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Enhancement of the phonon-sideband luminescence in semiconductor microcavities
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The influence of a semiconductor microcavity on the phonon-assisted photoluminescence is investigated
by expanding the microscopic quantum-optical semiconductor luminescence equations. For the example of a
ZnO-based system, strong enhancement but no normal-mode splitting of the phonon-sideband luminescence is
predicted, even if the cavity becomes resonant with the first phonon sideband. For increasing cavity quality, it
is shown that the intensity of the 1s resonance first increases due to the Purcell effect but then starts to decrease
due to the transition into the nonperturbative regime, while the spectral integrated phonon-sideband intensity
saturates.
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I. INTRODUCTION

Zinc oxide (ZnO) exhibits a wide range of interesting prop-
erties. For example, its wide band gap that allows optical tran-
sitions in the blue/ultraviolet range could become important for
semiconductor laser applications.1,2 In optical experiments on
ZnO, both the Coulomb and the electron–phonon interaction
influence the resulting spectra. First of all, ZnO has a very
large excitonic binding energy of about 60 meV,3–5 which
leads to strong excitonic signatures in the absorption and
photoluminescence even at room temperature.6–8 Moreover,
due to its highly polar nature, the strong interaction between
electrons and longitudinal-optical (LO) phonons in ZnO gives
rise to pronounced phonon sidebands in the luminescence
spectra.4,8–16 Since the LO phonons have a discrete energy,
phonon-assisted processes can create multiple replicas, i.e.,
phonon sidebands (PSBs) at distinct frequencies below the
original excitonic resonance.11,14,17 Traditionally, the excitonic
resonance is called the zero-phonon line (ZPL).12,15,18–21

The emission properties of a quantum well (QW) can be
strongly modified by its radiative environment, e.g., yielding
the Purcell effect,22 inhibited emission,23 or the scenario of
normal-mode coupling (NMC),24–26 where the eigenmode
of a high-quality microcavity and the exciton resonance are
strongly coupled. Typically, such a microcavity is realized
by growing distributed Bragg reflectors (DBRs) as mirrors
around the QWs. For systems with strong PSBs, it is clearly
interesting to study what happens to a PSB when it is coupled
with a cavity mode. In ZnO, the first PSB lies 72 meV below
the ZPL resonance, producing clearly separated PSB and ZPL
features, which makes ZnO an attractive candidate for such
investigations.

In this paper, we study how PSB luminescence is altered by
an optical cavity. To develop a consistent microscopic theory
of the sideband emission, we generalize the semiconductor lu-
minescence equations (SLEs)27–29 by fully including phonon-
assisted processes. As an extension of our earlier work,11,17

this approach allows us to compute both spontaneous and
stimulated emission at the excitonic resonance and its first
sideband. To corroborate our numerical results, we develop
an analytic model to describe the main features of phonon-
assisted luminescence in a cavity.

This paper is structured as follows. Section II presents
the system Hamiltonian and Sec. III discusses the equations

of motion used for the numerical and analytic calculations.
Section IV reveals the principal effects of a dielectric envi-
ronment. The analytic model is developed in Sec. V where
the equations of motion are solved in a steady state. The
appendices contain additional details of the exciton basis used
and of the analytic model.

II. SYSTEM HAMILTONIAN

In our microscopic description of the optical properties, we
start from the generic semiconductor Hamiltonian27,29,30 for a
two-band QW:
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Here, the electrons are described via the Fermionic operators
a
†
λ, k and a

†
λ, k. The noninteracting parts contain the single-

particle energy ελ
k for an electron with momentum h̄k in band

λ, the photon energy h̄ωq3D , and the phonon energy h̄�p3D .
We assume a sufficiently strong carrier confinement such that
we only need to consider one conduction and valence band. We
also use parabolic approximation ελ

k = h̄2k2

2 mλ
with the effective

mass mλ to describe excitations near the bottom of the bands.
Since we are interested in longitudinal-optical phonons, with
a constant dispersion relation, we set the phonon energy to a
constant value of �p3D ≡ �.

We consider here ZnO QWs where carriers are confined
in the x-y plane. In this situation, it is beneficial to de-
compose the photon and phonon wave vectors into in-plane
and z components, using q3D = (q,q⊥) and p3D = (p,p⊥).
The corresponding subsystems are described by the Bosonic
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creation (annihilation) operators D
†
p3D (D†

p3D ) for the phonons
and B

†
q3D (B†

q3D ) for the photons. The remaining terms within H

define the interactions of the carrier–photon–phonon system.
More specifically, Vq is the Coulomb-matrix element, Fq3D

defines the strength of the light-matter interaction, and gλ
p3D

yields the carrier–phonon coupling. From those, Fq3D ≡
Eq3D uq3D · dcv contains the vacuum-field amplitude Eq3D ,27

light mode strength uq3D (r⊥) at the QW position, and the
dipole-matrix element dcv for optical interband transitions in
ZnO.

III. THEORY OF PHONON-SIDEBAND LUMINESCENCE

Due to the Coulomb- and quantum-optical interaction
in Eq. (1), the operator dynamics yields the well-known
hierarchy problem,30 producing an infinite number of coupled
equations. We truncate this hierarchy systematically using the
so-called cluster-expansion approach29,31–35 to the correlation
dynamics. This approach expresses N -particle expectation
values consistently in terms of all possible factorizations into
single-particle quantities (singlets), two-particle correlations
(doublets), three-particle correlations (triplets), and so on, up
to correlated N -particle clusters. For example, a singlet level
produces the semiconductor Bloch equations30 that connect
the classical light 〈Bq〉 with polarization Pk = 〈a†

v, ka
†
c, k〉 and

densities f e
k = 〈a†

c, ka
†
c, k〉 and f h

k = 〈a†
v, ka

†
v, k〉.

For incoherent conditions, 〈Bq〉 and Pk vanish. Therefore,
incoherent light emission stems from doublet correlations,
�〈B†B〉 = 〈B†B〉 − 〈B†〉〈B〉, or higher-order correlations.
We concentrate next exclusively on the incoherent regime
where the photon number and its correlation are equal, i.e.,
�〈B†B〉 = 〈B†B〉, because a singlet 〈B〉 vanishes. For the
phonon-sideband analysis, we need to include contributions
up to three-particle correlations to produce a closed set of
equations describing the system consistently.

