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Elastic and anelastic properties of densified vitreous B2O3: Relaxations and anharmonicity
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The elastic and anelastic properties of densified B2O3 glasses, melt quenched under pressures of 2 and 4 GPa,
were investigated by measuring the sound velocity and the acoustic attenuation of longitudinal and shear ultrasonic
waves in the megahertz range over the temperature interval between 8 and 300 K. Densification from 1826 to
2373 kg/m3 leads to an extraordinarily large growth of both bulk and shear moduli but leaves the Poisson’s ratio
nearly constant. In the glass compacted at 4 GPa, the elastic moduli become larger by a factor of five than those
characterizing normal vitreous B2O3 (v-B2O3) as a consequence of modifications of the chemical bonding in the
network. The thermally activated relaxations of intrinsic structural defects, which dominate the acoustic behaviors
of normal glass below 150 K, giving rise to an intense attenuation peak and a corresponding steep decrease in
sound velocity, are increasingly depressed by growing densification. Above 150 K, the ultrasonic velocity is
mainly regulated by the vibrational anharmonicity and shows a nearly linear decrease as the temperature is
increased, with a substantially smaller slope with increasing densification. Modeling the relaxation losses and the
related velocity variations by an asymmetric double-well potential model that has a distribution of both the barrier
potential and the asymmetry, it has been possible to separate the relaxation and the anharmonic contributions to
the sound velocity. The former has been ascribed to local motions of boroxol rings formed by connected BO3

planar triangles, the basic units building up the network of v-B2O3, while the latter has been interpreted in terms
of the Akhiezer mechanism concerning the “thermal vibration viscosity.”
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I. INTRODUCTION

Sound propagation in amorphous solids is regulated by
distinct and competing mechanisms, whose relative contri-
butions depend on the temperature and frequency ranges
explored. Over the wide frequency range from hertz to
gigahertz, it is well established that the acoustic behaviors
of oxide glasses are mainly determined by (1) local motions
of intrinsic structural defects—i.e., by tunneling at low
temperatures (T < 10 K) and classical activation at higher
temperatures (T > 10 K)—and (2) vibrational anharmonicity
regulating the interactions between sound waves and thermal
vibrations.1–5 The former causes an increase of the acoustic
attenuation (equivalently, the internal friction Q−1) at the
lowest temperatures, followed by a temperature-independent
plateau and then by a well-pronounced peak and the associated
variations of sound velocity. The latter becomes efficient in
the temperature region above 100 K, where the mean free path
of thermal modes is shorter than the acoustic wavelength. In
particular, it has been shown4,5 that the Akhiezer mechanism
of “phonon viscosity” dominates the hypersonic attenuation
in the region of temperatures above the attenuation peak
while giving a negligible contribution at lower frequencies
(from hertz to megahertz). In addition, it regulates the
linear decrease in sound velocity over the whole frequency
range in glasses that do not have a tetrahedrally coordinated
network.3–8

The relation between disordered topology and defect
modes can be explored in amorphous solids whose density
is increased without altering their stoichiometry. This can
be obtained by “hot” densification of a glass—i.e., by
quenching the melt of a glass-forming liquid subjected to high
pressures in the gigapascal range. Because the structure of

“hot” densified glasses reflects the one of the supercooled
liquid at high pressure at the glass transition temperature
Tg , remarkable modifications of the short- and medium-range
orders leading to a reduction of the local atomic mobility are
expected.

B2O3 glasses, permanently compacted by melt quenching
under pressures between 1 and 5.8 GPa, disclosed sub-
stantial structural changes. Experiments of nuclear magnetic
resonance9 and Raman scattering10 revealed that the increasing
density of glass is associated with the decreasing fraction
of boroxol rings and, for quenching pressures higher than
3.8 GPa, to the transformation of threefold coordinated boron
atoms (B(3)) in fourfold coordinated borons (B(4)), whose
number increases with increasing pressure.9 Boroxol rings
(B3O6) are the molecular groups formed by connected BO3

planar triangles, which are the basic units building up the
network of normal vitreous B2O3 (v-B2O3).11,12 The change
in cation coordination from three to four can be considered
possible evidence for existence in the system of glassy
polymorphs, which reflect the two crystalline forms of boron
oxide:13 low-density α-B2O3 and high-density β-B2O3, the
former being trigonal and the latter tetrahedral.

