaction, i.e., at couplings where one
can use the crudest photoemission approximation (PA) that
describes the photoionization process toward the free-electron
continuum: Within the Franck-Condon approach one replaces
the exact excited charge states within the ground-state lattice
potential well with the free electron states in the absence of
electron-phonon interaction.

The phonon cloud in the weak-coupling regime is not
characterized by strong local deformations, and, thus, we set
that the WCPC consists of up to n � Nwc phonons situated
at arbitrary sites (upper panel in Fig. 1). To the contrary, the
lattice deformation is well localized in the strong-coupling
regime, and, thus, we construct the phonon SCPC as n � Nsc

phonons located at three nearest-neighbor sites. Due to the
nonlocal nature of the current operator Eq. (1), it is crucial that
the deformed neighboring sites are situated in the arbitrary
place with respect to the charge carrier (two lower panels in
Fig. 1). We found that Nwc = 5 and Nsc = 50 is enough to
describe successfully the system in the range of the λ values

FIG. 1. The empty (full) circles stand for the lattice sites (elec-
tron); the dashes denote phonons. The upper panel represents a typical
WCPC, and the two lowest panels show possible realizations of the
SCPC.
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FIG. 2. (Color online) (a) Energy versus λ in the DMC (black
dots), DPC (dashed thick red line), lowest order perturbation (Ref. 16)
(dotted magenta line), and Franck-Condon (dashed thin green line)
approaches; (b) ground-state spectral weight versus λ in the DMC
(black dots), DPC (dashed thick red line), WCPC (dotted magenta
line), and momentum average (0) approaches (dashed thin green line).

considered in the following and concerning the 1D case with
ω0/t = 0.1 (the lattice size is 80).

First, we compare the ground-state properties obtained by
DPC model and those coming from the exact DMC method
and demonstrate a good agreement [see Figs. 2(a) and 2(b)]. A
very good agreement is seen even in the intermediate coupling
regime suggesting that the DPC combination of the weak- and
strong-coupling phonon clouds provides an accurate descrip-
tion in the whole range of coupling parameters. Indeed, there
are domains of λ values where both strong- and weak-coupling
phonon cloud models fail, but, nevertheless, the results using
the DPC model are still in good agreement with exact ones.
Not only ground-state properties but also the Lehman spectral
function is well reproduced by the DPC picture (Fig. 3).
One can see the obvious failure of the simplest variant of
the momentum average approach [i.e., momentum average (0)
that takes into account only lattice deformations located at one
lattice site at a time] in describing the ground-state spectral
weight Z [see Fig. 2(b)]. This failure explicitly demonstrates
that in the intermediate coupling regime the phonon wave
functions are characterized by lattice distortions involving
many sites at the same time.

Good agreement of the OCs obtained by perturbative and
DMC approaches at λ = 0.01 [see Fig. 4(a)] indicates that the
final states of the optical transition do not contain more than
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FIG. 3. (Color online) Lehman spectral function in the DMC
method (black dots for incoherent part and vertical black arrow for
δ-functional polaron state) and in DPC approach (solid red line).
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FIG. 4. (Color online) OC in DMC method (black dots) at λ =
0.01 (a) and λ = 0.4 (b). Dashed green line is lowest perturbative
result (Ref. 16) in (a). Dashed thin green (solid thick red) line in
(b) is the result of WCPC (DPC) approach.

one phonon. To the contrary, evident rise of OC at 2ω0 for λ =
0.4 [see Fig. 4(b)] manifests the importance of the processes
where correlation between two successively emitted phonons
is present. The agreement between the WCPC approximation
and the DPC approach indicates that the contribution of
the strong-coupling counterpart of the phonon cloud is still
negligible at λ = 0.4.

In Fig. 5, the exact data for the OC in the intermediate
coupling regime (λ ≈ 0.8) are compared with the results
following from the WCPC, SCPC, and DPC conceptions of
the phonon clouds. The intermediate coupling regime is a
stumbling stone for most of the methods because any approach,
starting from the characteristic features of either the weak- or
strong-coupling regime, fails there. The results in Fig. 5 clearly
reveal the reason for such difficulties, showing that the phonon
cloud in this regime is a superposition of the WCPC and SCPC
contributions. The dominating hump of the OC splits into two
peaks: The former one is located at the energy determined by
the weak-coupling counterpart of the lattice deformation and
the higher energy structure is governed by the strong-coupling
component of the phonon cloud. Indeed we note that if the
OC obtained in the framework of the Franck-Condon concept
is shifted toward lower frequencies, we recover the peak of
the OC governed by strong-coupling lattice deformation (see
insets in Fig. 5). Hence, the OC in the intermediate coupling
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FIG. 5. (Color online) OC in DMC (black dots), DPC (solid red
thick line), WCPC (dashed green line), and SCPC (dotted magenta
line) approaches at λ = 0.77 (a) and λ = 0.87 (b). Insets show
comparison of OCs in SCPC and Franck-Condon (solid blue line)
approaches. The OC in the Franck-Condon approach is shifted down
by energy ≈5ω0.
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FIG. 6. (Color online) OC in DMC (black dots), DCP (solid red
thick line), and Franck-Condon (dashed blue line) approaches at λ =
1.5 (a) and λ = 10 (b). Inset in (b) shows OC in Franck-Condon
approach and photoemission curve (solid orange line).

regime is not yet described by the Franck-Condon processes
where optical excitations correspond to electronic excitations
in the rigid lattice. The highest energy peak of the OC in the
intermediate coupling regime can be interpreted as the result of
light absorption in two successive steps: The lattice is frozen
during the electronic transition at the first stage and then it
relaxes and adapts itself to new electron configuration.