A. Semiconductor luminescence equations

The incoherent light emission follows from photon-
number-like correlations,
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which are coupled to photon-assisted polarizations 	k,q3D ≡
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〉 where the photon momentum q is
divided among the electron and hole according to qe = me
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which is proportional to the photoluminescence spectrum for
quasistationary emission.27 The corresponding equation of
motion for the photon-assisted polarizations can be written

as
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For parabolic bands, the sum of the single-particle energies
εe
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+ εh
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= ε

μ
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q can be decomposed into ε
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and εM
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2 M
, where μ = ( 1

me
+ 1

mh
)−1 is the reduced mass

and M = me + mh is the total mass. These energy terms appear
in Eq. (4) together with the Coulomb renormalization,
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)
, (5)

whenever carriers are excited in the system. Equations (2)–(4)
constitute the principal structure of the semiconductor lumi-
nescence equations (SLEs),27,29 where the explicit Coulomb
sum yields excitonic resonances in the photoluminescence
(PL). We have also included the phonon-assisted triplets

ϒem
k,q3D,p3D

= �
〈
B

†
q3DD

†
p3Da

†
v, k−Qh

a
†
c, k+Qe

〉
(6)

and

ϒabs
k,q3D,p3D

= �
〈
B

†
q3DD

†
−p, p⊥a

†
v, k−Qh

a
†
c, k+Qe

〉
(7)

that describe three-particle correlations due to phonon
emission and absorption, respectively. Here, we introduced
the center-of-mass momentum Q ≡ p + q = (p + q)e +
(p + q)h. The emerging correlations ϒ generalize the SLEs
to fully include phonon sidebands. The remaining triplet
terms result from the Coulomb interaction. They do not
directly participate in phonon-assisted processes but provide
excitation-induced broadening and shifts of the emission reso-
nances. The explicit format of the triplets T [	] is discussed in
Ref. 29. In this paper, we treat these contributions at the level
of a dephasing approximation, T [	] = −iγ0 	k,q3D defined
by γ0.

When a cavity is present, we must also include the
stimulated feedback of light,

��q3D = i
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†
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that yields the coupling between the different photon modes.
This contribution in particular produces the well-known
normal-mode splitting of excitonic resonances in high-quality
cavities, which is also a focus of this study. The spontaneous
emission itself is initiated by
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that is nonvanishing as soon as electrons and holes are present
or when the system contains exciton correlations, c

q,k,k′
X =

�〈a†
c, k′+qe

a
†
v, k−qh

a
†
c, k+qe

a
†
v, k′−qh

〉.
Typically, the carrier distributions reach their quasiequilib-

rium form very rapidly via Coulomb and phonon scattering.
In comparison, the spontaneous emission proceeds slowly on
a nanosecond time scale such that both f λ and cX can be
considered quasistationary when momentary PL spectra are
analyzed. Therefore, we can choose them to be constant and
can now concentrate on the new terms appearing in Eq. (4)
to describe PSB luminescence. Technically, we must first
determine ϒ and then sum over all phonon momenta p of
the phonon- and photon-assisted polarization. From these

contributions, only ϒem yields photon emission that is below
the excitonic lines. We therefore construct the dynamics of ϒem

explicitly. The analysis of ϒabs follows analogously; however,
it is irrelevant for the PSBs studied here. The ϒabs become
important only if phonon absorption is relevant, requiring
kBT � h̄�.

B. Phonon-assisted contributions

For a closed set of phonon-assisted semiconductor lumines-
cence equations, we have to include the ϒem dynamics. After
deriving the Heisenberg equations of motion and taking the
triplet level of the cluster expansion approach into account, we
obtain
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where Q = p + q is again the center-of-mass momentum. The emerging quadruplets are presented only symbolically. They
provide dephasing for the ϒem processes, which is approximated via Q[ϒ] = −iγ1ϒ

em
k,q3D,p3D

. Equation (10) shows a similar
structure as Eq. (4) and is coupled to the phonon-assisted two-photon correlations,
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The appearing h̄�
∑

gλ〈B†Ba
†
λa

†
λ〉 is a pure intraband process; its contribution to the photon emission scales as (f λ)2.36 For

the low densities studied here, this contribution can therefore be dropped without affecting the results. The right-hand side of
Eq. (10) additionally contains the contributions 

λ,λ
k,p3D,q representing phonon-assisted scattering that initiate the correlations ϒem.

Since these evolve quickly into quasiequilibrium, we include them via their steady-state forms
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Here, we have also neglected all nonlinear carrier distribution contributions because we analyze the PSB luminescence only
for dilute densities with f 	 1. For quasistationary situations, Eqs. (12) and (13) are a static source initiating ϒem correlations. At
this level, Eq. (10) contains only one additional unknown triplet source, �〈D†a†

va
†
va

†
ca

†
c〉. This is also a steady-state source that can

conveniently be treated after we introduce the exciton basis discussed in Appendix A. After these formal steps, we eventually obtain∑
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where φL
ν,q(k) and φR

ν,q(k) refer to left- and right-handed
excitonic wave functions, respectively, with the eigenenergy
Eλ,q. The exciton wave function in r-space origin is defined
by

φR
ν, q(0) ≡

∑
k

φR
ν, q(k). (15)

Equation (14) also contains the exciton distribution �N1s,q
that follows strictly from the exciton correlation cX. To study
quasiequilibrium conditions, we assume that �N1s,q follows
a Bose–Einstein distribution. In reality, �N1s,q can have a
significant hole burning29 close to q = 0. However, this does
not effect Eq. (14) much because �N1s,q appears within an
integral. The solutions of Eq. (10) enter the photon-assisted
polarization from Eq. (4) as an additional source weighted
by the phonon-matrix elements gc

p3D
and gv

p3D
, which can

either be calculated via Fröhlich coupling37–40 or deformation
potential,40–42 or a mixture of both.36

In our numerical studies, the complete set of equations
is evaluated fully dynamically by solving the equations of
motion as shown above. Generally, ϒem

k,q3D,p3D
has a full

vectorial dependence on all k, q3D, and p3D coordinates,
i.e., ϒem contains, in principle, also a dependence of angles
between k, q3D, and p3D. However, the photon momentum
q3D is extremely small in the typical scale of carrier and
phonon momenta. In addition, the introduction of center-of-
mass decomposition shown in Eq. (5) separates the k and
p3D dependencies into angle-independent ε

μ

k and εM
Q 
 εM

p
parts. Therefore, the angle dependence of ϒem

k,q3D,p3D
stems

directly from f λ
k±qλ

parts emerging in the driving source. For
typical k and Q 
 p ranges of phonon-assisted processes, this
angle dependence is very weak. Therefore, we can substitute
ϒem

k,q3D,p3D
→ ϒem

|k|,|q3D|,|p3D| to accurately describe the main
effects of phonon-assisted emission. In the computations,
we discretize ϒem to 40 × 40 × 100 = 1.6 × 105 elements,
which makes the dynamical calculation very intricate and time
consuming already for the first phonon sideband.