In this paper, we report a study concerning the temperature
dependence of the acoustic attenuation and sound velocity
at megahertz frequencies in permanently compacted glassy
B2O3. Our aim is to investigate the behavior with increasing
density of the mechanisms governing sound propagation.
The results prove that the decrease of boroxol rings and the
appearance of tetra-coordinated boron atoms with increasing
pressure of synthesis substantially enhance the elastic moduli
and markedly depress the population of relaxing defects, also
altering the anharmonicity of these glasses.
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II. EXPERIMENTAL DETAILS

B2O3 glasses were prepared by melt quenching using, as
starting material, laboratory reagent 99.999% purity grades of
boron oxide isotopically enriched in 11B (99%). Since boron
oxide is quite hygroscopic and its elastic properties depend
on OH content,3 a glass (dry v-B2O3) that has a H2O content
of 210 ppm (furnished and certified by Alfa Aesar) was also
prepared and used as a reference. They were annealed and
stabilized using the same procedure described elsewhere.10

Densification was obtained by loading 11B2O3 glasses in
a multianvil high-temperature/high-pressure apparatus for
synthesis at 2 and 4 GPa. They were fused under pressure at
1150 ◦C for ∼10 min (2-GPa glass) and at 1200 ◦C for ∼30 min
(4-GPa glass) and then quenched at that pressure. A typical
raw sample had a diameter and a length of ∼4.5 mm. Both the
normal and the compacted samples were clear and transparent,
and they did not show any traces of internal cracks. Just after
the synthesis and 1 year later, the densified B2O3 glasses were
characterized by x-ray diffraction, which revealed no signs of
crystallization.

The density was measured at room temperature by a
Micromeritics AccuPyc 1330 gas pycnometer under helium
gas that has an accuracy of 0.03%. The densities of nor-
mal and densified B2O3 glasses are 1826 kg/m3 (normal),
2082 kg/m3 (2 GPa) and 2373 kg/m3 (4 GPa).

Longitudinal and shear sound waves were obtained by
tuning X- and Y-cut quartz crystals at their fundamental
frequency. The attenuation and velocity of longitudinal (Vl)
and shear (Vt ) waves were performed at 10 MHz via a pulse-
echo technique as described in previous work.14 The correct
echo overlap for sound velocity measurements was obtained
by using the �T McSkimin criterion.15 The sample-transducer
bonding agents were Dow Corning silicon fluid between 8 and
190 K and Apiezon N grease between 120 and 300 K. A
correction to account for the bonding was not carried out, but
a rough evaluation of the corresponding error introduced in the
velocity gave a value of less than 0.1%. The thermal scanning
between 8 and 300 K was carried out by using a cryogenerator.
The thermostatic control was better than 0.1 K over the whole
temperature range.

We want to emphasize that the short length of 4-GPa glass
led to partial overlap of adjacent echoes from the specimen
following the application of a pulse of longitudinal ultrasonic
waves, preventing a reliable measurement of the very high
sound velocity. In this case, Vl was determined by measuring

the velocity of shear waves and by using the value (1.77) of the
ratio νB,l

νB,t
= Vl

Vt
between the Brillouin frequency shifts νB,i of

transverse and longitudinal acoustic modes observed in Bril-
louin light scattering (BLS) spectra. BLS spectra were mea-
sured at room temperature using a Sandercock tandem Fabri-
Perot interferometer at the Physics Department of Perugia
University, Italy. The spectra were measured at 90◦ scattering.
This geometry provided the frequency shifts νB,i determined
by light scattering from an acoustic wave of velocity Vi in a
isotropic medium: νB,i = 2nVi

λL
sin( θ

2 ) (λL = 532.0 nm is the
laser wavelength, the index i corresponds to transverse or lon-
gitudinal acoustic modes, and θ = 90◦ is the scattering angle).