By increasing λ there is a net transfer of spectral weight
toward higher frequencies, and at λ = 1.5 only the higher
energy contribution survives [see Fig. 6(a)]. In this regime the
energy of lattice relaxation from the frozen Franck-Condon
state is almost zero and the energies of the main peak of the
OC in the DMC, DPC, SCPC, and Franck-Condon approaches
are the same. On the other hand, there are differences in the tails
of the OC calculated in the above techniques, indicating the
residual role played by the nonadiabatic transitions even in the
strong-coupling regime. Finally, the crudest PA approximation
is valid at extremely large couplings [see inset in Fig. 6(b)].

In Fig. 7, we plot the energy of lattice relaxation from the
frozen Franck-Condon state �E. According to the previously
described physical scenario, we find that it becomes negligibly
small only in the very strong coupling regime at λ > 1.2.
On the other hand, the polaron mass at such couplings is
three orders of magnitude larger than the bare mass. Such
an effective mass, to the best of our knowledge, was never
observed in any physical system.
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FIG. 7. (Color online) Energy of lattice relaxation from the
frozen Franck-Condon state to the relaxed excited configuration of
the SCPC state.
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III. DETAILS OF THE METHOD

In the following, we will describe in detail the above
introduced double phonon cloud (DPC) approach, based on
a limited phonon basis and the exact diagonalization. Limited
phonon basis, including not the whole manifold of the phonon
states but only the essential ones, enables studies of large
systems up to about 100 sites. The proposed approach allows
us to investigate successfully any electron-phonon coupling at
any adiabatic ratio.

First of all, we take into account the translational invariance
of the Hamiltonian and perform an exact diagonalization of
the Hamiltonian based on the Lanczos algorithm, requiring
that the states have a definite momentum.17 Each of the basis
vectors is a linear superposition with appropriate phases of the
translational copies (charge carrier and lattice configurations
are together rigidly translated) of a state having the electron
fixed at a site and phonon quanta located around it.

The weak-coupling counterpart is restricted to at the most
five phonons situated at up to five different sites which, in
turn, are arbitraryly located with respect to the charge carrier.
The phononic Hilbert subspace corresponding to the WCPC
is generated by the following elements:

|ph〉(WCB)
[j ],[nj ] =

5∏

h=1

(a†
jh

)njh |0〉jh√
njh

!

∏

i �=[j ]

|0〉i . (2)

Here i,jh label the lattice sites, [j ] = (jh,h = 1, . . . 5) rep-
resents a set of five different sites, |0〉i is the i-site phonon
vacuum state, and the integers njh

= 0,. . . . 5 are such that∑
h njh

� 5. In any basis element, there are up to five phonons
distributed on at the most five different sites: All the others
sites are not deformed. In this way the scattering processes
between the charge carrier and lattice for up to five phonons
in q space are exactly treated. This basis is able to recover
the self-consistent Born approximation and goes beyond it
including vertex corrections.

The strong-coupling counterpart in the direct space repre-
sentation contains the following set of states:

|ph〉(SCB)
j,nj ,nj ′ = (a†

j )nj |0〉j√
nj !

∏

j ′

(a†
j ′ )nj ′ |0〉j ′
√

nj ′ !

∏

i �=(j,j ′)

|0〉i . (3)

Here j ′ indicates the nearest neighbors of the j site, and nj ′

represents the number of phonons on such sites. In any basis
element there is a cluster with at the most three deformed

nearest-neighbor sites which are located at an arbitrary position
with respect to the electron. We found that the sufficient
basis for all of the above studied couplings is limited to
(nj + ∑

j ′ nj ′ ) � 50. We note that by restricting the cluster
with excited phonons to one site, one comes to the simplest
formulation of the momentum average approximation, i.e.,
momentum average (0).18

The DPC approach is based on the idea that the physical
properties for any value of the electron-phonon interaction can
be described by diagonalizing the Hamiltonian in the phononic
Hilbert subspace generated by both above introduced sets of
states (excluding obvious double counting).

IV. CONCLUSIONS

In conclusion, we have shown that the ground state, Lehman
spectral function, and OC of the polaron at any coupling
are well described in terms of superposition of two phonon
clouds: The former one is spatially extended and contains small
number of phonons, whereas the latter one is well localized and
includes a large number of vibrational quanta. Surprisingly,
the lattice deformation around the polaron in the puzzling
intermediate coupling regime appears to be not a peculiar
characteristic of this particular regime but a mere superposition
of quantum states representing two asymptotic couplings. The
accuracy of the results obtained in the present paper confirms
the usefulness of DPC method, which uses not the whole
manifold of the phonon states but only the essential ones. This
DPC method enables the study of large systems, which are
inaccessible by the classic exact diagonalization method. Com-
paring the results for OC of this method with those obtained
by the approximation-free diagrammatic Monte Carlo method
validates both the suggested double phonon cloud concept and
the numeric method based on it. This method can be further
applied to problems of nonequilibrium dynamics19 where such
methods as diagrammatic Monte Carlo fail.
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