For the computation, we have used typical ZnO parameters.
The effective polaron mass of the electrons in ZnO can be
determined very precisely in cyclotron-resonance measure-
ment giving me

eff = 0.28m0.5,43 The effective mass of the
holes is mh

eff = 0.59m0,5 which produces a reduced mass of
μ = 0.19m0. The material parameters of the ZnO-type QW
are chosen to produce a band gap of Egap = 3.37 eV3,5,44 and
an exciton binding energy of EB = 60 meV. The energy of
the longitudinal-optical phonons is h̄� = 72 meV and we
use the deformation potential with a coupling constant of
d

opt. def.
0 = 50.6 eV. The refractive index of ZnO is listed with

values between 2.0 and 2.2 in the literature.45–47 In this work,
the refractive index of the QW is assumed to be n = 2.2.

IV. PRINCIPAL EFFECTS OF THE CAVITY

Even though ZnO microcavities have not yet been realized
experimentally, sample growth techniques are developing in
a direction where one can grow ZnO-type QWs between
distributed Bragg reflector (DBR) mirror pairs constructed
from alternating ZnO/Mg0.36Zn0.64O layers. The refractive
index profile in this study consists of several planar sections

(a
rb

. u
ni

ts
)

(     )

FIG. 1. Semiconductor microcavity structure. The refractive in-
dex profile of 10 ZnO/Mg0.36Zn0.64O mirrors (black solid line) is
shown together with an example of a resonant light mode |uq(z)|
(shaded area). The quantum well is positioned at the mode maximum
(dashed line) and the cavity has an optical thickness of 3/2λ.

with piecewise constant n = n(z). Each ZnO layer has the
refractive index nZnO = 2.2, while the Mg0.36Zn0.64O layers
have nMgZnO = 1.96.46–49 For the cavity layer, we assume
a material which shows the same refractive index as the
ZnO-type QW itself to avoid reflections inside the sample
structure. Figure 1 presents an exemplary microcavity n(z)
(solid line) and the mode function uq(z) (shaded area) for the
cavity resonance. The QW is positioned at the maximum of
the mode function (dashed line).

The energetic position of the cavity resonance can be moved
by adjusting the thickness of the λ/4 layers of the DBRs and
the 3/2λ cavity layer, where λ is the wavelength of the cavity
mode. Therefore, we can detune the cavity mode to be resonant
either with the exciton resonance or the first PSB located at
E1s − h̄�. In the following, “1s cavity” refers to the case where
the cavity is resonant with the 1s-exciton peak, i.e., the ZPL.
The “phonon cavity” refers to a situation where the cavity is
resonant with the PSB1.

It is well known that the 1s cavity should produce a NMC
splitting of the exciton peak into two peaks if the stimulated
coupling between the light and the QW is strong enough.24–26

Figure 2(a) shows the computed PL spectrum (black solid
line) resulting from the 1s cavity. We have also plotted the
bare cavity reflection (dark area) and the QW PL without
the cavity (light-shaded area). The cavity mode and the 1s
peak are clearly resonant, as they should be for the 1s-cavity
configuration. The cavity in this example has 34 DBR layers
producing a high 99.9% reflectivity for the mirrors.

As we compare the PL with (solid line) and without (light-
shaded area) the cavity, we observe major qualitative changes.
The 1s splits into two, as it should for the high-quality cavity,
yielding the typical NMC scenario. At the same time, the
overall level of the cavity PL is lower than without the cavity.
Since NMC is the predominant process in this case, the phonon
peak is very low. Other than that, the cavity does not modify the
PSB1 and the spectral shape of the emission at higher excitonic
states. These aspects are studied further in Fig. 4.
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FIG. 2. Microcavity luminescence including the zero-phonon line
(ZPL) and the first phonon sideband (PSB1). The cavity is resonant
with (a) the ZPL or (b) the PSB1. The luminescence spectra with
(solid line) and without (light area) cavity are compared with the
reflectivity (dark area) of the bare cavity.

A completely different situation is observed in the phonon
cavity where the cavity mode coincides with the first phonon
sideband. In Fig. 2(b), we plot the resulting PL spectrum (solid
line) showing that the phonon resonance is highly enhanced
by the cavity, whereas the exciton resonance is suppressed. At
the same time, the cavity PSB1 does not produce a splitting of
the emission resonance, indicating a fundamental difference
between the 1s-cavity and the phonon–cavity coupling. For
the 1s cavity, NMC follows from the reversible emission and
absorption of light at the excitonic energy. For the phonon
cavity, however, the cavity-PSB1 coupling consists only of the
photon emission part since one has only negligible phonon
populations at low temperatures. Hence, there cannot be a
reversible emission-absorption cycle and thus no NMC for the
PSB.

A. Cavity effects vs mirror reflectivity

To verify that the phonon cavity does not produce NMC,
we scan the PL spectra as a function of the DBR mirror
pairs. This essentially increases the mirror reflectivity such
that cavity effects become enhanced, producing a stronger
coupling of the light modes to the material. Figure 3 shows
the position of the emission peak(s) as a function of the DBR
mirror pairs. One can clearly see that the 1s cavity produces
a bifurcation of the 1s resonance into NMC splitting (solid
line) as the mirror number is increased. At this point, the

( 
   

   
)

No.

FIG. 3. Peak position in dependence of the number of DBR mirror
pairs. The solid lines (dashed lines) indicate energies of the PL peaks
for the 1s (phonon) cavity, respectively.

stimulated emission overcomes the spontaneous processes and
the 1s resonance splits up into two peaks. The PSB1 position,
however, remains unchanged, indicating that the 1s cavity
does not yield reversibility in this case. The phonon cavity
produces a qualitatively very different behavior, as shown by
the dashed lines. Neither the ZPL nor the PSB1 positions
are changed regardless of how strong the cavity becomes.
This verifies that the PSB cannot yield to a reversible photon
emission–absorption cycle due to a lack of phonon-assisted
absorption, as discussed above.