The specific heat capacities of normal and densified
samples were determined using a Pyris differential scanning
calorimeter (DSC, PerkinElmer). Discs of each glass of mass
of ∼15 mg were encapsulated in aluminum pans and subjected
to the same thermal cycles from 200 to ∼840 K with a
heating rate of 10 K/min. Calibrations of the DSC output were
performed using a standard sapphire sample. The specific heat
capacity data of normal v-B2O3 are in good agreement with
those of Richet et al.,16 measured by adiabatic calorimetry
from ∼5 to 350 K.

Thermal expansion measurements were made from 120
to 350 K using a Netzsch Industries silica linear variable
differential transformer horizontal dilatometer with a heating
rate of 2 K/min.

III. RESULTS AND DISCUSSION

A. Elastic moduli and Poisson’s ratio

The rigidity of B2O3 glasses critically depends on densi-
fication: a density increase by 30% in 4-GPa glass leads to a
very large growth of both bulk B ( = ρV 2

l − 4
3G) and shear

G ( = ρV 2
t ), moduli, which are larger by a factor of five than

those characterizing normal v-B2O3 (Table I). Figures 1(a)
and 1(b) show that the variations of the moduli vs quenching
pressure in hot densified glassy B2O3 below 4 GPa are
slightly larger than those revealed in SiO2 and GeO2 glasses
compacted at temperatures below Tg ,17,18 with the value at
4 GPa exhibiting a sharp jump. This is because in cold
densified glasses, for example, hot densification at pressures
below 4 GPa causes only modifications of the medium-range
order associated with the formation of more packed groups
of atoms,10 which give rise to a nearly linear increase of the
elastic constants. In a 4-GPa glass, we instead have variations

TABLE I. Parameters of normal and densified B2O3 glasses. Room temperature values are given of the density ρ, longitudinal Vl and shear
Vt sound velocities, Debye sound velocity VD , bulk B and rigidity G moduli, Poisson’s ratio ν, linear thermal expansion coefficient αth, and
average thermal Grüneisen parameter γ th.

B2O3 glasses ρ (kg m−3) Vl (m s−1) Vt (m s−1) VD (m s−1) B (GPa) G (GPa) ν αth (10−6 K−1) γth

Drya 1829 3261 1786 1992 11.67 5.84 0.286 16.9 0.37
Normal 1826 3242 1830 2036 11.04 6.12 0.266 16.3 0.33
2 GPa 2082 3737 2141 2379 16.35 9.54 0.256 15.0 0.39
4 GPa 2373 6462b 3651 4061 56.91 31.63 0.266 5.69 0.49

aH2O content: 210 ppm.
bValue obtained by the ultrasonic Vt and the ratio between the Brillouin frequency shifts of longitudinal and transverse acoustic modes observed
in BLS spectra, Vl

Vt
= 1.77.
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FIG. 1. Bulk (B) and shear (G) moduli normalized to ambient
pressure values and plotted vs quenching pressure in glasses com-
pacted at temperatures above (hot) and below (cold) Tg: (a) B(P ) in
B2O3 (hot, present results, filled triangles), GeO2 (cold, Ref. 17, open
triangles), SiO2 (cold, Ref. 18, open circles); (b) G(P) in B2O3 (hot,
present results, filled triangles), GeO2 (cold, Ref. 17, open triangles),
SiO2 (cold, Ref. 18, open circles).

of the short-range order associated with the formation of tetra-
coordinated boron atoms,10 which increase the connectivity of
the borate network (defined as the number of bridging bonds
per network forming ion, or NFI) giving rise to the observed
sharp stiffening.

Quite differently, the Poisson’s ratio ν = V 2
l −2V 2

t

2(V 2
l −V 2

t )
shows

a value of 0.266 in normal v-B2O3 and remains close to
∼0.26 (Table I) in both compacted glasses independently of
the quenching pressure Fig. 2(a). This behavior differs from
the slight increase from 0.207 (at ambient pressure) to 0.22
(at 6 GPa) and from 0.168 (at ambient pressure) to 0.193
(at 6 GPa) experienced from cold densified GeO2 and SiO2

glasses, respectively; these values are included in Fig. 2(a) for
comparison. In situ measurements on SiO2 glass revealed a
minimum at ∼3 GPa (ν = 0.15) and then an increase up to
a value of 0.32 at 23 GPa, which remains about constant for
even higher pressures.19 As is well known, the Poisson’s ratio is
defined as the negative of the ratio of transverse to longitudinal
strain, produced when a tensile loading is applied. Hence, it
is expected that ν is strongly correlated to the connectivity of
a glassy network, i.e., the larger the connectivity is and the
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FIG. 2. (a) Poisson’s ratios ν plotted vs quenching pressure in
glasses compacted at temperatures above (hot) and below (cold) Tg:
ν(P ) in B2O3 (hot, present results, filled triangles), GeO2 (cold,
Ref. 17, open triangles), and SiO2 (cold, Ref. 18, open circles).
(b) Poisson’s ratios ν at ambient pressure plotted vs average
coordination number of NFIs in v-Se and v-As2Se3 (Ref. 20), v-B2O3

(present results), v-GeO2 (Ref. 17), and v-SiO2 (Ref. 18). The dotted
line is a visual guide.

smaller ν becomes, because an increase of the bridging bonds
per NFI causes increasing resistance to the shear deformation.
This is clearly evidenced in Fig. 2(b), which reports the
values of ν vs the average coordination number of NFI in
prototype glasses that have a network essentially characterized
by bridging bonds: the examined oxide glasses, v-Se (ν =
0.331)20 and v-As2Se3 (ν = 0.294),20 all quenched at ambient
pressure. The increase of connectivity from 2 in v-Se, through
2.4 in v-As2Se3 and 3 in normal v-B2O3, to 4 in v-GeO2 and
v-SiO2 is paralleled by a nearly linear decrease of ν.

The present observations prove that the variation of the
medium- and short-range order obtained by hot compaction
increases only slightly the resistance to the shear deformation
of glassy B2O3. Despite a density variation of ∼30%, a change
of the atomic packing fraction 
21 from 0.35 in normal glass
to 0.46 in 4-GPa glass, and the modifications of the chemical
bonding in the network (i.e., the formation of tetra-coordinated
boron atoms), the Poisson’s ratio remains nearly constant. This
behavior is quite different from that of v-SiO2, whose ductility
increases with increasing quenching or in situ applied pressure
to values close to those of metals as a consequence of structural
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FIG. 3. (a) Comparison among temperature dependences of the
internal friction Q−1 of 10-MHz shear ultrasonic waves in B2O3

glasses: dry (open circles), normal (filled triangles), and hot com-
pacted at 2 GPa (open triangles). (b) Comparison among temperature
dependences of the fractional sound velocities Vt (T )−V t,0

Vt,0
of 10-MHz

shear ultrasonic waves in B2O3 glasses: dry (open circles), normal
(filled triangles), hot compacted at 2 GPa (open triangles), and hot
compacted at 4 GPa (x).

rearrangements under pressure among different crystalline-
like polymorphs.19,23

B. Acoustic attenuation and sound velocity

1. Analysis of ultrasonic data

Figure 3(a) compares the internal friction Q−1 of 10-MHz
shear waves as a function of temperature between 8 and
300 K in dry, normal, and 2-GPa v-B2O3. The internal
friction is related to the acoustic attenuation by the relation
Q−1 = 0.23αdBV

ω
, where αdB is the attenuation in decibels

per centimeter, V is the sound velocity, and ω is the angular
frequency of ultrasonic waves. In both normal and dry v-B2O3,
the internal friction shows very close temperature behaviors,
exhibiting a broad peak ∼73 K, which is associated with
thermally activated relaxations of structural defects over
the potential barriers (in the schematic representation of
defects by double-well potentials).3 The loss peak is strongly
depressed in 2-GPa glass, where the attenuation rises with
increasing temperature to ∼40 K, becoming little dependent
on temperature above 40 K.