The reversibility of the emission strongly alters the PL
intensity, as seen in Fig. 2. To investigate this phenomenon
further, in Fig. 4, we show the integrated PL around the 1s

No.

(a
rb

. u
ni

ts
)

FIG. 4. (Color online) Intensity of the photoluminescence spec-
trum. The yellow (light gray) solid line shows the intensity of the
exciton resonance for the 1s cavity, whereas the intensity of the
phonon peak in the phonon cavity is shown by the black solid line.
The short-dashed line shows the total intensity in the phonon cavity.
The mode function maximum and the peak height of the first phonon
sideband are indicated by the long-dashed (blue) and the dotted
(black) lines, respectively.
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(yellow solid line) and the PSB1 (black solid line) resonances
for the phonon cavity as a function of DBR mirror pairs. We
also have defined the PSB1 peak height (dotted line) and total
integrated PL (dashed line) together with the mode strength
|uq|2 at the position of the QW.

In case of the 1s cavity, the intensity of ZPL emission
(yellow solid line) first increases rapidly. However, the onset
of reversibility starts to decrease the ZPL intensity assigning
the regime of NMC. This transition takes place around 8 DBRs,
which is the same threshold value producing NMC splitting in
Fig. 3.

The phonon cavity produces a very different behavior.
The integrated PSB1 intensity (black solid line) first starts
to increase slightly and then saturates to a constant level. In
particular, we do not observe any decrease in the integrated
PSB1 intensity. At the same time, the PSB1 peak height (dotted
line) increases monotonously with the cavity mode strength
(long-dashed blue line). These two observations mean that
the cavity first enhances the PSB1 via the Purcell effect. For
an elevated number of DBR pairs, the PSB1 narrows since
the peak emission grows while the total emission saturates.
Interestingly, the strong-cavity limit exclusively favors the
PSB1 emission over the ZPL emission because the integrated
total PL (gray dashed line) and PSB1 emission (black solid
line) become equal.

V. ANALYTIC MODEL

To better understand the physical origin of the found effects,
we develop an analytic model that captures the essence of the
microcavity luminescence of the ZPL and PSB1 emission.
Here, we include only the 1s contributions and limit the
investigation to dilute densities with f e 	 1 and f h 	 1. In
this situation, it is beneficial to convert the full Eqs. (2), (4),
(10), and (11) into the exciton basis,

	X
ν,q3D

=
∑

k

φ�
ν(k) 	k,q3D , (16a)

	k,q3D =
∑

ν

φν(k) 	X
ν,q3D

, (16b)

and

ϒX
ν,p3D,q3D

=
∑

k

φ�
ν(k) ϒk,q3D,p3D , (17a)

ϒk,q3D,p3D =
∑

ν

φν(k) ϒX
ν,p3D,q3D

. (17b)

For nonvanishing densities, one must distinguish the exci-
tonic wave functions into left- and right-handed, i.e., φL

ν, Q(k)
and φR

ν, Q(k). See the discussion in Appendix A for further
details. Projecting the 1s component of Eq. (4) converts the
principal structure of the SLE into

ih̄
∂

∂t
	X

1s,q3D
= [E1s,q − h̄ωq3D − iγ0]	X

1s,q3D
− i

∑
q ′

⊥

F1s
q, q ′

⊥
�

〈
B†

q3D
B

†
q, q ′

⊥

〉 + iF1s
q3D

N1s,q + h̄�
∑
p3D

g1s,1s
p3D

ϒX
1s,p,q3D

, (18)

ih̄
∂

∂t
�

〈
B†

q3D
B

†
q, q ′

⊥

〉 = (
h̄ωq, q ′

⊥ − h̄ωq3D

)
�

〈
B†

q3D
B

†
q, q ′

⊥

〉 + i
[
F1s

q, q ′
⊥

]�
	X

1s,q3D
+ iF1s

q3D

[
	X

1s,q,q ′
⊥

]�
, (19)

where the source term N1s = N eh
1s + �N1s is decomposed into a singlet and a correlated contribution. For low densities, the

singlet part is proportional to f ef h such that the spontaneous emission source follows mostly from the exciton distribution
N1s,q = �N1s,q if it exists.50 The quantity F1s

q3D
≡ φ1s(0)Fq3D defines the strength of the spontaneous emission.

Following the same derivation steps as in Eq. (18), the triplet source becomes

ih̄
∂

∂t
ϒX

1s,p,q3D
= [

E1s,q+p − h̄ωq3D − h̄� − iγ1
]
ϒX

1s,p,q3D
− i

∑
q ′

⊥

F1s
q+p, q ′

⊥
�

〈
D†

p3D
B†

q3D
B

†
q+p, q ′

⊥

〉 + iF1s
q3D

�N1s,p3D , (20)

ih̄
∂

∂t
�

〈
D†

p3D
B†

q3D
B

†
q+p, q ′

⊥

〉 = (
h̄ωq+p, q ′

⊥ − h̄ωq3D − h̄�
)
�

〈
D†

p3D
B†

q3D
B

†
q+p, q ′

⊥

〉
+ iF1s

q3D
�

〈
D†

p3D
B

†
q+p, q ′

⊥
X

†
1s, q

〉� + i
[
F1s

q+p, q ′
⊥

]�
ϒX

1s,p,q3D
. (21)

The ϒX dynamics contains a spontaneous phonon-assisted source,

�N1s,p3D = h̄�
[
g1s,1s

p3D

]�
�N1s,p

E1s,p − E1s,0 − h̄�
= h̄�

[
g1s,1s

p3D

]�
�N1s,p

εM
p − h̄�

, (22)

where we have introduced the strength by the excitonic phonon-matrix element

g1s,1s
p3D

= ∑
k′

φ1s(k′)
[
gc

p3D
φ1s(k′ + ph) − gv

p3D
φ1s(k′ − pe)

]�
. (23)

These contributions describe phonon-assisted processes between two exciton states.
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A. Treatment of the stimulated parts

Even though the limitation to the 1s-exciton contributions reduces the complexity of the phonon-assisted SLE considerably,
Eqs. (18) and (20) still contain the nontrivial stimulated coupling via the

∑
F�〈B†B〉 and

∑
F�〈D†B†B〉 dependent

contributions. To deal with these parts analytically, we introduce a scaled photon-operator and photon-assisted polarization

B̄
†
q, q ′

⊥
≡

B
†
q, q ′

⊥[
F1s

q, q ′
⊥

]� , (24)