In Fig. 3(b), the velocity of 10-MHz shear sound waves
is shown as a function of temperature for dry, normal,
and densified v-B2O3. The temperature dependences of the
ultrasonic velocities in all the glasses studied show a negative
temperature coefficient in the whole investigated range but
with a larger slope at low temperatures. The shape of velocity
curves between 8 and 120 K clearly indicates predominance
of relaxation processes regulated by classical activation over
potential barriers, while the nearly linear trend observed for
higher temperatures is associated with the contribution of
vibrational anharmonicity.3 In agreement with the behaviors of
acoustic loss, increasing densification depresses substantially
the variation of �Vt

Vt,0
between 8 and 120 K, indicating a parallel

reduction of the relaxation strength. Moreover, the slope of
the linear decrease observed at higher temperatures reduces
appreciably by going from normal to 4-GPa v-B2O3.

The temperature behavior of the shear sound velocity Vt

over the whole temperature range explored can be expressed
by the following relation, which covers both relaxation and
anharmonic contributions:

�Vt

Vt,0
=

(
�Vt

Vt,0

)
rel

+
(

�Vt

Vt,0

)
anh

, (1)

where Vt ,0 is the sound velocity at the lowest temperature in
the experiment and �Vt = Vt (T ) − Vt ,0.

The relaxation term can be evaluated by the asymmetric
double-well potential (ADWP) model.24 In the ADWP model,
the ultrasonic strain interacts with the population of intrinsic
defects subjected to thermally activated local motions within
ADWPs, having broad distributions of both the barrier height
V and the asymmetry �: g(V ) and f (�). Modulation of the
asymmetry � by a shear sound wave of angular frequency ω

leads to a loss peak and a corresponding dispersion in the sound
velocity when an appropriate interval of frequencies and/or
temperatures is explored, because the relaxation time τ of de-
fects is temperature dependent, τ = τ0 exp( V

kBT
) sec h( �

2kBT
).

Using for g(V ) an exponential form, g(V ) = V −1
0 exp(− V

V0
),

and taking f (�) as a constant f0, the internal friction and
the dispersion can be reduced to the following analytical
expressions:25,26

Q−1
rel = 2C∗

t

[
απ/2

cos(απ/2)
yα

0 − α

1 − α
y0

]
(2)

(
δVt

Vt,0

)
rel

= C∗
t

[
απ/2

sin(απ/2)
yα

0 − 1

]
, (3)

where α = kBT
V0

= T
T0

and y0 = ωτ0. The relaxation strength is

given by C∗
t = γ 2

t f0

ρV 2
t

, where γ t is the deformation potential that
expresses the coupling between the ultrasonic stress and the
two-well systems and ρ is the sample density. Equations (2)
and (3) account for the temperature dependences of Q−1

rel and
( δVt

Vt,0
)rel, with a negligible error in the megahertz range, and lead

to a loss peak whose frequency and temperature dependences
can be well approximated by the usual Arrhenius law that has
V0 as activation energy.

The anharmonic contribution ( δVt

Vt,0
)anh can be assessed

by extending to glassy solids the theory concerning the
interaction of sound waves with thermal phonons in dielectric
crystals.27,28 In the high-temperature region, the mean free
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path of thermal modes is shorter than the acoustic wavelength
and the condition ωτth � 1 is satisfied, where τth is the mean
lifetime of thermal vibrations. This is the temperature region
of the Akhiezer loss or phonon viscosity.29 At ultrasonic
frequencies, this condition is surely satisfied over the whole
range of temperatures explored. Measurements of thermal
conductivity � on v-B2O3

30 give a value of τth of 8.2 ×
10−12 s at 8 K, a temperature that lies within the plateau region
of �, where the dominant phonon approximation should be
valid.31

Assuming a single value for τth in the temperature region
where ωτth � 1, the acoustic loss and the variation of sound
velocity are given by4,5

Q−1
anh = A(T )ωτth,

(
δVt

Vt,0

)
anh

= −A(T )

2
, (4)

where A(T ) = γ 2
GCV T Vt

2ρV 3
D

, γ 2
G is the mean-square average

Grüneisen parameter, CV is the specific heat per unit volume,
and VD is the Debye velocity. In the ultrasonic range, the first
part of Eq. (4) leads to a negligible acoustic loss, while the
second one predicts a nearly linear temperature decrease for
the sound velocity, in close agreement with the experimental
behaviors observed in glasses that do not have a tetrahedrally
coordinated network.3,32

Numerical evaluation of the ultrasonic relaxation loss (for
T � 8 K) in normal v-B2O3 has been performed, obtaining
a good fit of the experimental curve [solid line in Fig. 4(a)],
with the following values for the relaxation parameters, also
reported in Table II: C∗

t = 2.3 × 10−2, T0 = 820 K, and
τ0 = 2 × 10−14 s. By including these values in Eq. (3), it
becomes possible to evaluate the relaxation contribution to
the sound velocity; the resulting curve is reported in Fig. 4(b)
as a solid line. By subtracting ( δVt

Vt,0
)rel from the experimental

data, we obtain the curve labeled anh in Fig. 4(b). It shows a
temperature decrease that becomes nearly linear above 150 K
and reflects closely the behavior predicted by the mechanism
of network viscosity [the second part of Eq. (4)], which is
expected to cause measurable decreases of sound velocity
only for temperatures higher than ∼20 K. These findings
confirm that Eq. (1) represents the behavior of sound velocity
over the whole temperature range explored and disclose that,
above ∼200 K in this glass, the sound velocity can be
expressed by the addition of a constant term, given by the
relaxation strength C∗

t , and the anharmonic term A(T ), i.e.,
( δVt

Vt,0
)T �200K

∼= −(C∗
t + A(T )

2 ). This is because the first term in
brackets on the right-hand side of Eq. (3) becomes increasingly
negligible with increasing temperature and α. Combining the
experimental values of δVt

Vt,0
with the specific heats per unit

volume CV , the Debye velocities VD , the shear velocities Vt ,
and the densities ρ, all of these quantities being measured at
the same temperature of δVt

Vt,0
, it has been possible to estimate

the average Grüneisen parameter γ 2
G by the relation defining

A(T ). The mean value of γ 2
G obtained over the range between

200 and 300 K is 0.8 (corresponding to γG = ±0.89).
Now we use the high-temperature limit of Eq. (1) to

determine C∗
t and the average Grüneisen parameter γ 2

G in
densified glasses. By the values of δVt

Vt,0
and of all physical

parameters defining A(T ), measured over the interval between
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FIG. 4. (a) Comparison between experimental data of the relax-
ation loss Q−1

rel at 10 MHz across the broad relaxation peak in normal
v-B2O3 and the theoretical fit with the exponential distribution of
activation energies by Eq. (2) (solid line). (b) Comparison among
temperature dependences of the fractional sound velocity of 10-MHz
shear ultrasonic waves in normal v-B2O3 (open circles), the relaxation
contribution (solid line) evaluated by Eq. (3), and the anharmonic
contribution (dotted line) given by the difference between the
experimental data and the relaxation curve. (c) Temperature behaviors
of anharmonic and relaxation contributions to the fractional sound
velocity of 10-MHz shear ultrasonic waves in densified v-B2O3:
2-GPa glass, anharmonic (dash-dotted line), and relaxation (open
diamonds), and 4-GPa glass, anharmonic (dotted line), and relaxation
(open inverse triangles). The anharmonic contributions have been
evaluated by Eq. (4), whereas the relaxation curves are the difference
between experimental data and anharmonic behaviors. Solid lines
represent the fit to the relaxation curves by Eq. (3).

200 and 300 K, we obtain γ 2
G = 1.24 and C∗

t = 0.0107 for
2-GPa glass and γ 2

G = 2.39 and C∗
t = 0.0062 for 4-GPa glass.

Assuming γ 2
G as a constant over the whole temperature

range explored and including in A(T ) the measured values of
the other parameters, we obtain the temperature behaviors of
( δVt

Vt,0
)anh in both the densified glasses, which are reported as

a dotted line and a dash-dotted line in Fig. 4(c). Within the
experimental error, the measured specific heat capacities Cp

of normal and densified B2O3 glasses are coincident over the
interval between 200 and 500 K. This observation led us to use
the values of Cp measured below 200 K in v-B2O3 by adiabatic
calorimetry16 for the compacted samples as well. Then, by
subtracting ( δVt

Vt,0
)anh from the experimental values of δVt

Vt,0
, we
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TABLE II. Values of the relaxation parameters in densified B2O3 glasses for relaxation strength C∗
t , activation energy V0, characteristic

time τ0, coupling constant γt , and asymmetry distribution f0.