	̄X
1s,q3D

≡ 	X
1s,q3D

F1s
q3D

, (25)

respectively. To solve Eqs. (18) and (19), we furthermore introduce collective operators

B̄
†
q,
 ≡ 1

G
∑
q ′

⊥

[
F1s

q, q ′
⊥

]�
B

†
q, q ′

⊥
= 1

G
∑
q ′

⊥

∣∣F1s
q, q ′

⊥

∣∣2
B̄

†
q, q ′

⊥
, (26a)

B̄
†
q,
 ≡ 1

G
∑
q ′

⊥

F1s
q, q ′

⊥
B

†
q, q ′

⊥
= 1

G
∑
q ′

⊥

∣∣F1s
q, q ′

⊥

∣∣2
B̄

†
q, q ′

⊥
. (26b)

It is convenient to choose a normalization G such that B̄†
q,
 and B̄

†
q,
 satisfy Bosonic commutation relations. More specifically,

we find Bosonic commutation [B̄†
q,
,B̄

†
q′,
]− = 1 if G2 = ∑

q⊥ |F1s
q, q⊥|2. To see the usefulness of the effective mode (26a) and

(26b), we start by computing its dynamics from Eq. (19):

ih̄
∂

∂t
�〈B̄†

q,
B̄
†
q,
〉 = 1

G2

∑
q⊥, q ′

⊥

[
F1s

q, q⊥

]�F1s
q, q ′

⊥
(h̄ωq, q ′

⊥ − h̄ωcav)�〈B†
q, q⊥B

†
q, q ′

⊥
〉

+ 1

G2

∑
q⊥, q ′

⊥

[
F1s

q, q⊥

]�F1s
q, q ′

⊥
(h̄ωcav − h̄ωq, q⊥ )�〈B†

q, q⊥B
†
q, q ′

⊥
〉 + 2iG Re

[
	̄X

1s,q,


]
, (27)

where we identified a collective photon-assisted contribution

	̄X
1s,q,
 ≡ 1

G
∑
q ′

⊥

∣∣F1s
q, q ′

⊥

∣∣2
	̄X

1s,q,q ′
⊥
, (28)

in analogy to Eq. (26a).
To study the case where the stimulated effects are par-

ticularly strong, we consider the situation of a planar semi-
conductor microcavity, as shown by the solid black line in
Fig. 1. The cavity mode |uq(z)| shown by the gray-shaded area
is concentrated inside the cavity and the QW is positioned
at one of the mode maxima, zQW. The corresponding mode
strength |F1s

q, q⊥|2 ∝ |uq,qcav (zQW)|2 forms a narrow peak around
the cavity-mode energy Ecav = h̄ωcav, whereas the area under
|F1s

q, q⊥|2 remains unchanged when increasing the number
of DBR layers, i.e., narrowing the peak width. Eventually,
the cavity mode approaches a δ function as the cavity
becomes stronger. Therefore, we can apply the strong-cavity
approximation (SCA)∑

q⊥

∣∣F1s
q, q⊥

∣∣2
(ωq, q⊥ − ωcav)q, q⊥ = 0 (29)

whenever |F1s
q, q⊥|2 is strongly peaked around

ωcav and the function q, q⊥ is a slowly varying function
around ωq, q⊥ = ωcav. The SCA converts Eqs. (18) and (27)
into

ih̄
∂

∂t
�〈B̄†

q,
B̄
†
q,
〉 = 2iG Re

[
	̄X

1s,q,


]
, (30)

ih̄
∂

∂t
	̄X

1s,q,
 = [E1s,0 − h̄ωcav − iγ0]	̄X
1s,q,


+ iG(�N1s,0 − �〈B̄†
0,
B̄

†
0,
〉)

+
∑

p

�〈D̄†
p,
B̄

†
0,
X†

p〉, (31)

where we defined a collective phonon operator

D̄
†
p,
 ≡

∑
p⊥

D̄†
p, p⊥ (32)

with

D̄†
p, p⊥ = D̄†

p3D
≡ h̄� gν,ν ′

p3D
D

†
p3D . (33)

In the following, we study normal emission such that we
can set q = 0 in the photon operators. To keep the expressions
brief, we introduce

�ZPL
ω,p ≡ E1s,p − h̄ω0,q⊥ , (34a)

�PSB,±
ω,p ≡ E1s,p − h̄ω0,q⊥ ± h̄�, (34b)

�cav
ω ≡ h̄ωcav − h̄ω0,q⊥ , (34c)

which define the exciton–light detuning (�ZPL
ω,p ), the PSB–light

detuning (�PSB,±
ω,p ), and the cavity–light detuning (�cav

ω ),
respectively. To solve the PL in the normal direction, we insert
the transformations (26a), (26b), and (28) into Eqs. (18) and
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(19). With similar steps as those producing Eqs. (30) and (31),
we now obtain

ih̄
∂

∂t

(
	̄X

1s,0,q⊥

�〈B̄†
0, q⊥B̄

†
0,
〉

)

= M

(
	̄X

1s,0,q⊥

�〈B̄†
0, q⊥B̄

†
0,
〉

)

+
(

i �N1s,0 + ∑
p �〈D̄†

p,
B̄
†
0, q⊥X

†
p〉

i
[
	̄X

1s,0,


]�

)
, (35)

where we have identified a 2 × 2 matrix,

M =
(

�ZPL
ω,0 − iγ0 −iG

iG �cav
ω

)
. (36)

The dynamics of Eq. (35) follows from a closed set of
equations only in the absence of phonon effects.