B2O3 glasses C∗
t (10−2) V0/kB (K) τ0 (10−13 s) f0γ

2
t (108 J m−3) γt (eV) f0 (1046 J−1 m−3)

Normal 2.28 820 0.21 1.40 0.19 15.1
2 GPa 1.07 719 1.46 1.02 0.21 8.25
4 GPa 0.71 579 4.25 2.25 0.44 4.54

determine the relaxation contributions that are also shown in
Fig. 4(c) as data points. Numerical evaluation of ( δVt

Vt,0
)rel has

been performed by Eq. (3) obtaining a good fit [solid line in
Fig. 4(c)], and the values of relaxation parameters are included
in Table II.

2. Anharmonicity

The obtained values of γG should be compared with those
of the average thermal Grüneisen parameter γth = 3αthB

SVm

Cp

determined at room temperature (Table I). In this relation, αth

is the linear thermal expansion coefficient, BS is the adiabatic
bulk modulus, Vm is the molar volume, and Cp is the molar heat
capacity at constant pressure. The values of γG increase with
increasing densification of glasses, in close agreement with
the behavior observed for the thermal Grüneisen parameters
γG,th (Table I). Low values of γ th imply the presence of
vibrational modes that have small or negative γG. Ultrasonic
measurements under pressure on borate glasses33 revealed
that, in clear contrast with the positive values determined
for the longitudinal acoustic-mode Grüneisen parameter γG,l ,
the values for the shear acoustic-mode Grüneisen parameter
γG,t are negative. In vitreous SiO2, both the longitudinal and
the shear acoustic-mode Grüneisen parameters are negative:
the presence of vibrational modes that have negative γG has
been explained by considering the open structure of this glass,
which allows bending vibrations of oxygen atoms bridging
between two silicon atoms.34,35 This model emphasizes the
importance of low-frequency transverse vibrations whose
frequency increases with increasing volume. Low values of
γ th imply that bending vibrations could also play a significant
role in the vibrational anharmonicity of v-B2O3.

3. Thermally activated relaxations

Inspection of the relaxation parameters reveals that the
hardening of the elastic continuum due to compaction gives
rise to a well-defined decrease of both the relaxation strength
C∗

t and the apparent activation energy V0. To consider the
densification effect on the number of relaxing particles, we
deduced the product f0γt

2 from C∗
t (Table II). It decreases

by going from normal v-B2O3 to 2-GPa glass, showing an
unexpected marked increase in 4-GPa glass. It is believed that
this increase mainly reflects a strong variation of γ 2

t , because
it has been proved that the deformation potential increases
roughly linearly with increasing glass transition temperature
Tg .36 The Tg of these glasses exhibits remarkable changes
with hot densification at high pressures (from ∼533 K in
v-B2O3, through 552 K in 2-GPa glass, to 748 K in 4-GPa
glass), implying that the quantity in f0γ

2
t , which increases with

increasing densification, must be the deformation potential γ t .

The deformation potentials deduced by linear interpolation
from the plot of the values of γ t vs Tg , experimentally
determined in lithium borate glasses,37 are reported, together
with the obtained values of the spectral density of asymmetries
f0 in Table II. Assuming that f (�) = f0 below V0 and
f (�) = 0 above V0, the calculated number of relaxing particles
decreases from an order of magnitude of 1027 m−3 in normal
v-B2O3 to 1026 m−3 in 2- and 4-GPa glasses.

To discuss the possible microscopic origin of the relaxing
centers, we have to distinguish between extrinsic and intrinsic
defects, because v-B2O3 might contain a substantial amount
of water or of OH− hydroxyl ions. It has been found that the
presence of OH− groups has a large effect on some physical
properties of glassy B2O3: they affect the high-temperature
acoustic loss and the elastic characteristics,38 giving rise to a
hardening of the network, and the low-temperature specific
heat capacity.39 The data reported in Fig. 3 and Table I
show that the behavior of the internal friction and the room
temperature values of sound velocities and the expansion
coefficient in normal v-B2O3 are close to those measured in
the dry sample, which has a very low H2O content (less than
0.1 mol% corresponding to a number of particles of
∼1025 m−3). Thus, it is reasonable to assume a similar number
of OH groups in normal glass, which is used to synthesize
the densified samples and, most importantly, to exclude these
extrinsic defects as the origin of the observed relaxation
processes.

The variations of both the relaxation strength and the
activation energy V0 should be attributed to relaxing particles
whose local arrangement is significantly affected by structural
modifications induced by network compaction. The absence of
an adequate model describing the microscopic nature of defect
states in glassy B2O3 leads us to try a possible explanation for
the observed anelastic effects.

Recent Raman scattering measurements10 revealed that the
application of pressures to 4 GPa in the liquid phase of
B2O3 gives rise to substantial variations of the connectivity
of the glassy network, limiting the formation of boroxol
rings during the next quenching process and causing the
formation of pentaborate units, i.e., two boroxol rings linked
by a tetra-coordinated boron atom. Melt quenching under
pressure to 4 GPa of B2O3 hinders the transformation of BO3

chainlike segments in rings during the cooling process, driving
the system toward a glassy structure that has more efficient
packing of the molecular units. Increasing density of the glass
is associated with the decrease of the fraction of boroxol rings
and with the enhancement of the network connectivity by
variations in the chemical bonding. It is believed that both these
modifications represent the source for the observed decrease of
the number of relaxing units, the former preventing their local
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mobility and the latter depressing their degrees of freedom. In
this context, it is proposed that structural relaxations affecting
the sound propagation in v-B2O3 originate from some kind of
local motion of BO3 groups connected to form the boroxol
rings in the network. The present observations lead to the
conclusion that glassy v-B2O3 that has a structure modified
by increasing densification alters substantially the thermally
activated local mobility as a consequence of substantial
modifications of the short- and medium-range orders, which
impose severe restrictions on the relaxing particles.

IV. CONCLUSIONS

An ultrasonic study of densified B2O3 glasses, melt
quenched under pressures in the gigapascal range, has been
performed over the temperature range between 8 and 300 K.
In the glass compacted at the highest pressure (4 GPa), bulk
and shear moduli become larger by a factor of five than
those characterizing normal v-B2O3 as a consequence of
modifications of the chemical bonding in the network (the
formation of tetra-coordinated boron atoms). Quite differently,
the Poisson’s ratio remains nearly constant with increasing
densification, despite variations of the short- and medium-
range orders, which should hinder the local shear.

The analysis of the ultrasonic loss and sound velocity
curves show that different dynamic mechanisms contribute
to the sound propagation: (1) localized motion of structural
defects and (2) vibrational anharmonicity. The locally mobile

particles experience classical activation over potential barriers
above 10 K. The relaxation strength C∗

t is found to be on
the order of 10−2 and exhibits a well-defined decrease with
increasing densification, which causes a significant reduction
of the boroxol rings formed by connected BO3 planar triangles,
the basic units building up the skeleton of v-B2O3. These
observations lead us to associate the defect states with some
kind of local motion of BO3 groups within boroxol rings.
The evaluation of the relaxation contributions to the ultrasonic
loss and sound velocity by the ADWP model permits us to
assess the temperature behavior of sound velocity arising
from the anharmonic interactions of thermal vibrations. This
led to the quantitative evaluation of the mean acoustic-mode
Grüneisen parameter γG in the temperature region where
the acoustic behaviors should be governed by the Akhiezer
mechanism of thermal vibration viscosity. The obtained values
of γG exhibit an increase with increasing densification of
glasses, in agreement with the behavior observed for the
thermal Grüneisen parameters γG,th. These findings prove that,
besides classical activation of structural defects, vibrational
anharmonicity is playing a significant role in governing the
sound velocity behavior in the megahertz range.

ACKNOWLEDGMENTS

The authors thank D. Fioretto (Dipartimento di Fisica,
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