Before we analyze the full PSB emission, we develop a
suitable solution algorithm by solving Eqs. (30), (31), and (35)
without phonons. We start from the steady state of Eq. (31),
producing

	̄X
1s,0,
 = iG

�〈B̄†
0,
B̄

†
0,
〉 − �N1s,0

E1s,0 − h̄ωcav − iγ0
. (37)

This result implies that �〈B̄†
0,
B̄

†
0,
〉 is driven and a

steady state is not reached unless we demand Re[	̄X
1s,q,
] ≡ 0;

compare with Eq. (30). This leads to the constant collective
photon-number correlation,

�〈B̄†
0,
B̄

†
0,
〉 = �N1s,0, (38)

in the steady state. For this choice, 	̄X
1s,0,
 vanishes such that

Eq. (35) becomes

ih̄
∂

∂t

(
	̄X

1s,0,q⊥

�〈B̄†
0, q⊥B̄

†
0,
〉

)

= M

(
	̄X

1s,0,q⊥

�〈B̄†
0, q⊥B̄

†
0,
〉

)
+

(
i �N1s,0

0

)
. (39)

This is now a typical linear equation driven by a known
constant source �N1s,0. Since M contains dephasing, Eq. (39)
always evolves toward a steady state, yielding

	̄X
1s,0,q⊥ = i �N1s,0 (h̄ω0,q⊥ − h̄ωcav)

det[M]
, (40)

where det[M] = (E1s,0 − h̄ω0,q⊥ − iγ0) (h̄ωcav − h̄ω0,q⊥ ) −
G2. To gain more insight, it is useful to rewrite the determinant
via its roots:

det[M] = (
�cav

ω − �+
)(

�cav
ω − �−

)
, with

�± = 1
2

(
�cav

1s + iγ0 ± �cav
1s

)
, (41)

�cav
1s =

√
4G2 + (

�cav
1s + iγ0

)2
.

By inserting Eqs. (41) into Eq. (40) and performing a partial-
fraction decomposition, we can express 	̄X

1s,0,q⊥ in terms of
two individual Lorentzians,

	̄X
1s,0,q⊥ = i �N1s,0

�+ − �−

(
�−

�cav
ω − �−

− �+
�cav

ω − �+

)
. (42)

We can now evaluate the steady-state photon flux (3) that
defines the photoluminescence spectrum,

IZPL
PL (ω0,q⊥ ) = 2

h̄

∣∣F1s
0, q⊥

∣∣2
Re

[
	̄X

1s,0,q⊥

] = 2

h̄

∣∣F1s
0, q⊥

∣∣2
Re

[
i �N1s,0

�+ − �−

(
�−

h̄ωcav − �− − h̄ω0,q⊥
− �+

h̄ωcav − �+ − h̄ω0,q⊥

)]
, (43)

after the result (42) is used. We see now that the presence
of a cavity splits the emission into two separate normal-
mode coupling resonances centered at Re[h̄ωcav − �±]. The
corresponding width of the Lorentzians is defined by γ0,± =
Im[�±]. Therefore, Eq. (43) provides an analytic model to
study NMC PL.

The complete set including phonons is derived analogously
by applying the new operator definitions and approximations
several times to Eqs. (20) and (21), respectively. The results
for the closed set of equations are presented in Appendix B.
These equations will then evolve to a steady state.

B. Steady-state solution for the analytic model

The full analytic model, including PSB effects, is presented
in Appendix B. We can apply the same derivation strategy as
that which produces Eq. (43). Following this approach, the
expression for the PL becomes

IPL(ω0,q⊥ ) = 2

h̄

∣∣F1s
0, q⊥

∣∣2
Re

[
	̄

X, ZPL
1s,0,q⊥ + 	̄

X, PSB
1s,0,q⊥

]
. (44)

The ZPL contribution 	̄
X, ZPL
1s,0,q⊥ is defined by Eq. (42). The

corresponding PSB contributions result from

	̄
X, PSB
1s,0,q⊥ =

i[T1(ω0,q⊥ ) − T2(ω0,q⊥ )]�cav
ω − i Im[T3]+ T1(ωcav)

γ0
G2

G2 − (
�ZPL

ω,0 − iγ0
)
�cav

ω

.

(45)

These contain the spectral function

T1(ω0,q⊥ ) =
∑

p

χp

�
PSB,−
ω,p − iγ1

, (46)

with the oscillator strength

χp ≡
∑
p⊥

h̄� g1s,1s
p3D

�N1s,p3D = ξp

h̄� − h̄2p2

2M

,

(47)
ξp ≡ �N1s,p

∑
p⊥

∣∣h̄� g1s,1s
p3D

∣∣2
.
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The other spectral functions are

T2(ω0,q⊥ ) = χ0
[
�cav

ω − h̄� − GR
]

G2 − [
�cav

ω − h̄�
][

�
PSB,−
ω,0 − iγ1

] , (48)

T3 = χ0 h̄�
�

PSB,+
ω,0 − �cav

ω − iγ1

S−
, (49)

containing quantities

R = Gh̄�
�

PSB,−
ω,0 − �cav

ω − iγ1

S+
, (50)

S± = [
�

PSB,−
ω,0 �

PSB,+
ω,0 + 2G2 + γ 2

1

]
h̄� ± 2iγ1[G2 − h̄2�2],

(51)

where S± has an analogous structure to Eq. (41).
In the case of the PSB cavity, h̄ωcav is equal to the PSB1

energy E1s,0 − h̄�. As a result, the detunings (34b) reduce into

�
PSB,−
ω,0 → �cav

ω and �
PSB,+
ω,0 = 2h̄� + �cav

ω → 2h̄�, (52)

where the limit applies close to the cavity resonance. Since the
phonon energy is relatively large, we may additionally apply
h̄� � G, h̄� � �cav

ω , and h̄� � γ{0,1}. By implementing
these limits to Eqs. (45) and (46), and (48)–(51), we find

Re
[
	̄

X, PSB
1s,0,q⊥

] → γ1
[
χ0 + ∑

p χp
]

(
�cav

ω

)2 + γ 2
1

. (53)

These results show very clearly that the PSB does not
produce a splitting of the PSB resonance. Instead, the cavity
enhances the PSB luminescence, which can be applied to
increase the visibility of the PSB emission.

C. PL intensity

The fully analytic luminescence formula (44) can directly
be applied to deduce the integrated PL. In order to characterize
the overall ZPL and PSB luminescence, we integrate the ZPL
and the PSB1 parts of Eq. (44) separately, i.e.,

I {ZPL, PSB}
{1s, ph} (η) =

∫ ∞

−∞
I

{ZPL, PSB}
PL (ω) dω, (54)

where h̄ωcav was chosen to coincide with the 1s cavity
(subindex “1s”) or the phonon cavity (subindex “ph”). For
the mode function, we assume a Lorentzian

|u(ω)|2 = E0

π

η

(h̄ω − h̄ωcav)2 + η2
, (55)

where E0 is an amplitude with the unit of an energy so that the
mode function is unitless, h̄ωcav is again the resonance energy
of the cavity mode, and η is the half width at half maximum
(HWHM) of the assumed mode function.

In the case of a cavity which is resonant with the zero-
phonon line, we find for the integrated ZPL,

I ZPL
1s (η) = E0η�N1s,0

η2 + γ0η + G2
→ E0η

G2
�N1s,0. (56)

This is linearly proportional to the cavity η. The overall NMC
PL decreases for enhanced cavity in the 1s-cavity case.

(a)
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FIG. 5. Microcavity luminescence (black solid line) including
the zero-phonon line (ZPL) and the first phonon sideband (PSB1)
calculated via the analytic model. The cavity is resonant with (a) the
ZPL or (b) the PSB1. The corresponding mode function is shown by
the gray solid line.

For the phonon cavity, the first sideband PL integrates to

I PSB
ph (η) =

∑
p

E0χp[�Ep(γ0 + η) + (γ1 + η)h̄�]

[(�Ep)2 + (γ1 + η)2][(γ0 + η)2 + h̄2�2]
,

(57)

where �Ep ≡ E1s,p − E1s,0. In the limit of η → 0, we find for
Eq. (57) that

lim
η→0

I PSB
ph (η) =

∑
p

E0χp[�Ep γ0 + γ1h̄�]

[(�Ep)2 + γ 2
1 ]h̄2�2

(58)

saturates to a constant level, unlike Eq. (56). In other words,
Eqs. (56) and (58) confirm the numerical result in Fig. 6
that the cavity changes the exciton and the phonon resonance
differently when it is tuned into the respective resonances.

To graphically illustrate the analytic result (44), we present
in Fig. 5 the corresponding PL spectra for the 1s cavity
and the phonon cavity. The black solid lines show the PL
spectra and the gray solid lines show the corresponding mode
function used in the calculation. We see that the results are
qualitatively very similar to the full numerical analysis in
Fig. 4. In particular, the 1s cavity produces a splitting of the
PL resonances, whereas the phonon cavity enhances the PL at
the sideband.

The analytic model can also be applied to derive the
integrated spectra shown in Fig. 6. The yellow solid line
represents the intensity of the ZPL photoluminescence using
the 1s cavity, and the black solid line shows the PSB1

photoluminescence for the phonon cavity. We see again that
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C. N. BÖTTGE, M. KIRA, AND S. W. KOCH PHYSICAL REVIEW B 85, 094301 (2012)

(a
rb

. u
ni

ts
)

(      )

FIG. 6. (Color online) Intensity of the photoluminescence spec-
trum calculated with the analytic model. The yellow (gray) solid line
shows the intensity of the exciton resonance using 1s cavity, whereas
the intensity of the phonon peak with phonon cavity is represented by
the black solid line. The short-dashed line (black) is the total intensity
with phonon cavity. The mode function maximum is shown by the
long-dashed line (blue). The top x axis indicates the number of DBR
mirror pairs which correspond to the mode-function HWHM at the
bottom x axis.

the ZPL intensity first increases but then starts decreasing at
the point when the exciton resonance splits due to the transition
into the nonperturbative regime. The saturation of the PSB1

intensity for the narrow mode function shown by the black
solid line can clearly be seen. The dashed gray line depicts the
complete PL intensity using the phonon cavity, showing again
that for a high reflectivity, the PSB1 PL obviously dominates
the system. The long-dashed blue line indicates an exponential
increase of the mode function maximum. The x axis on the top
of the figure shows the appropriate numbers of DBR mirror
pairs, as used in the numerical studies, which correspond to
the mode function’s linewidth η on the bottom x axis.

VI. CONCLUSIONS

In this work, we have presented a microscopic many-
body theory to describe phonon-assisted luminescence in a
microcavity. In addition to a full numerical evaluation of
the phonon-assisted semiconductor luminescence equations,
we developed a rigorous analytic model. By introducing the
strong-cavity approximation, we are able to find a consistent
way to handle the stimulated parts in the semiconductor
luminescence equations and formulate a closed analytical
formula for the cavity PL. We find that the phonon-sideband
luminescence is strongly enhanced if the cavity resonance is
shifted to coincide with the first phonon-sideband resonance.
With the help of the analytic model, it could be shown that the
PL intensity first increases due to the Purcell effect, but then
starts decreasing due to the transition into the nonperturbative
regime if the cavity is resonant with the zero-phonon line.
For a cavity that is resonant with the phonon sideband, the
integrated PL saturates, which indicates a qualitative change
in the cavity effects.

ACKNOWLEDGMENTS

This work is supported by the Deutsche Forschungsgemein-
schaft. In particular, C.B. wants to thank the International
Research Training Group 790 Electron–Electron Interactions
in Solids (Marburg-Budapest) for financial support.

APPENDIX A: EXCITON BASIS

In this work, a generalized exciton basis is used to solve
the analytic model as well as Eq. (14). We write the general
exciton state ν as

|Xν,Q〉 =
∑

k

φν(k) a
†
c, k+Qe

a
†
v, k−Qh

|G〉, (A1)

where we introduced the center-of-mass momenta Q{e,h} =
m{e,h}
M

Q and the total mass M = me + mh of an electron–hole
pair, while the ground state of a semiconductor is characterized
by a completely filled valence band and an empty conduction
band via |G〉 = 	

†
ka

†
v, k|vac〉. By minimizing the energy of

the carrier system in the low-density regime, the variational
principle leads to a Hermitian eigenvalue problem for the
excitonic wave function φν(k), which is represented by the
so-called Wannier equation,

Eν,Qφν(k) = (
εe

k+Qe
+ εh

k−Qh

)
φν(k) −

∑
k′

Vk−k′φν(k′). (A2)

Here, Eν,Q = Eν + h̄2Q2

2 M
decomposes into the excitonic

eigenenergy Eν and the center-of-mass energy of the electron–
hole pair. A Fourier transformation into real space leads to the
equation of the relative motion of the hydrogen atom. Since the
problem is Hermitian, the eigenfunctions build a complete set
of orthogonalized functions, which can be used to expand the
linearized semiconductor Bloch equations to obtain an Elliott
formula as an analytic result.

In the case of nonvanishing densities, the problem becomes
non-Hermitian and it is helpful to introduce left- and right-
handed eigenfunctions that solve the excitonic eigenvalue
equations,

Eν,QφR
ν, Q(k) = (

ε̃e
k+Qe

+ ε̃h
k−Qh

)
φR

ν, Q(k)

− (
1 − f e

k+Qe
− f h

k−Qh

)∑
k′

Vk−k′φR
ν, Q(k′),

(A3)

[
φL

ν, Q(k)
]�

Eν,Q = [
φL

ν, Q(k)
]�(

ε̃e
k+Qe

+ ε̃h
k−Qh

)
−

∑
k′

(
1 − f e

k′+Qe
− f h

k′−Qh

)
Vk−k′φL

ν, Q(k′).

(A4)

These eigenfunctions obey the generalized orthogonality
and completeness relations∑

k

[
φL

ν, Q(k)
]�

φR
ν ′, Q(k) = δν,ν ′ , (A5a)

∑
ν

[
φL

ν, Q(k)
]�

φR
ν, Q(k′) = δk,k′ . (A5b)
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With this, one can define the excitonic creation and
annihilation operators

X
†
ν,Q =

∑
k

φL
ν,Q(k)a†

c,k+Qe
a
†
v,k−Qh

, (A6a)

X
†
ν,Q =

∑
k

[
φL

ν,Q(k)
]�

a
†
v,k−Qh

a
†
c,k+Qe

, (A6b)

which can be inverted back to the single-particle basis via

a
†
c,k+Qe

a
†
v,k−Qh

=
∑

ν

[
φR

ν,Q(k)
]�

X
†
ν,Q, (A7a)

a
†
v,k−Qh

a
†
c,k+Qe

=
∑

ν

φR
ν,Q(k) X

†
ν,Q. (A7b)

In the low-density regime, it is justified to replace φ
{L,R}
ν,Q (k)

by φν(k).

APPENDIX B: ANALYTICAL MODEL

Applying the definitions (24)–(26b), (32), and (33), and
the strong-cavity approximation introduced in Eq. (29), to
Eqs. (20) and (21), we eventually compute the dynamic
equations

ih̄
∂

∂t

(
�〈D̄†

p,
B̄
†
0, q⊥X

†
p〉

�〈D̄†
0,
B̄

†
0, q⊥B̄

†
0,
〉

)

=
(

�PSB,−
ω,p − iγ1 −iGδp,0

iG �cav
ω − h̄�

)
·
(

�〈D̄†
p,
B̄

†
0, q⊥X

†
p〉

�〈D̄†
0,
B̄

†
0, q⊥B̄

†
0,
〉

)

+ i

(
χp

�〈D̄†
0,
B̄

†
0,
X

†
0〉

)
. (B1)

Even though Eqs. (35) and (B1) have a much simpler
format than the original equations, they still contain unknown
collective contributions on the right-hand side. To solve these,
we need to additionally evaluate

ih̄
∂

∂t
�〈D̄†

0,
B̄
†
0,
B̄

†
0,
〉

= −h̄��〈D̄†
0,
B̄

†
0,
B̄

†
0,
〉

+ iG(�〈D̄†
0,
B̄

†
0,
X

†
0〉 + �〈D̄†

0,
B̄
†
0,
X

†
0〉), (B2)

ih̄
∂

∂t
�〈D̄†

0,
B̄
†
0,
X

†
0〉

= [−E1s,0 + h̄ωcav − h̄� − iγ1]�〈D̄†
0,
B̄

†
0,
X

†
0〉

+ iG(χ0 − �〈D̄†
0,
B̄

†
0,
B̄

†
0,
〉), (B3)

ih̄
∂

∂t
�〈D̄†

0,
B̄
†
0,
X

†
0〉

= [E1s,0 − h̄ωcav − h̄� − iγ1]�〈D̄†
0,
B̄

†
0,
X

†
0〉

+ iG(χ0 − �〈D̄†
0,
B̄

†
0,
B̄

†
0,
〉), (B4)

which are linear equations with damping and source terms that
evolve into a steady state.
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46C. W. Teng, J. F. Muth, Ü. Özgür, M. J. Bergmann, H. O. Everitt,

A. K. Sharma, C. Jin, and J. Narayan, Appl. Phys. Lett. 76, 979
(2000).

47N. B. Chen, H. Z. Wu, D. J. Qiu, T. N. Xu, J. Chen, and W. Z. Shen,
J. Phys. Condens. Matter 16, 2973 (2004).

48R. Schmidt, B. Rheinländer, M. Schubert, D. Spemann, T. Butz,
J. Lenzner, E. M. Kaidashev, M. Lorenz, A. Rahm, H. C.
Semmelhack, and M. Grundmann, Appl. Phys. Lett. 82, 2260
(2003).

49W. von Sellmeier, Ann. Phys. (Leipzig) 143, 272 (1871).
50S. Chatterjee, C. Ell, S. Mosor, G. Khitrova, H. M. Gibbs, W. Hoyer,

M. Kira, S. W. Koch, J. P. Prineas, and H. Stolz, Phys. Rev. Lett.
92, 067402 (2004).

094301-12

http://dx.doi.org/10.1016/S0079-6727(99)00008-7
http://dx.doi.org/10.1016/S0079-6727(99)00008-7
http://dx.doi.org/10.1103/PhysRevLett.81.3263
http://dx.doi.org/10.1103/PhysRevLett.81.3263
http://dx.doi.org/10.1016/j.pquantelec.2006.12.002
http://dx.doi.org/10.1016/j.pquantelec.2006.12.002
http://dx.doi.org/10.1103/PhysRevA.78.022102
http://dx.doi.org/10.1063/1.1727484
http://dx.doi.org/10.1063/1.443164
http://dx.doi.org/10.1063/1.443164
http://dx.doi.org/10.1006/aphy.1996.0142
http://dx.doi.org/10.1016/0003-4916(63)90260-4
http://dx.doi.org/10.1016/0003-4916(63)90260-4
http://dx.doi.org/10.1080/00018735400101213
http://dx.doi.org/10.1098/rspa.1952.0212
http://dx.doi.org/10.1103/PhysRevB.68.073310
http://dx.doi.org/10.1103/PhysRevLett.67.2335
http://dx.doi.org/10.1103/PhysRevLett.67.2335
http://dx.doi.org/10.1103/PhysRev.104.1281
http://dx.doi.org/10.1063/1.1370116
http://dx.doi.org/10.1002/pssb.200743072
http://dx.doi.org/10.1134/S1063784208030146
http://dx.doi.org/10.1063/1.125912
http://dx.doi.org/10.1063/1.125912
http://dx.doi.org/10.1088/0953-8984/16/17/024
http://dx.doi.org/10.1063/1.1565185
http://dx.doi.org/10.1063/1.1565185
http://dx.doi.org/10.1103/PhysRevLett.92.067402
http://dx.doi.org/10.1103/PhysRevLett.92.067402

